organic compounds
2-Amino-4-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the anion of the title molecular salt, C6H9N2+·C7H3N2O7−, the two nitro groups are twisted from the attached benzene ring with dihedral angles of 27.36 (10) and 4.86 (11)°. The anion is stabilized by an intramolecular O—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, the cations and anions are linked by N—H⋯O and C—H⋯O interactions and are further consolidated by C—H⋯π interactions, to generate a three-dimensional network. A short O⋯N contact of 2.876 (2) Å also occurs.
Related literature
For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Scheiner (1997); Jeffrey & Saenger (1991); Jeffrey (1997). For 2-amino-substituted pyridines, see: Navarro Ranninger et al. (1985); Luque et al. (1997); Qin et al. (1999); Ren et al. (2002); Rivas et al. (2003); Jin et al. (2001); Albrecht et al. (2003). For Lewis bases with 3,5-dinitrosalicylic acid, see: Hindawey et al. (1980); Issa et al. (1981). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Quah et al. (2008a,b, 2010). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810025912/hb5538sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810025912/hb5538Isup2.hkl
A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (27 mg, Aldrich) and 3,5-dinitrosalicylic acid (57 mg, Merck) were mixed and warmed over a heating hotplate magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly to room temperature and yellow needles of (I) appeared after a few days.
O– and N-bound H atoms were located in a difference Fourier map and refined freely [O1—H1O1 = 0.9856 Å, N—H = 0.9478 - 0.9833 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The highest residual electron density peak is located at 0.79 Å from H6B and the deepest hole is located at 0.70 Å from N4.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Qin et al., 1999; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). The nitrosubstituted aromatic acid 3,5-dinitro salicylic acid (DNSA) has proven potential for formation of proton-transfer compounds, particularly because of its acid strength (pKa = 2.18), its interactive ortho-related phenolic substituent group together with the nitro substituents which have potential for both π···π interactions as well as hydrogen-bonding interactions. A large number of both neutral and proton-transfer compounds of Lewis bases with DNSA, together with their IR spectra have been reported (Hindawey et al., 1980; Issa et al., 1981) in the literature. Since our aim is to study some interesting hydrogen bonding interactions, the of the title compound is presented here.
The
of the title compound contains one 2-amino-4-methyl-pyridinium cation and one 3,5-dinitrosalicylate anion. A proton transfer from the carboxyl group of 3,5-dinitrosalicylic acid to atom N1 of 2-amino-4-methylpyridinium resulted in the formation of ions. The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah et al., 2010, 2008a, b). In the 3,5-dinitrosalicylate anion, the two nitro groups are twisted slightly from the attached ring. The dihedral angles between benzene ring (C8—C12) and the two nitro groups (O2/O3/N3/C8 and O4/O5/N4/C10) are 27.36 (10) and 4.86 (11)°, respectively. The 2-amino-4-methylpyridinium cation is essentially planar, with the maximum deviation of 0.012 (2) Å for atoms N2 and C4; and make a dihedral angle of 7.16 (8)° with the benzene ring of 3,5-dinitrosalicylate anion. The molecular structure is stabilized by an intramolecular O1–H1O1···O7 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). There is a short O3···N3 contact (symmetry code: 2 - x, -y, 2 - z) with distance = 2.876 (2) Å which is shorter than the sum of van der Waals radii of the oxygen and nitrogen atoms.In the crystal packing, the cations and anions are linked to form a three-dimensional network (Fig. 2) by intermolecular N1–H1N1···O6, N2–H1N2···O7, N2–H2N2···O1, N2–H2N2···O2, C2–H2A···O2, C4–H4A···O6, C5–H5A···O5 and C9–H9A···O3 interactions and are further consolidated by C–H···π (Table 1) interactions.
For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Scheiner (1997); Jeffrey & Saenger (1991); Jeffrey (1997). For 2-amino-substituted pyridines, see: Navarro Ranninger et al. (1985); Luque et al. (1997); Qin et al. (1999); Ren et al. (2002); Rivas et al. (2003); Jin et al. (2001); Albrecht et al. (2003). For Lewis bases with DNSA, see: Hindawey et al. (1980); Issa et al. (1981). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Quah et al. (2008a,b, 2010). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown in dashed line. | |
Fig. 2. The crystal structure of (I) viewed along the a axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity. |
C6H9N2+·C7H3N2O7− | F(000) = 696 |
Mr = 336.27 | Dx = 1.602 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2122 reflections |
a = 6.0111 (15) Å | θ = 2.7–26.4° |
b = 9.652 (3) Å | µ = 0.13 mm−1 |
c = 24.436 (6) Å | T = 100 K |
β = 100.546 (7)° | Needle, yellow |
V = 1393.8 (7) Å3 | 0.48 × 0.08 × 0.06 mm |
Z = 4 |
Bruker SMART APEXII DUO CCD diffractometer | 3229 independent reflections |
Radiation source: fine-focus sealed tube | 2283 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.057 |
φ and ω scans | θmax = 27.6°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −7→7 |
Tmin = 0.939, Tmax = 0.992 | k = −12→12 |
12178 measured reflections | l = −31→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0909P)2] where P = (Fo2 + 2Fc2)/3 |
3229 reflections | (Δ/σ)max = 0.001 |
222 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
C6H9N2+·C7H3N2O7− | V = 1393.8 (7) Å3 |
Mr = 336.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.0111 (15) Å | µ = 0.13 mm−1 |
b = 9.652 (3) Å | T = 100 K |
c = 24.436 (6) Å | 0.48 × 0.08 × 0.06 mm |
β = 100.546 (7)° |
Bruker SMART APEXII DUO CCD diffractometer | 3229 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2283 reflections with I > 2σ(I) |
Tmin = 0.939, Tmax = 0.992 | Rint = 0.057 |
12178 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.31 e Å−3 |
3229 reflections | Δρmin = −0.44 e Å−3 |
222 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2405 (3) | 0.80105 (17) | 0.83755 (7) | 0.0179 (4) | |
H1N1 | 0.1325 | 0.7348 | 0.8455 | 0.034 (7)* | |
N2 | 0.5190 (3) | 0.75204 (18) | 0.91264 (7) | 0.0220 (4) | |
H1N2 | 0.4146 | 0.6810 | 0.9219 | 0.052 (9)* | |
H2N2 | 0.6655 | 0.7664 | 0.9340 | 0.063 (10)* | |
C1 | 0.4517 (3) | 0.8236 (2) | 0.86605 (8) | 0.0170 (4) | |
C2 | 0.5856 (3) | 0.9234 (2) | 0.84489 (9) | 0.0187 (4) | |
H2A | 0.7321 | 0.9408 | 0.8636 | 0.022* | |
C3 | 0.5022 (3) | 0.9946 (2) | 0.79722 (9) | 0.0187 (4) | |
C4 | 0.2784 (3) | 0.9680 (2) | 0.76912 (9) | 0.0199 (4) | |
H4A | 0.2179 | 1.0163 | 0.7369 | 0.024* | |
C5 | 0.1541 (3) | 0.8708 (2) | 0.79013 (9) | 0.0192 (4) | |
H5A | 0.0076 | 0.8518 | 0.7718 | 0.023* | |
C6 | 0.6432 (4) | 1.1006 (2) | 0.77401 (9) | 0.0231 (5) | |
H6A | 0.7790 | 1.1181 | 0.8006 | 0.035* | |
H6B | 0.5587 | 1.1850 | 0.7666 | 0.035* | |
H6C | 0.6820 | 1.0662 | 0.7401 | 0.035* | |
O1 | 1.1381 (2) | 0.34244 (14) | 0.99102 (6) | 0.0198 (3) | |
H1O1 | 1.2304 | 0.4181 | 0.9798 | 0.119 (16)* | |
O2 | 0.9779 (2) | 0.16274 (14) | 1.05842 (6) | 0.0218 (4) | |
O3 | 0.7607 (2) | 0.00824 (15) | 1.01170 (7) | 0.0242 (4) | |
O4 | 0.1674 (2) | 0.17877 (16) | 0.86962 (7) | 0.0264 (4) | |
O5 | 0.2470 (3) | 0.33999 (17) | 0.81463 (7) | 0.0321 (4) | |
O6 | 0.9513 (2) | 0.60237 (15) | 0.85954 (6) | 0.0219 (3) | |
O7 | 1.2134 (2) | 0.53070 (14) | 0.93122 (6) | 0.0206 (3) | |
N3 | 0.8463 (3) | 0.12385 (17) | 1.01644 (7) | 0.0176 (4) | |
N4 | 0.2953 (3) | 0.26704 (18) | 0.85650 (7) | 0.0212 (4) | |
C7 | 0.9355 (3) | 0.32562 (19) | 0.96014 (9) | 0.0159 (4) | |
C8 | 0.7863 (3) | 0.2196 (2) | 0.97011 (8) | 0.0169 (4) | |
C9 | 0.5784 (3) | 0.1992 (2) | 0.93658 (9) | 0.0172 (4) | |
H9A | 0.4837 | 0.1279 | 0.9438 | 0.021* | |
C10 | 0.5143 (3) | 0.2876 (2) | 0.89190 (8) | 0.0176 (4) | |
C11 | 0.6536 (3) | 0.3935 (2) | 0.88017 (9) | 0.0179 (4) | |
H11A | 0.6066 | 0.4515 | 0.8499 | 0.022* | |
C12 | 0.8626 (3) | 0.4127 (2) | 0.91368 (8) | 0.0164 (4) | |
C13 | 1.0164 (3) | 0.5246 (2) | 0.89969 (9) | 0.0175 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0180 (8) | 0.0159 (8) | 0.0193 (9) | −0.0010 (6) | 0.0019 (7) | −0.0004 (7) |
N2 | 0.0196 (8) | 0.0221 (9) | 0.0226 (10) | −0.0029 (7) | −0.0002 (7) | 0.0060 (7) |
C1 | 0.0167 (9) | 0.0148 (9) | 0.0197 (11) | 0.0023 (7) | 0.0034 (8) | −0.0016 (8) |
C2 | 0.0175 (9) | 0.0153 (9) | 0.0229 (11) | 0.0004 (7) | 0.0029 (8) | 0.0005 (8) |
C3 | 0.0221 (10) | 0.0133 (9) | 0.0218 (11) | 0.0011 (8) | 0.0066 (8) | −0.0027 (8) |
C4 | 0.0242 (10) | 0.0159 (10) | 0.0195 (11) | 0.0034 (8) | 0.0039 (8) | 0.0006 (8) |
C5 | 0.0181 (9) | 0.0189 (10) | 0.0195 (11) | 0.0037 (8) | 0.0008 (8) | −0.0012 (8) |
C6 | 0.0278 (11) | 0.0168 (10) | 0.0256 (12) | 0.0000 (8) | 0.0069 (9) | 0.0029 (9) |
O1 | 0.0170 (7) | 0.0188 (7) | 0.0215 (8) | −0.0024 (6) | −0.0014 (6) | 0.0008 (6) |
O2 | 0.0205 (7) | 0.0234 (8) | 0.0200 (8) | −0.0013 (6) | −0.0001 (6) | −0.0001 (6) |
O3 | 0.0203 (7) | 0.0164 (7) | 0.0353 (9) | −0.0040 (6) | 0.0033 (6) | 0.0049 (7) |
O4 | 0.0200 (7) | 0.0276 (8) | 0.0309 (9) | −0.0066 (6) | 0.0028 (6) | −0.0028 (7) |
O5 | 0.0303 (9) | 0.0338 (9) | 0.0272 (9) | −0.0016 (7) | −0.0084 (7) | 0.0069 (7) |
O6 | 0.0245 (8) | 0.0183 (7) | 0.0216 (8) | −0.0039 (6) | 0.0006 (6) | 0.0028 (6) |
O7 | 0.0182 (7) | 0.0181 (7) | 0.0244 (8) | −0.0021 (5) | 0.0009 (6) | 0.0025 (6) |
N3 | 0.0152 (8) | 0.0162 (8) | 0.0218 (9) | −0.0002 (6) | 0.0042 (7) | 0.0022 (7) |
N4 | 0.0187 (8) | 0.0203 (9) | 0.0238 (10) | 0.0003 (7) | 0.0016 (7) | −0.0026 (8) |
C7 | 0.0144 (9) | 0.0144 (9) | 0.0186 (10) | 0.0010 (7) | 0.0021 (8) | −0.0025 (8) |
C8 | 0.0186 (9) | 0.0139 (9) | 0.0177 (10) | 0.0021 (7) | 0.0020 (8) | −0.0006 (8) |
C9 | 0.0169 (9) | 0.0142 (9) | 0.0207 (11) | −0.0004 (7) | 0.0037 (8) | −0.0017 (8) |
C10 | 0.0161 (9) | 0.0162 (9) | 0.0191 (11) | 0.0008 (7) | −0.0007 (8) | −0.0028 (8) |
C11 | 0.0198 (9) | 0.0159 (9) | 0.0181 (10) | 0.0043 (8) | 0.0035 (8) | 0.0000 (8) |
C12 | 0.0164 (9) | 0.0132 (9) | 0.0199 (11) | 0.0005 (7) | 0.0038 (8) | −0.0018 (8) |
C13 | 0.0189 (9) | 0.0144 (9) | 0.0193 (11) | −0.0002 (7) | 0.0040 (8) | −0.0001 (8) |
N1—C1 | 1.349 (2) | O1—H1O1 | 0.9856 |
N1—C5 | 1.359 (3) | O2—N3 | 1.234 (2) |
N1—H1N1 | 0.9560 | O3—N3 | 1.226 (2) |
N2—C1 | 1.330 (3) | O4—N4 | 1.229 (2) |
N2—H1N2 | 0.9833 | O5—N4 | 1.232 (2) |
N2—H2N2 | 0.9478 | O6—C13 | 1.241 (2) |
C1—C2 | 1.413 (3) | O7—C13 | 1.291 (2) |
C2—C3 | 1.366 (3) | N3—C8 | 1.455 (3) |
C2—H2A | 0.9300 | N4—C10 | 1.450 (2) |
C3—C4 | 1.417 (3) | C7—C8 | 1.411 (3) |
C3—C6 | 1.504 (3) | C7—C12 | 1.416 (3) |
C4—C5 | 1.358 (3) | C8—C9 | 1.377 (3) |
C4—H4A | 0.9300 | C9—C10 | 1.383 (3) |
C5—H5A | 0.9300 | C9—H9A | 0.9300 |
C6—H6A | 0.9600 | C10—C11 | 1.385 (3) |
C6—H6B | 0.9600 | C11—C12 | 1.381 (3) |
C6—H6C | 0.9600 | C11—H11A | 0.9300 |
O1—C7 | 1.320 (2) | C12—C13 | 1.501 (3) |
C1—N1—C5 | 122.49 (18) | O3—N3—O2 | 123.37 (17) |
C1—N1—H1N1 | 127.8 | O3—N3—C8 | 117.70 (16) |
C5—N1—H1N1 | 109.6 | O2—N3—C8 | 118.93 (16) |
C1—N2—H1N2 | 116.8 | O4—N4—O5 | 123.33 (18) |
C1—N2—H2N2 | 120.1 | O4—N4—C10 | 118.81 (17) |
H1N2—N2—H2N2 | 122.9 | O5—N4—C10 | 117.86 (17) |
N2—C1—N1 | 117.93 (18) | O1—C7—C8 | 122.67 (18) |
N2—C1—C2 | 124.26 (18) | O1—C7—C12 | 120.20 (18) |
N1—C1—C2 | 117.80 (18) | C8—C7—C12 | 117.10 (17) |
C3—C2—C1 | 120.67 (19) | C9—C8—C7 | 122.50 (19) |
C3—C2—H2A | 119.7 | C9—C8—N3 | 116.15 (17) |
C1—C2—H2A | 119.7 | C7—C8—N3 | 121.34 (17) |
C2—C3—C4 | 119.33 (19) | C8—C9—C10 | 118.22 (19) |
C2—C3—C6 | 121.29 (19) | C8—C9—H9A | 120.9 |
C4—C3—C6 | 119.38 (18) | C10—C9—H9A | 120.9 |
C5—C4—C3 | 118.77 (19) | C9—C10—C11 | 121.79 (18) |
C5—C4—H4A | 120.6 | C9—C10—N4 | 118.56 (18) |
C3—C4—H4A | 120.6 | C11—C10—N4 | 119.65 (18) |
C4—C5—N1 | 120.93 (18) | C12—C11—C10 | 119.70 (19) |
C4—C5—H5A | 119.5 | C12—C11—H11A | 120.2 |
N1—C5—H5A | 119.5 | C10—C11—H11A | 120.2 |
C3—C6—H6A | 109.5 | C11—C12—C7 | 120.68 (18) |
C3—C6—H6B | 109.5 | C11—C12—C13 | 119.52 (18) |
H6A—C6—H6B | 109.5 | C7—C12—C13 | 119.77 (17) |
C3—C6—H6C | 109.5 | O6—C13—O7 | 124.53 (18) |
H6A—C6—H6C | 109.5 | O6—C13—C12 | 119.82 (18) |
H6B—C6—H6C | 109.5 | O7—C13—C12 | 115.65 (17) |
C7—O1—H1O1 | 116.1 | ||
C5—N1—C1—N2 | 178.61 (18) | N3—C8—C9—C10 | −179.85 (17) |
C5—N1—C1—C2 | −0.4 (3) | C8—C9—C10—C11 | 0.6 (3) |
N2—C1—C2—C3 | −178.7 (2) | C8—C9—C10—N4 | −179.81 (17) |
N1—C1—C2—C3 | 0.2 (3) | O4—N4—C10—C9 | 5.3 (3) |
C1—C2—C3—C4 | 0.3 (3) | O5—N4—C10—C9 | −174.93 (18) |
C1—C2—C3—C6 | −179.65 (19) | O4—N4—C10—C11 | −175.09 (18) |
C2—C3—C4—C5 | −0.8 (3) | O5—N4—C10—C11 | 4.7 (3) |
C6—C3—C4—C5 | 179.17 (19) | C9—C10—C11—C12 | 0.0 (3) |
C3—C4—C5—N1 | 0.7 (3) | N4—C10—C11—C12 | −179.65 (18) |
C1—N1—C5—C4 | −0.1 (3) | C10—C11—C12—C7 | −0.4 (3) |
O1—C7—C8—C9 | −177.55 (19) | C10—C11—C12—C13 | 177.93 (18) |
C12—C7—C8—C9 | 0.3 (3) | O1—C7—C12—C11 | 178.16 (18) |
O1—C7—C8—N3 | 1.6 (3) | C8—C7—C12—C11 | 0.3 (3) |
C12—C7—C8—N3 | 179.39 (17) | O1—C7—C12—C13 | −0.2 (3) |
O3—N3—C8—C9 | 26.5 (3) | C8—C7—C12—C13 | −178.04 (17) |
O2—N3—C8—C9 | −152.80 (18) | C11—C12—C13—O6 | 2.8 (3) |
O3—N3—C8—C7 | −152.64 (18) | C7—C12—C13—O6 | −178.83 (19) |
O2—N3—C8—C7 | 28.0 (3) | C11—C12—C13—O7 | −176.29 (18) |
C7—C8—C9—C10 | −0.7 (3) | C7—C12—C13—O7 | 2.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O6i | 0.96 | 1.75 | 2.707 (2) | 175 |
N2—H1N2···O7i | 0.98 | 1.93 | 2.907 (2) | 173 |
N2—H2N2···O1ii | 0.95 | 2.25 | 2.974 (2) | 133 |
N2—H2N2···O2ii | 0.95 | 2.23 | 3.089 (2) | 151 |
O1—H1O1···O7 | 0.99 | 1.60 | 2.426 (2) | 138 |
C2—H2A···O2ii | 0.93 | 2.54 | 3.300 (3) | 139 |
C4—H4A···O6iii | 0.93 | 2.53 | 3.447 (3) | 169 |
C5—H5A···O5iv | 0.93 | 2.37 | 3.193 (3) | 147 |
C9—H9A···O3v | 0.93 | 2.38 | 3.272 (3) | 161 |
C6—H6B···Cg1iii | 0.96 | 2.99 | 3.623 (2) | 12 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z+2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x, y+1/2, −z+3/2; (v) −x+1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C6H9N2+·C7H3N2O7− |
Mr | 336.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 6.0111 (15), 9.652 (3), 24.436 (6) |
β (°) | 100.546 (7) |
V (Å3) | 1393.8 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.48 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.939, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12178, 3229, 2283 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.653 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.153, 1.03 |
No. of reflections | 3229 |
No. of parameters | 222 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.44 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O6i | 0.96 | 1.75 | 2.707 (2) | 175 |
N2—H1N2···O7i | 0.98 | 1.93 | 2.907 (2) | 173 |
N2—H2N2···O1ii | 0.95 | 2.25 | 2.974 (2) | 133 |
N2—H2N2···O2ii | 0.95 | 2.23 | 3.089 (2) | 151 |
O1—H1O1···O7 | 0.99 | 1.60 | 2.426 (2) | 138 |
C2—H2A···O2ii | 0.93 | 2.54 | 3.300 (3) | 139 |
C4—H4A···O6iii | 0.93 | 2.53 | 3.447 (3) | 169 |
C5—H5A···O5iv | 0.93 | 2.37 | 3.193 (3) | 147 |
C9—H9A···O3v | 0.93 | 2.38 | 3.272 (3) | 161 |
C6—H6B···Cg1iii | 0.96 | 2.99 | 3.623 (2) | 12 |
Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z+2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x, y+1/2, −z+3/2; (v) −x+1, −y, −z+2. |
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ thanks USM for the award of a USM fellowship. MH thanks USM for the award of a postdoctoral fellowship.
References
Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269–276. Web of Science CSD CrossRef CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hindawey, A. M., Nasser, A. M. G., Issa, R. M. & Issa, Y. M. (1980). Indian J. Chem. Sect. A, 19, 615–619. Google Scholar
Issa, Y. M., Hindawey, A. M., El-Kholy, A. E. & Issa, R. M. (1981). Gazz. Chim. Ital. 111, 27–33. CAS Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Jin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195. Web of Science CSD CrossRef CAS Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854. CSD CrossRef Web of Science Google Scholar
Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21–22. CSD CrossRef CAS IUCr Journals Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Qin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461–3464. Web of Science CSD CrossRef CAS Google Scholar
Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878–o1879. Web of Science CSD CrossRef IUCr Journals Google Scholar
Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ren, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Chin. J. Struct. Chem. 21, 38–41. Google Scholar
Rivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339–3349. Web of Science CSD CrossRef Google Scholar
Scheiner, S. (1997). Hydrogen Bonding: a Theoretical Perspective. Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Qin et al., 1999; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). The nitrosubstituted aromatic acid 3,5-dinitro salicylic acid (DNSA) has proven potential for formation of proton-transfer compounds, particularly because of its acid strength (pKa = 2.18), its interactive ortho-related phenolic substituent group together with the nitro substituents which have potential for both π···π interactions as well as hydrogen-bonding interactions. A large number of both neutral and proton-transfer compounds of Lewis bases with DNSA, together with their IR spectra have been reported (Hindawey et al., 1980; Issa et al., 1981) in the literature. Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.
The asymmetric unit of the title compound contains one 2-amino-4-methyl-pyridinium cation and one 3,5-dinitrosalicylate anion. A proton transfer from the carboxyl group of 3,5-dinitrosalicylic acid to atom N1 of 2-amino-4-methylpyridinium resulted in the formation of ions. The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah et al., 2010, 2008a, b). In the 3,5-dinitrosalicylate anion, the two nitro groups are twisted slightly from the attached ring. The dihedral angles between benzene ring (C8—C12) and the two nitro groups (O2/O3/N3/C8 and O4/O5/N4/C10) are 27.36 (10) and 4.86 (11)°, respectively. The 2-amino-4-methylpyridinium cation is essentially planar, with the maximum deviation of 0.012 (2) Å for atoms N2 and C4; and make a dihedral angle of 7.16 (8)° with the benzene ring of 3,5-dinitrosalicylate anion. The molecular structure is stabilized by an intramolecular O1–H1O1···O7 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). There is a short O3···N3 contact (symmetry code: 2 - x, -y, 2 - z) with distance = 2.876 (2) Å which is shorter than the sum of van der Waals radii of the oxygen and nitrogen atoms.
In the crystal packing, the cations and anions are linked to form a three-dimensional network (Fig. 2) by intermolecular N1–H1N1···O6, N2–H1N2···O7, N2–H2N2···O1, N2–H2N2···O2, C2–H2A···O2, C4–H4A···O6, C5–H5A···O5 and C9–H9A···O3 interactions and are further consolidated by C–H···π (Table 1) interactions.