organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-methylpyridinium 2-hy­dr­oxy-3,5-di­nitro­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 June 2010; accepted 1 July 2010; online 7 July 2010)

In the anion of the title mol­ecular salt, C6H9N2+·C7H3N2O7, the two nitro groups are twisted from the attached benzene ring with dihedral angles of 27.36 (10) and 4.86 (11)°. The anion is stabilized by an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) ring motif. In the crystal, the cations and anions are linked by N—H⋯O and C—H⋯O inter­actions and are further consolidated by C—H⋯π inter­actions, to generate a three-dimensional network. A short O⋯N contact of 2.876 (2) Å also occurs.

Related literature

For substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For details of hydrogen bonding, see: Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding: a Theoretical Perspective. Oxford University Press.]); Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]). For 2-amino-substituted pyridines, see: Navarro Ranninger et al. (1985[Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21-22.]); Luque et al. (1997[Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847-854.]); Qin et al. (1999[Qin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461-3464.]); Ren et al. (2002[Ren, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Chin. J. Struct. Chem. 21, 38-41.]); Rivas et al. (2003[Rivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339-3349.]); Jin et al. (2001[Jin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191-195.]); Albrecht et al. (2003[Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269-276.]). For Lewis bases with 3,5-dinitrosalicylic acid, see: Hindawey et al. (1980[Hindawey, A. M., Nasser, A. M. G., Issa, R. M. & Issa, Y. M. (1980). Indian J. Chem. Sect. A, 19, 615-619.]); Issa et al. (1981[Issa, Y. M., Hindawey, A. M., El-Kholy, A. E. & Issa, R. M. (1981). Gazz. Chim. Ital. 111, 27-33.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Quah et al. (2008a[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878-o1879.],b[Quah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230.], 2010[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1932.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H3N2O7

  • Mr = 336.27

  • Monoclinic, P 21 /c

  • a = 6.0111 (15) Å

  • b = 9.652 (3) Å

  • c = 24.436 (6) Å

  • β = 100.546 (7)°

  • V = 1393.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.48 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.992

  • 12178 measured reflections

  • 3229 independent reflections

  • 2283 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.153

  • S = 1.03

  • 3229 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O6i 0.96 1.75 2.707 (2) 175
N2—H1N2⋯O7i 0.98 1.93 2.907 (2) 173
N2—H2N2⋯O1ii 0.95 2.25 2.974 (2) 133
N2—H2N2⋯O2ii 0.95 2.23 3.089 (2) 151
O1—H1O1⋯O7 0.99 1.60 2.426 (2) 138
C2—H2A⋯O2ii 0.93 2.54 3.300 (3) 139
C4—H4A⋯O6iii 0.93 2.53 3.447 (3) 169
C5—H5A⋯O5iv 0.93 2.37 3.193 (3) 147
C9—H9A⋯O3v 0.93 2.38 3.272 (3) 161
C6—H6BCg1iii 0.96 2.99 3.623 (2) 12
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+2; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Qin et al., 1999; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). The nitrosubstituted aromatic acid 3,5-dinitro salicylic acid (DNSA) has proven potential for formation of proton-transfer compounds, particularly because of its acid strength (pKa = 2.18), its interactive ortho-related phenolic substituent group together with the nitro substituents which have potential for both π···π interactions as well as hydrogen-bonding interactions. A large number of both neutral and proton-transfer compounds of Lewis bases with DNSA, together with their IR spectra have been reported (Hindawey et al., 1980; Issa et al., 1981) in the literature. Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound contains one 2-amino-4-methyl-pyridinium cation and one 3,5-dinitrosalicylate anion. A proton transfer from the carboxyl group of 3,5-dinitrosalicylic acid to atom N1 of 2-amino-4-methylpyridinium resulted in the formation of ions. The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah et al., 2010, 2008a, b). In the 3,5-dinitrosalicylate anion, the two nitro groups are twisted slightly from the attached ring. The dihedral angles between benzene ring (C8—C12) and the two nitro groups (O2/O3/N3/C8 and O4/O5/N4/C10) are 27.36 (10) and 4.86 (11)°, respectively. The 2-amino-4-methylpyridinium cation is essentially planar, with the maximum deviation of 0.012 (2) Å for atoms N2 and C4; and make a dihedral angle of 7.16 (8)° with the benzene ring of 3,5-dinitrosalicylate anion. The molecular structure is stabilized by an intramolecular O1–H1O1···O7 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). There is a short O3···N3 contact (symmetry code: 2 - x, -y, 2 - z) with distance = 2.876 (2) Å which is shorter than the sum of van der Waals radii of the oxygen and nitrogen atoms.

In the crystal packing, the cations and anions are linked to form a three-dimensional network (Fig. 2) by intermolecular N1–H1N1···O6, N2–H1N2···O7, N2–H2N2···O1, N2–H2N2···O2, C2–H2A···O2, C4–H4A···O6, C5–H5A···O5 and C9–H9A···O3 interactions and are further consolidated by C–H···π (Table 1) interactions.

Related literature top

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Scheiner (1997); Jeffrey & Saenger (1991); Jeffrey (1997). For 2-amino-substituted pyridines, see: Navarro Ranninger et al. (1985); Luque et al. (1997); Qin et al. (1999); Ren et al. (2002); Rivas et al. (2003); Jin et al. (2001); Albrecht et al. (2003). For Lewis bases with DNSA, see: Hindawey et al. (1980); Issa et al. (1981). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Quah et al. (2008a,b, 2010). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (27 mg, Aldrich) and 3,5-dinitrosalicylic acid (57 mg, Merck) were mixed and warmed over a heating hotplate magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly to room temperature and yellow needles of (I) appeared after a few days.

Refinement top

O– and N-bound H atoms were located in a difference Fourier map and refined freely [O1—H1O1 = 0.9856 Å, N—H = 0.9478 - 0.9833 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The highest residual electron density peak is located at 0.79 Å from H6B and the deepest hole is located at 0.70 Å from N4.

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Qin et al., 1999; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). The nitrosubstituted aromatic acid 3,5-dinitro salicylic acid (DNSA) has proven potential for formation of proton-transfer compounds, particularly because of its acid strength (pKa = 2.18), its interactive ortho-related phenolic substituent group together with the nitro substituents which have potential for both π···π interactions as well as hydrogen-bonding interactions. A large number of both neutral and proton-transfer compounds of Lewis bases with DNSA, together with their IR spectra have been reported (Hindawey et al., 1980; Issa et al., 1981) in the literature. Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound contains one 2-amino-4-methyl-pyridinium cation and one 3,5-dinitrosalicylate anion. A proton transfer from the carboxyl group of 3,5-dinitrosalicylic acid to atom N1 of 2-amino-4-methylpyridinium resulted in the formation of ions. The bond lengths (Allen et al., 1987) and angles in the title compound (Fig. 1) are within normal ranges and comparable with the related structures (Quah et al., 2010, 2008a, b). In the 3,5-dinitrosalicylate anion, the two nitro groups are twisted slightly from the attached ring. The dihedral angles between benzene ring (C8—C12) and the two nitro groups (O2/O3/N3/C8 and O4/O5/N4/C10) are 27.36 (10) and 4.86 (11)°, respectively. The 2-amino-4-methylpyridinium cation is essentially planar, with the maximum deviation of 0.012 (2) Å for atoms N2 and C4; and make a dihedral angle of 7.16 (8)° with the benzene ring of 3,5-dinitrosalicylate anion. The molecular structure is stabilized by an intramolecular O1–H1O1···O7 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). There is a short O3···N3 contact (symmetry code: 2 - x, -y, 2 - z) with distance = 2.876 (2) Å which is shorter than the sum of van der Waals radii of the oxygen and nitrogen atoms.

In the crystal packing, the cations and anions are linked to form a three-dimensional network (Fig. 2) by intermolecular N1–H1N1···O6, N2–H1N2···O7, N2–H2N2···O1, N2–H2N2···O2, C2–H2A···O2, C4–H4A···O6, C5–H5A···O5 and C9–H9A···O3 interactions and are further consolidated by C–H···π (Table 1) interactions.

For substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Scheiner (1997); Jeffrey & Saenger (1991); Jeffrey (1997). For 2-amino-substituted pyridines, see: Navarro Ranninger et al. (1985); Luque et al. (1997); Qin et al. (1999); Ren et al. (2002); Rivas et al. (2003); Jin et al. (2001); Albrecht et al. (2003). For Lewis bases with DNSA, see: Hindawey et al. (1980); Issa et al. (1981). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Quah et al. (2008a,b, 2010). For reference bond lengths, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown in dashed line.
[Figure 2] Fig. 2. The crystal structure of (I) viewed along the a axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
2-Amino-4-methylpyridinium 2-hydroxy-3,5-dinitrobenzoate top
Crystal data top
C6H9N2+·C7H3N2O7F(000) = 696
Mr = 336.27Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2122 reflections
a = 6.0111 (15) Åθ = 2.7–26.4°
b = 9.652 (3) ŵ = 0.13 mm1
c = 24.436 (6) ÅT = 100 K
β = 100.546 (7)°Needle, yellow
V = 1393.8 (7) Å30.48 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3229 independent reflections
Radiation source: fine-focus sealed tube2283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 27.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.939, Tmax = 0.992k = 1212
12178 measured reflectionsl = 3126
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0909P)2]
where P = (Fo2 + 2Fc2)/3
3229 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C6H9N2+·C7H3N2O7V = 1393.8 (7) Å3
Mr = 336.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.0111 (15) ŵ = 0.13 mm1
b = 9.652 (3) ÅT = 100 K
c = 24.436 (6) Å0.48 × 0.08 × 0.06 mm
β = 100.546 (7)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3229 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2283 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.992Rint = 0.057
12178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
3229 reflectionsΔρmin = 0.44 e Å3
222 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2405 (3)0.80105 (17)0.83755 (7)0.0179 (4)
H1N10.13250.73480.84550.034 (7)*
N20.5190 (3)0.75204 (18)0.91264 (7)0.0220 (4)
H1N20.41460.68100.92190.052 (9)*
H2N20.66550.76640.93400.063 (10)*
C10.4517 (3)0.8236 (2)0.86605 (8)0.0170 (4)
C20.5856 (3)0.9234 (2)0.84489 (9)0.0187 (4)
H2A0.73210.94080.86360.022*
C30.5022 (3)0.9946 (2)0.79722 (9)0.0187 (4)
C40.2784 (3)0.9680 (2)0.76912 (9)0.0199 (4)
H4A0.21791.01630.73690.024*
C50.1541 (3)0.8708 (2)0.79013 (9)0.0192 (4)
H5A0.00760.85180.77180.023*
C60.6432 (4)1.1006 (2)0.77401 (9)0.0231 (5)
H6A0.77901.11810.80060.035*
H6B0.55871.18500.76660.035*
H6C0.68201.06620.74010.035*
O11.1381 (2)0.34244 (14)0.99102 (6)0.0198 (3)
H1O11.23040.41810.97980.119 (16)*
O20.9779 (2)0.16274 (14)1.05842 (6)0.0218 (4)
O30.7607 (2)0.00824 (15)1.01170 (7)0.0242 (4)
O40.1674 (2)0.17877 (16)0.86962 (7)0.0264 (4)
O50.2470 (3)0.33999 (17)0.81463 (7)0.0321 (4)
O60.9513 (2)0.60237 (15)0.85954 (6)0.0219 (3)
O71.2134 (2)0.53070 (14)0.93122 (6)0.0206 (3)
N30.8463 (3)0.12385 (17)1.01644 (7)0.0176 (4)
N40.2953 (3)0.26704 (18)0.85650 (7)0.0212 (4)
C70.9355 (3)0.32562 (19)0.96014 (9)0.0159 (4)
C80.7863 (3)0.2196 (2)0.97011 (8)0.0169 (4)
C90.5784 (3)0.1992 (2)0.93658 (9)0.0172 (4)
H9A0.48370.12790.94380.021*
C100.5143 (3)0.2876 (2)0.89190 (8)0.0176 (4)
C110.6536 (3)0.3935 (2)0.88017 (9)0.0179 (4)
H11A0.60660.45150.84990.022*
C120.8626 (3)0.4127 (2)0.91368 (8)0.0164 (4)
C131.0164 (3)0.5246 (2)0.89969 (9)0.0175 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0180 (8)0.0159 (8)0.0193 (9)0.0010 (6)0.0019 (7)0.0004 (7)
N20.0196 (8)0.0221 (9)0.0226 (10)0.0029 (7)0.0002 (7)0.0060 (7)
C10.0167 (9)0.0148 (9)0.0197 (11)0.0023 (7)0.0034 (8)0.0016 (8)
C20.0175 (9)0.0153 (9)0.0229 (11)0.0004 (7)0.0029 (8)0.0005 (8)
C30.0221 (10)0.0133 (9)0.0218 (11)0.0011 (8)0.0066 (8)0.0027 (8)
C40.0242 (10)0.0159 (10)0.0195 (11)0.0034 (8)0.0039 (8)0.0006 (8)
C50.0181 (9)0.0189 (10)0.0195 (11)0.0037 (8)0.0008 (8)0.0012 (8)
C60.0278 (11)0.0168 (10)0.0256 (12)0.0000 (8)0.0069 (9)0.0029 (9)
O10.0170 (7)0.0188 (7)0.0215 (8)0.0024 (6)0.0014 (6)0.0008 (6)
O20.0205 (7)0.0234 (8)0.0200 (8)0.0013 (6)0.0001 (6)0.0001 (6)
O30.0203 (7)0.0164 (7)0.0353 (9)0.0040 (6)0.0033 (6)0.0049 (7)
O40.0200 (7)0.0276 (8)0.0309 (9)0.0066 (6)0.0028 (6)0.0028 (7)
O50.0303 (9)0.0338 (9)0.0272 (9)0.0016 (7)0.0084 (7)0.0069 (7)
O60.0245 (8)0.0183 (7)0.0216 (8)0.0039 (6)0.0006 (6)0.0028 (6)
O70.0182 (7)0.0181 (7)0.0244 (8)0.0021 (5)0.0009 (6)0.0025 (6)
N30.0152 (8)0.0162 (8)0.0218 (9)0.0002 (6)0.0042 (7)0.0022 (7)
N40.0187 (8)0.0203 (9)0.0238 (10)0.0003 (7)0.0016 (7)0.0026 (8)
C70.0144 (9)0.0144 (9)0.0186 (10)0.0010 (7)0.0021 (8)0.0025 (8)
C80.0186 (9)0.0139 (9)0.0177 (10)0.0021 (7)0.0020 (8)0.0006 (8)
C90.0169 (9)0.0142 (9)0.0207 (11)0.0004 (7)0.0037 (8)0.0017 (8)
C100.0161 (9)0.0162 (9)0.0191 (11)0.0008 (7)0.0007 (8)0.0028 (8)
C110.0198 (9)0.0159 (9)0.0181 (10)0.0043 (8)0.0035 (8)0.0000 (8)
C120.0164 (9)0.0132 (9)0.0199 (11)0.0005 (7)0.0038 (8)0.0018 (8)
C130.0189 (9)0.0144 (9)0.0193 (11)0.0002 (7)0.0040 (8)0.0001 (8)
Geometric parameters (Å, º) top
N1—C11.349 (2)O1—H1O10.9856
N1—C51.359 (3)O2—N31.234 (2)
N1—H1N10.9560O3—N31.226 (2)
N2—C11.330 (3)O4—N41.229 (2)
N2—H1N20.9833O5—N41.232 (2)
N2—H2N20.9478O6—C131.241 (2)
C1—C21.413 (3)O7—C131.291 (2)
C2—C31.366 (3)N3—C81.455 (3)
C2—H2A0.9300N4—C101.450 (2)
C3—C41.417 (3)C7—C81.411 (3)
C3—C61.504 (3)C7—C121.416 (3)
C4—C51.358 (3)C8—C91.377 (3)
C4—H4A0.9300C9—C101.383 (3)
C5—H5A0.9300C9—H9A0.9300
C6—H6A0.9600C10—C111.385 (3)
C6—H6B0.9600C11—C121.381 (3)
C6—H6C0.9600C11—H11A0.9300
O1—C71.320 (2)C12—C131.501 (3)
C1—N1—C5122.49 (18)O3—N3—O2123.37 (17)
C1—N1—H1N1127.8O3—N3—C8117.70 (16)
C5—N1—H1N1109.6O2—N3—C8118.93 (16)
C1—N2—H1N2116.8O4—N4—O5123.33 (18)
C1—N2—H2N2120.1O4—N4—C10118.81 (17)
H1N2—N2—H2N2122.9O5—N4—C10117.86 (17)
N2—C1—N1117.93 (18)O1—C7—C8122.67 (18)
N2—C1—C2124.26 (18)O1—C7—C12120.20 (18)
N1—C1—C2117.80 (18)C8—C7—C12117.10 (17)
C3—C2—C1120.67 (19)C9—C8—C7122.50 (19)
C3—C2—H2A119.7C9—C8—N3116.15 (17)
C1—C2—H2A119.7C7—C8—N3121.34 (17)
C2—C3—C4119.33 (19)C8—C9—C10118.22 (19)
C2—C3—C6121.29 (19)C8—C9—H9A120.9
C4—C3—C6119.38 (18)C10—C9—H9A120.9
C5—C4—C3118.77 (19)C9—C10—C11121.79 (18)
C5—C4—H4A120.6C9—C10—N4118.56 (18)
C3—C4—H4A120.6C11—C10—N4119.65 (18)
C4—C5—N1120.93 (18)C12—C11—C10119.70 (19)
C4—C5—H5A119.5C12—C11—H11A120.2
N1—C5—H5A119.5C10—C11—H11A120.2
C3—C6—H6A109.5C11—C12—C7120.68 (18)
C3—C6—H6B109.5C11—C12—C13119.52 (18)
H6A—C6—H6B109.5C7—C12—C13119.77 (17)
C3—C6—H6C109.5O6—C13—O7124.53 (18)
H6A—C6—H6C109.5O6—C13—C12119.82 (18)
H6B—C6—H6C109.5O7—C13—C12115.65 (17)
C7—O1—H1O1116.1
C5—N1—C1—N2178.61 (18)N3—C8—C9—C10179.85 (17)
C5—N1—C1—C20.4 (3)C8—C9—C10—C110.6 (3)
N2—C1—C2—C3178.7 (2)C8—C9—C10—N4179.81 (17)
N1—C1—C2—C30.2 (3)O4—N4—C10—C95.3 (3)
C1—C2—C3—C40.3 (3)O5—N4—C10—C9174.93 (18)
C1—C2—C3—C6179.65 (19)O4—N4—C10—C11175.09 (18)
C2—C3—C4—C50.8 (3)O5—N4—C10—C114.7 (3)
C6—C3—C4—C5179.17 (19)C9—C10—C11—C120.0 (3)
C3—C4—C5—N10.7 (3)N4—C10—C11—C12179.65 (18)
C1—N1—C5—C40.1 (3)C10—C11—C12—C70.4 (3)
O1—C7—C8—C9177.55 (19)C10—C11—C12—C13177.93 (18)
C12—C7—C8—C90.3 (3)O1—C7—C12—C11178.16 (18)
O1—C7—C8—N31.6 (3)C8—C7—C12—C110.3 (3)
C12—C7—C8—N3179.39 (17)O1—C7—C12—C130.2 (3)
O3—N3—C8—C926.5 (3)C8—C7—C12—C13178.04 (17)
O2—N3—C8—C9152.80 (18)C11—C12—C13—O62.8 (3)
O3—N3—C8—C7152.64 (18)C7—C12—C13—O6178.83 (19)
O2—N3—C8—C728.0 (3)C11—C12—C13—O7176.29 (18)
C7—C8—C9—C100.7 (3)C7—C12—C13—O72.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O6i0.961.752.707 (2)175
N2—H1N2···O7i0.981.932.907 (2)173
N2—H2N2···O1ii0.952.252.974 (2)133
N2—H2N2···O2ii0.952.233.089 (2)151
O1—H1O1···O70.991.602.426 (2)138
C2—H2A···O2ii0.932.543.300 (3)139
C4—H4A···O6iii0.932.533.447 (3)169
C5—H5A···O5iv0.932.373.193 (3)147
C9—H9A···O3v0.932.383.272 (3)161
C6—H6B···Cg1iii0.962.993.623 (2)12
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1/2, z+3/2; (v) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H3N2O7
Mr336.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.0111 (15), 9.652 (3), 24.436 (6)
β (°) 100.546 (7)
V3)1393.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.48 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.939, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
12178, 3229, 2283
Rint0.057
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.153, 1.03
No. of reflections3229
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O6i0.961.752.707 (2)175
N2—H1N2···O7i0.981.932.907 (2)173
N2—H2N2···O1ii0.952.252.974 (2)133
N2—H2N2···O2ii0.952.233.089 (2)151
O1—H1O1···O70.991.602.426 (2)138
C2—H2A···O2ii0.932.543.300 (3)139
C4—H4A···O6iii0.932.533.447 (3)169
C5—H5A···O5iv0.932.373.193 (3)147
C9—H9A···O3v0.932.383.272 (3)161
C6—H6B···Cg1iii0.962.993.623 (2)12
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1/2, z+3/2; (v) x+1, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). CKQ thanks USM for the award of a USM fellowship. MH thanks USM for the award of a postdoctoral fellowship.

References

First citationAlbrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHindawey, A. M., Nasser, A. M. G., Issa, R. M. & Issa, Y. M. (1980). Indian J. Chem. Sect. A, 19, 615–619.  Google Scholar
First citationIssa, Y. M., Hindawey, A. M., El-Kholy, A. E. & Issa, R. M. (1981). Gazz. Chim. Ital. 111, 27–33.  CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationJin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr. 31, 191–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationLuque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.  CSD CrossRef Web of Science Google Scholar
First citationNavarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21–22.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationQin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008a). Acta Cryst. E64, o1878–o1879.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQuah, C. K., Jebas, S. R. & Fun, H.-K. (2008b). Acta Cryst. E64, o2230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Chin. J. Struct. Chem. 21, 38–41.  Google Scholar
First citationRivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339–3349.  Web of Science CSD CrossRef Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding: a Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds