organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-N-cyclo­hexyl­benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 5 July 2010; accepted 6 July 2010; online 10 July 2010)

The title compound, C12H16BrNO2S, adopts an L-shaped conformation with the central C—S—N—C torsion angle being −77.8 (3)°. The crystal packing features N—H⋯O hydrogen bonds, which lead to C(4) chains propagating in [010]; the second O atom is involved in short intra­molecular C—H⋯O contacts.

Related literature

For related structures and background information on sulfon­amides, see: Khan et al. (2010[Khan, I. U., Javaid, R., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1687.]); Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16BrNO2S

  • Mr = 318.24

  • Monoclinic, P 21 /c

  • a = 11.2539 (5) Å

  • b = 6.2575 (3) Å

  • c = 19.9743 (10) Å

  • β = 97.214 (3)°

  • V = 1395.48 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.09 mm−1

  • T = 293 K

  • 0.24 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.218, Tmax = 0.529

  • 12505 measured reflections

  • 3199 independent reflections

  • 1620 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.01

  • 3199 reflections

  • 157 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen bonds and short intramolecular contacts (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.93 2.53 2.903 (4) 104
C7—H7⋯O2 0.98 2.54 2.992 (4) 108
N1—H1n⋯O1i 0.88 (3) 2.03 (3) 2.898 (4) 169 (3)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title sulfonamide has been prepared as a part of on-going structural studies of such compounds (Khan et al., 2010; Sharif et al., 2010).

Overall, the molecule in (I), Fig. 1, has an L-shaped conformation. This is best quantified in the C1–S1–N1–C7 torsion angle of -77.8 (3) °. When viewed down the spine of the benzene ring, the cyclohexyl group, with a regular chain conformation, appears almost side-on. With respect to the plane through the benzene ring, the O2 atom is roughly co-planar [the C2–C1–S1–O2 torsion angle is 18.8 (4) °]. By contrast, the O1 and N1 atoms lie to either side [C2–C1–S1–O1 = -109.1 (3) ° and C2–C11–S1–N1 = 136.8 (3) °]. This conformation allows for the formation of two intramolecular C–H···O2 short contacts and it is not surprising that the O2 atom does not participate in significant intermolecular interactions. Supramolecular chains along the b axis are found in the crystal structure. These are mediated by N–H···O1 hydrogen bonding, Fig. 2 and Table 1.

Related literature top

For related structures and background information on sulfonamides, see: Khan et al. (2010); Sharif et al. (2010).

Experimental top

To 4-bromobenzene sulfonylchloride (499 mg, 1.96 mmol) in distilled water (10 ml), was added cyclohexylamine (225 ml, 1.96 mmol) with continuous stirring at room temperature. The pH of the reaction mixture was maintained at 8 using a 3% sodium carbonate solution. The progress of the reaction was monitored by TLC. After the consumption of all the reactants, the precipitates were filtered, dried and crystallized using ethyl acetate to yield colourless prisms of (I), m.pt. 375 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was refined with the distance restraint N–H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N). In the final refinement two low angle reflections evidently effected by the beam stop were omitted, i.e. 1 0 0 and 0 0 2.

Structure description top

The title sulfonamide has been prepared as a part of on-going structural studies of such compounds (Khan et al., 2010; Sharif et al., 2010).

Overall, the molecule in (I), Fig. 1, has an L-shaped conformation. This is best quantified in the C1–S1–N1–C7 torsion angle of -77.8 (3) °. When viewed down the spine of the benzene ring, the cyclohexyl group, with a regular chain conformation, appears almost side-on. With respect to the plane through the benzene ring, the O2 atom is roughly co-planar [the C2–C1–S1–O2 torsion angle is 18.8 (4) °]. By contrast, the O1 and N1 atoms lie to either side [C2–C1–S1–O1 = -109.1 (3) ° and C2–C11–S1–N1 = 136.8 (3) °]. This conformation allows for the formation of two intramolecular C–H···O2 short contacts and it is not surprising that the O2 atom does not participate in significant intermolecular interactions. Supramolecular chains along the b axis are found in the crystal structure. These are mediated by N–H···O1 hydrogen bonding, Fig. 2 and Table 1.

For related structures and background information on sulfonamides, see: Khan et al. (2010); Sharif et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain along the b axis in (I) mediated by N–H···O hydrogen bonding (orange dashed lines) in (I). Colour code: Br, olive; S, yellow; O, red; N, blue; C, grey; and H, green.
4-Bromo-N-cyclohexylbenzenesulfonamide top
Crystal data top
C12H16BrNO2SF(000) = 648
Mr = 318.24Dx = 1.515 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2185 reflections
a = 11.2539 (5) Åθ = 2.6–20.1°
b = 6.2575 (3) ŵ = 3.09 mm1
c = 19.9743 (10) ÅT = 293 K
β = 97.214 (3)°Prism, colourless
V = 1395.48 (11) Å30.24 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3199 independent reflections
Radiation source: fine-focus sealed tube1620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.218, Tmax = 0.529k = 78
12505 measured reflectionsl = 2523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.4435P]
where P = (Fo2 + 2Fc2)/3
3199 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.52 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
C12H16BrNO2SV = 1395.48 (11) Å3
Mr = 318.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2539 (5) ŵ = 3.09 mm1
b = 6.2575 (3) ÅT = 293 K
c = 19.9743 (10) Å0.24 × 0.12 × 0.08 mm
β = 97.214 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3199 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1620 reflections with I > 2σ(I)
Tmin = 0.218, Tmax = 0.529Rint = 0.048
12505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.52 e Å3
3199 reflectionsΔρmin = 0.46 e Å3
157 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03064 (5)1.13493 (9)0.90414 (3)0.1022 (3)
S10.32555 (8)0.51051 (14)0.73331 (5)0.0523 (3)
O10.4205 (2)0.4370 (4)0.78229 (16)0.0763 (9)
O20.2437 (2)0.3587 (3)0.70013 (15)0.0685 (8)
N10.3875 (3)0.6368 (4)0.67782 (17)0.0497 (8)
H1N0.450 (2)0.714 (5)0.6936 (17)0.060*
C10.2414 (3)0.6900 (5)0.77706 (17)0.0435 (8)
C20.1289 (3)0.6312 (6)0.7906 (2)0.0584 (10)
H20.09580.50190.77460.070*
C30.0658 (3)0.7644 (7)0.8278 (2)0.0660 (11)
H30.01020.72590.83720.079*
C40.1155 (3)0.9538 (6)0.8508 (2)0.0582 (10)
C50.2265 (4)1.0149 (6)0.8369 (2)0.0597 (10)
H50.25861.14540.85240.072*
C60.2899 (3)0.8824 (6)0.8000 (2)0.0555 (10)
H60.36550.92230.79040.067*
C70.3239 (3)0.7049 (5)0.61271 (19)0.0515 (9)
H70.25840.60390.60000.062*
C80.4105 (5)0.6910 (9)0.5601 (3)0.0944 (16)
H8A0.47990.77970.57390.113*
H8B0.43760.54460.55690.113*
C90.3511 (6)0.7641 (13)0.4915 (3)0.121 (2)
H9A0.41000.76390.45990.146*
H9B0.28860.66340.47510.146*
C100.2986 (5)0.9797 (11)0.4935 (3)0.1082 (19)
H10A0.25721.01470.44930.130*
H10B0.36231.08330.50430.130*
C110.2126 (5)0.9940 (9)0.5448 (3)0.1004 (17)
H11A0.14360.90420.53100.121*
H11B0.18481.14020.54740.121*
C120.2716 (4)0.9235 (7)0.6137 (2)0.0770 (13)
H12A0.33441.02410.62970.092*
H12B0.21260.92600.64520.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0808 (4)0.1222 (5)0.1086 (5)0.0104 (3)0.0315 (3)0.0430 (3)
S10.0472 (5)0.0401 (5)0.0703 (7)0.0070 (4)0.0101 (5)0.0059 (5)
O10.0616 (17)0.0779 (19)0.088 (2)0.0278 (15)0.0053 (16)0.0236 (16)
O20.0717 (18)0.0390 (14)0.098 (2)0.0085 (13)0.0227 (17)0.0093 (13)
N10.0382 (16)0.0525 (18)0.058 (2)0.0045 (13)0.0052 (15)0.0051 (15)
C10.0385 (19)0.0442 (19)0.047 (2)0.0044 (16)0.0015 (16)0.0099 (16)
C20.043 (2)0.052 (2)0.079 (3)0.0051 (18)0.003 (2)0.003 (2)
C30.040 (2)0.076 (3)0.083 (3)0.001 (2)0.010 (2)0.001 (2)
C40.052 (2)0.070 (3)0.053 (3)0.012 (2)0.0077 (19)0.006 (2)
C50.065 (2)0.058 (2)0.058 (3)0.007 (2)0.014 (2)0.007 (2)
C60.050 (2)0.057 (2)0.062 (3)0.0101 (18)0.0186 (19)0.0018 (19)
C70.044 (2)0.051 (2)0.059 (3)0.0072 (17)0.0042 (19)0.0070 (18)
C80.098 (4)0.127 (4)0.062 (3)0.026 (3)0.024 (3)0.016 (3)
C90.118 (5)0.192 (7)0.057 (4)0.009 (5)0.024 (3)0.018 (4)
C100.083 (4)0.158 (6)0.084 (4)0.013 (4)0.012 (3)0.046 (4)
C110.104 (4)0.113 (4)0.085 (4)0.023 (3)0.015 (3)0.034 (3)
C120.095 (3)0.071 (3)0.066 (3)0.021 (2)0.016 (3)0.008 (2)
Geometric parameters (Å, º) top
Br1—C41.893 (4)C7—C121.490 (5)
S1—O21.427 (3)C7—C81.523 (5)
S1—O11.431 (3)C7—H70.9800
S1—N11.591 (3)C8—C91.518 (8)
S1—C11.769 (3)C8—H8A0.9700
N1—C71.467 (5)C8—H8B0.9700
N1—H1N0.88 (3)C9—C101.475 (8)
C1—C61.376 (5)C9—H9A0.9700
C1—C21.378 (5)C9—H9B0.9700
C2—C31.372 (5)C10—C111.499 (7)
C2—H20.9300C10—H10A0.9700
C3—C41.366 (6)C10—H10B0.9700
C3—H30.9300C11—C121.517 (6)
C4—C51.369 (5)C11—H11A0.9700
C5—C61.368 (5)C11—H11B0.9700
C5—H50.9300C12—H12A0.9700
C6—H60.9300C12—H12B0.9700
O2—S1—O1119.11 (17)C8—C7—H7108.1
O2—S1—N1108.71 (17)C9—C8—C7111.0 (4)
O1—S1—N1106.31 (17)C9—C8—H8A109.4
O2—S1—C1107.33 (16)C7—C8—H8A109.4
O1—S1—C1105.45 (17)C9—C8—H8B109.4
N1—S1—C1109.69 (15)C7—C8—H8B109.4
C7—N1—S1123.6 (2)H8A—C8—H8B108.0
C7—N1—H1N116 (2)C10—C9—C8112.5 (5)
S1—N1—H1N115 (2)C10—C9—H9A109.1
C6—C1—C2120.3 (3)C8—C9—H9A109.1
C6—C1—S1120.4 (3)C10—C9—H9B109.1
C2—C1—S1119.3 (3)C8—C9—H9B109.1
C3—C2—C1119.7 (3)H9A—C9—H9B107.8
C3—C2—H2120.2C9—C10—C11111.6 (5)
C1—C2—H2120.2C9—C10—H10A109.3
C2—C3—C4119.5 (4)C11—C10—H10A109.3
C2—C3—H3120.3C9—C10—H10B109.3
C4—C3—H3120.3C11—C10—H10B109.3
C5—C4—C3121.3 (4)H10A—C10—H10B108.0
C5—C4—Br1119.0 (3)C10—C11—C12110.9 (4)
C3—C4—Br1119.7 (3)C10—C11—H11A109.5
C6—C5—C4119.4 (4)C12—C11—H11A109.5
C6—C5—H5120.3C10—C11—H11B109.5
C4—C5—H5120.3C12—C11—H11B109.5
C5—C6—C1119.9 (3)H11A—C11—H11B108.0
C5—C6—H6120.1C7—C12—C11112.5 (4)
C1—C6—H6120.1C7—C12—H12A109.1
N1—C7—C12113.8 (3)C11—C12—H12A109.1
N1—C7—C8108.2 (3)C7—C12—H12B109.1
C12—C7—C8110.5 (4)C11—C12—H12B109.1
N1—C7—H7108.1H12A—C12—H12B107.8
C12—C7—H7108.1
O2—S1—N1—C739.2 (3)Br1—C4—C5—C6178.2 (3)
O1—S1—N1—C7168.6 (3)C4—C5—C6—C10.3 (6)
C1—S1—N1—C777.8 (3)C2—C1—C6—C50.6 (6)
O2—S1—C1—C6164.1 (3)S1—C1—C6—C5176.5 (3)
O1—S1—C1—C668.0 (3)S1—N1—C7—C1291.1 (4)
N1—S1—C1—C646.1 (3)S1—N1—C7—C8145.7 (3)
O2—S1—C1—C218.8 (4)N1—C7—C8—C9178.8 (4)
O1—S1—C1—C2109.1 (3)C12—C7—C8—C953.5 (6)
N1—S1—C1—C2136.8 (3)C7—C8—C9—C1054.4 (7)
C6—C1—C2—C30.8 (6)C8—C9—C10—C1155.0 (7)
S1—C1—C2—C3176.3 (3)C9—C10—C11—C1254.5 (7)
C1—C2—C3—C40.1 (6)N1—C7—C12—C11176.7 (4)
C2—C3—C4—C50.8 (7)C8—C7—C12—C1154.8 (5)
C2—C3—C4—Br1178.4 (3)C10—C11—C12—C755.3 (6)
C3—C4—C5—C61.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.532.903 (4)104
C7—H7···O20.982.542.992 (4)108
N1—H1n···O1i0.88 (3)2.03 (3)2.898 (4)169 (3)
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H16BrNO2S
Mr318.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.2539 (5), 6.2575 (3), 19.9743 (10)
β (°) 97.214 (3)
V3)1395.48 (11)
Z4
Radiation typeMo Kα
µ (mm1)3.09
Crystal size (mm)0.24 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.218, 0.529
No. of measured, independent and
observed [I > 2σ(I)] reflections
12505, 3199, 1620
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.01
No. of reflections3199
No. of parameters157
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.46

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.532.903 (4)104
C7—H7···O20.982.542.992 (4)108
N1—H1n···O1i0.88 (3)2.03 (3)2.898 (4)169 (3)
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

We are grateful to Mr Munawar Hussain, Engineering Cell GC University, Lahore, for providing support services to the Materials Chemistry Laboratory.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhan, I. U., Javaid, R., Sharif, S. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds