organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-methyl­pyridinium 2-carb­­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 June 2010; accepted 1 July 2010; online 7 July 2010)

In the title mol­ecular salt, C6H9N2+·C8H5O4, the anion is stabilized by an intra­molecular O—H⋯O hydrogen bond, which generates an S(7) ring motif. In the crystal, the cations and anions are linked to form extended chains along [001] by O—H⋯O and N—H⋯O hydrogen bonds. Adjacent chains are crosslinked via C—H⋯O inter­actions into sheets lying parallel to (100).

Related literature

For substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For details of hydrogen bonding, see: Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding: a Theoretical Perspective. Oxford University Press.]); Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Quah et al. (2008a[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878-o1879.],b[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230.],c[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008c). Acta Cryst. E64, o2333.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C8H5O4

  • Mr = 274.27

  • Monoclinic, P 21 /c

  • a = 13.0558 (15) Å

  • b = 6.9182 (8) Å

  • c = 14.2575 (17) Å

  • β = 90.218 (2)°

  • V = 1287.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.41 × 0.19 × 0.11 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.989

  • 26319 measured reflections

  • 3856 independent reflections

  • 3332 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.13

  • 3856 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O3 0.86 1.57 2.4009 (14) 163
N1—H1N1⋯O4i 0.94 (2) 1.77 (2) 2.6919 (16) 169 (2)
N2—H1N2⋯O3i 0.89 (2) 2.11 (2) 2.9881 (16) 166.6 (19)
N2—H2N2⋯O1ii 0.86 (2) 2.06 (2) 2.8888 (16) 164.5 (19)
C5—H5A⋯O2iii 0.953 (19) 2.532 (19) 3.4133 (17) 153.7 (16)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+2; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound, (I), is presented here.

The asymmetric unit of the title compound contains one 2-amino-4-methylpyridinium cation and one 2-carboxybenzoate anion. A proton transfer from the carboxyl group of 2-carboxybenzoice acid to atom N1 of 2-amino-4-methylpyridinium resulted in the formation of ions. The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah et al., 2008a,b,c). The 2-amino-4-methylpyridinium cation is essentially planar, with the maximum deviation of 0.024 (1) Å for atom C2 and makes a dihedral angle of 19.56 (6)° with benzene (C7—C12) ring in 2-carboxybenzoate anion. The molecular structure is stabilized by an intramolecular O2—H1O2···O3 hydrogen bond which generates an S(7) ring motif (Bernstein et al., 1995).

In the solid state, the cations and anions are linked to form extended chains along [0 0 1] by O–H···O and N–H···O hydrogen bonds (Table 1). The adjacent chains are cross-linked via C5–H5A···O2 interactions into two-dimensional networks (Fig. 2) parallel to the (1 0 0).

Related literature top

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Scheiner (1997); Jeffrey & Saenger (1991); Jeffrey (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Quah et al. (2008a,b, c). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (27 mg, Aldrich) and phthalic acid (41 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless blocks of (I) appeared after a few days.

Refinement top

Atom H1O2 was located in a difference Fourier map and refined as riding with the parent atom with Uiso(H) = 1.5Ueq(O) [O2—H1O2 = 0.856 Å]. The remaining H atoms were located in a difference Fourier map and refined freely [N—H = 0.86 (2)–0.84 (2) Å and C—H = 0.892 (18)–1.00 (2) Å].

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound, (I), is presented here.

The asymmetric unit of the title compound contains one 2-amino-4-methylpyridinium cation and one 2-carboxybenzoate anion. A proton transfer from the carboxyl group of 2-carboxybenzoice acid to atom N1 of 2-amino-4-methylpyridinium resulted in the formation of ions. The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah et al., 2008a,b,c). The 2-amino-4-methylpyridinium cation is essentially planar, with the maximum deviation of 0.024 (1) Å for atom C2 and makes a dihedral angle of 19.56 (6)° with benzene (C7—C12) ring in 2-carboxybenzoate anion. The molecular structure is stabilized by an intramolecular O2—H1O2···O3 hydrogen bond which generates an S(7) ring motif (Bernstein et al., 1995).

In the solid state, the cations and anions are linked to form extended chains along [0 0 1] by O–H···O and N–H···O hydrogen bonds (Table 1). The adjacent chains are cross-linked via C5–H5A···O2 interactions into two-dimensional networks (Fig. 2) parallel to the (1 0 0).

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Scheiner (1997); Jeffrey & Saenger (1991); Jeffrey (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Quah et al. (2008a,b, c). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown in dashed line.
[Figure 2] Fig. 2. The crystal structure of (I) viewed along the b axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
2-Amino-4-methylpyridinium 2-carboxybenzoate top
Crystal data top
C6H9N2+·C8H5O4F(000) = 576
Mr = 274.27Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6320 reflections
a = 13.0558 (15) Åθ = 2.9–30.3°
b = 6.9182 (8) ŵ = 0.11 mm1
c = 14.2575 (17) ÅT = 100 K
β = 90.218 (2)°Block, colourless
V = 1287.8 (3) Å30.41 × 0.19 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3856 independent reflections
Radiation source: fine-focus sealed tube3332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 30.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.958, Tmax = 0.989k = 99
26319 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.7248P]
where P = (Fo2 + 2Fc2)/3
3856 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C6H9N2+·C8H5O4V = 1287.8 (3) Å3
Mr = 274.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0558 (15) ŵ = 0.11 mm1
b = 6.9182 (8) ÅT = 100 K
c = 14.2575 (17) Å0.41 × 0.19 × 0.11 mm
β = 90.218 (2)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3856 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3332 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.989Rint = 0.046
26319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.41 e Å3
3856 reflectionsΔρmin = 0.33 e Å3
233 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.92537 (9)0.10419 (17)0.64609 (8)0.0185 (2)
N20.85884 (10)0.0110 (2)0.78891 (8)0.0230 (3)
C10.84333 (10)0.05716 (19)0.69918 (9)0.0174 (3)
C20.74595 (10)0.05677 (19)0.65551 (9)0.0173 (2)
C30.73580 (10)0.10080 (19)0.56198 (9)0.0173 (2)
C40.82425 (10)0.1503 (2)0.50975 (9)0.0188 (3)
C50.91673 (10)0.1521 (2)0.55390 (9)0.0190 (3)
C60.63362 (11)0.0948 (2)0.51390 (11)0.0233 (3)
O10.29640 (8)0.07772 (17)1.07382 (7)0.0256 (2)
O20.14735 (7)0.13709 (16)1.00722 (7)0.0220 (2)
H1O20.12490.14840.95100.033*
O30.07013 (7)0.10883 (16)0.85474 (7)0.0232 (2)
O40.11341 (8)0.01778 (17)0.71187 (7)0.0255 (2)
C70.25074 (10)0.07219 (19)0.81743 (9)0.0169 (2)
C80.31459 (11)0.0630 (2)0.73921 (10)0.0252 (3)
C90.42058 (12)0.0674 (3)0.74708 (11)0.0343 (4)
C100.46574 (12)0.0806 (3)0.83501 (11)0.0307 (4)
C110.40349 (10)0.0909 (2)0.91336 (10)0.0212 (3)
C120.29652 (10)0.08811 (18)0.90749 (9)0.0158 (2)
C130.24430 (10)0.10053 (19)1.00235 (9)0.0178 (3)
C140.13713 (10)0.0649 (2)0.79293 (10)0.0186 (3)
H2A0.6866 (15)0.030 (3)0.6899 (13)0.025 (5)*
H4A0.8212 (13)0.180 (3)0.4489 (13)0.020 (4)*
H5A0.9801 (14)0.181 (3)0.5240 (13)0.026 (5)*
H6A0.6231 (16)0.198 (3)0.4689 (15)0.038 (6)*
H6B0.6280 (18)0.026 (4)0.4780 (16)0.044 (6)*
H6C0.5785 (19)0.100 (3)0.5570 (18)0.050 (7)*
H8A0.2830 (17)0.056 (3)0.6805 (16)0.038 (6)*
H9A0.4616 (17)0.062 (3)0.6884 (16)0.039 (6)*
H10A0.5374 (18)0.080 (3)0.8406 (15)0.037 (6)*
H11A0.4322 (14)0.106 (2)0.9756 (13)0.018 (4)*
H1N10.9896 (18)0.087 (3)0.6745 (15)0.038 (6)*
H1N20.9214 (18)0.022 (3)0.8138 (15)0.037 (6)*
H2N20.8067 (17)0.025 (3)0.8207 (14)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0148 (5)0.0233 (6)0.0174 (5)0.0020 (4)0.0001 (4)0.0000 (4)
N20.0200 (6)0.0340 (7)0.0150 (5)0.0024 (5)0.0008 (4)0.0032 (5)
C10.0176 (6)0.0188 (6)0.0159 (6)0.0008 (4)0.0006 (4)0.0010 (4)
C20.0148 (5)0.0198 (6)0.0172 (6)0.0013 (4)0.0019 (4)0.0013 (5)
C30.0169 (6)0.0176 (6)0.0175 (6)0.0003 (4)0.0015 (4)0.0015 (4)
C40.0204 (6)0.0204 (6)0.0156 (6)0.0002 (5)0.0010 (5)0.0009 (5)
C50.0184 (6)0.0208 (6)0.0178 (6)0.0020 (5)0.0031 (5)0.0009 (5)
C60.0176 (6)0.0309 (7)0.0212 (6)0.0006 (5)0.0036 (5)0.0001 (6)
O10.0203 (5)0.0412 (6)0.0153 (4)0.0024 (4)0.0015 (4)0.0009 (4)
O20.0181 (5)0.0317 (5)0.0163 (4)0.0040 (4)0.0016 (3)0.0018 (4)
O30.0147 (4)0.0350 (6)0.0199 (5)0.0033 (4)0.0001 (4)0.0006 (4)
O40.0199 (5)0.0366 (6)0.0201 (5)0.0000 (4)0.0039 (4)0.0031 (4)
C70.0149 (5)0.0197 (6)0.0160 (5)0.0004 (4)0.0009 (4)0.0009 (4)
C80.0204 (6)0.0397 (8)0.0156 (6)0.0001 (6)0.0003 (5)0.0003 (6)
C90.0196 (7)0.0636 (12)0.0197 (7)0.0003 (7)0.0047 (5)0.0031 (7)
C100.0152 (6)0.0530 (10)0.0239 (7)0.0010 (6)0.0017 (5)0.0021 (7)
C110.0164 (6)0.0292 (7)0.0181 (6)0.0014 (5)0.0014 (5)0.0003 (5)
C120.0155 (5)0.0170 (6)0.0150 (5)0.0004 (4)0.0003 (4)0.0006 (4)
C130.0172 (6)0.0199 (6)0.0163 (6)0.0019 (5)0.0010 (4)0.0013 (5)
C140.0169 (6)0.0202 (6)0.0188 (6)0.0004 (5)0.0012 (5)0.0026 (5)
Geometric parameters (Å, º) top
N1—C11.3535 (17)O1—C131.2331 (16)
N1—C51.3599 (17)O2—C131.2929 (16)
N1—H1N10.94 (2)O2—H1O20.8555
N2—C11.3332 (17)O3—C141.2807 (17)
N2—H1N20.89 (2)O4—C141.2391 (17)
N2—H2N20.86 (2)C7—C81.3963 (19)
C1—C21.4136 (18)C7—C121.4186 (17)
C2—C31.3738 (18)C7—C141.5233 (18)
C2—H2A0.94 (2)C8—C91.388 (2)
C3—C41.4183 (19)C8—H8A0.93 (2)
C3—C61.4981 (18)C9—C101.386 (2)
C4—C51.3596 (19)C9—H9A1.00 (2)
C4—H4A0.892 (18)C10—C111.386 (2)
C5—H5A0.953 (19)C10—H10A0.94 (2)
C6—H6A0.97 (2)C11—C121.3988 (18)
C6—H6B0.98 (2)C11—H11A0.967 (18)
C6—H6C0.95 (3)C12—C131.5195 (18)
C1—N1—C5122.43 (12)H6B—C6—H6C108 (2)
C1—N1—H1N1115.9 (14)C13—O2—H1O2107.5
C5—N1—H1N1121.3 (14)C8—C7—C12118.39 (12)
C1—N2—H1N2119.7 (14)C8—C7—C14113.53 (12)
C1—N2—H2N2117.3 (13)C12—C7—C14128.08 (12)
H1N2—N2—H2N2122.9 (19)C9—C8—C7122.17 (13)
N2—C1—N1118.46 (12)C9—C8—H8A120.7 (14)
N2—C1—C2123.73 (13)C7—C8—H8A117.1 (14)
N1—C1—C2117.80 (12)C10—C9—C8119.66 (14)
C3—C2—C1120.69 (12)C10—C9—H9A122.3 (13)
C3—C2—H2A118.3 (12)C8—C9—H9A118.0 (13)
C1—C2—H2A121.0 (12)C11—C10—C9118.92 (14)
C2—C3—C4119.17 (12)C11—C10—H10A121.3 (13)
C2—C3—C6121.37 (12)C9—C10—H10A119.8 (13)
C4—C3—C6119.46 (12)C10—C11—C12122.65 (13)
C5—C4—C3118.86 (12)C10—C11—H11A121.2 (11)
C5—C4—H4A119.0 (11)C12—C11—H11A116.1 (11)
C3—C4—H4A122.2 (11)C11—C12—C7118.20 (12)
C4—C5—N1121.03 (12)C11—C12—C13113.40 (11)
C4—C5—H5A124.5 (11)C7—C12—C13128.40 (12)
N1—C5—H5A114.4 (11)O1—C13—O2121.18 (12)
C3—C6—H6A114.0 (12)O1—C13—C12118.71 (12)
C3—C6—H6B109.1 (14)O2—C13—C12120.10 (12)
H6A—C6—H6B105.8 (19)O4—C14—O3122.37 (12)
C3—C6—H6C112.3 (15)O4—C14—C7117.53 (12)
H6A—C6—H6C107.2 (19)O3—C14—C7120.09 (12)
C5—N1—C1—N2179.65 (13)C10—C11—C12—C70.6 (2)
C5—N1—C1—C20.7 (2)C10—C11—C12—C13179.86 (15)
N2—C1—C2—C3178.20 (13)C8—C7—C12—C110.9 (2)
N1—C1—C2—C30.7 (2)C14—C7—C12—C11179.59 (13)
C1—C2—C3—C41.1 (2)C8—C7—C12—C13179.96 (13)
C1—C2—C3—C6178.00 (13)C14—C7—C12—C130.5 (2)
C2—C3—C4—C50.2 (2)C11—C12—C13—O112.47 (18)
C6—C3—C4—C5178.95 (13)C7—C12—C13—O1166.68 (13)
C3—C4—C5—N11.2 (2)C11—C12—C13—O2166.57 (13)
C1—N1—C5—C41.6 (2)C7—C12—C13—O214.3 (2)
C12—C7—C8—C90.5 (2)C8—C7—C14—O412.57 (19)
C14—C7—C8—C9179.94 (16)C12—C7—C14—O4167.93 (14)
C7—C8—C9—C100.3 (3)C8—C7—C14—O3166.62 (14)
C8—C9—C10—C110.6 (3)C12—C7—C14—O312.9 (2)
C9—C10—C11—C120.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O30.861.572.4009 (14)163
N1—H1N1···O4i0.94 (2)1.77 (2)2.6919 (16)169 (2)
N2—H1N2···O3i0.89 (2)2.11 (2)2.9881 (16)166.6 (19)
N2—H2N2···O1ii0.86 (2)2.06 (2)2.8888 (16)164.5 (19)
C5—H5A···O2iii0.953 (19)2.532 (19)3.4133 (17)153.7 (16)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+2; (iii) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C8H5O4
Mr274.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.0558 (15), 6.9182 (8), 14.2575 (17)
β (°) 90.218 (2)
V3)1287.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.41 × 0.19 × 0.11
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.958, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
26319, 3856, 3332
Rint0.046
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.13
No. of reflections3856
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O30.861.572.4009 (14)163
N1—H1N1···O4i0.94 (2)1.77 (2)2.6919 (16)169 (2)
N2—H1N2···O3i0.89 (2)2.11 (2)2.9881 (16)166.6 (19)
N2—H2N2···O1ii0.86 (2)2.06 (2)2.8888 (16)164.5 (19)
C5—H5A···O2iii0.953 (19)2.532 (19)3.4133 (17)153.7 (16)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+2; (iii) x+1, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ thanks USM for the award of a USM fellowship. MH thanks USM for the award of a postdoctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878–o1879.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008c). Acta Cryst. E64, o2333.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding: a Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds