metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromido(2-{1-[2-(morpholin-4-yl)ethyl­imino]­eth­yl}phenolato)copper(II)

aCollege of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing 312000, People's Republic of China
*Correspondence e-mail: xiaofan_zhao@126.com

(Received 5 July 2010; accepted 6 July 2010; online 10 July 2010)

In the title complex, [CuBr(C14H19N2O2)], the CuII atom is coordinated by one phenolate O, one imine N and one amine N atom of the tridentate Schiff base ligand and by one bromide ion, resulting in a distorted CuBrN2O square-planar geometry, with the N atoms in a cis arrangement. The morpholine ring adopts a chair conformation.

Related literature

For background to Schiff base complexes and a related structure, see: Zhao (2008[Zhao, X.-F. (2008). Chin. J. Struct. Chem. 27, 853-857.]). For similar copper(II) complexes with Schiff bases, see: Zhu et al. (2005[Zhu, H.-L., Cheng, K., You, Z.-L. & Li, Y.-G. (2005). Acta Cryst. E61, m755-m756.]); Ni et al. (2005[Ni, J., Chen, Y.-W. & Zhang, H. (2005). Acta Cryst. E61, m2093-m2094.]); Zhu (2010[Zhu, Y. (2010). Acta Cryst. E66, m419.]); Suleiman Gwaram et al. (2010[Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m813.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C14H19N2O2)]

  • Mr = 390.76

  • Monoclinic, P 21 /c

  • a = 10.808 (2) Å

  • b = 17.152 (3) Å

  • c = 8.107 (2) Å

  • β = 90.059 (1)°

  • V = 1502.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.11 mm−1

  • T = 298 K

  • 0.32 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.353, Tmax = 0.372

  • 9814 measured reflections

  • 3211 independent reflections

  • 2506 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.171

  • S = 1.13

  • 3211 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.877 (6)
Cu1—N1 1.917 (7)
Cu1—N2 2.095 (6)
Cu1—Br1 2.4006 (14)
O1—Cu1—N1 91.1 (3)
O1—Cu1—N2 161.7 (3)
N1—Cu1—N2 87.5 (2)
O1—Cu1—Br1 92.2 (2)
N1—Cu1—Br1 157.9 (2)
N2—Cu1—Br1 95.99 (16)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of Schiff base complexes (e.g. Zhao, 2008), the title mononuclear copper(II) complex, (I), is reported here.

In the title complex, the Cu atom is four-coordinated by one phenolate O, one imine N, and one amine N atoms of 2-[1-(2-morpholin-4-ylethylimino)ethyl]phenolate, and by one bromide atom, forming a square planar geometry (Fig. 1). The bond lengths (Table 1) in the square planar coordination are comparable with those reported in similar copper structures with Schiff bases (Zhu et al., 2005; Ni et al., 2005; Zhu, 2010; Suleiman Gwaram et al., 2010).

Related literature top

For background to Schiff base complexes and a related structure, see: Zhao (2008). For similar similar copper(II) complexes with Schiff bases, see: Zhu et al. (2005); Ni et al. (2005); Zhu (2010); Suleiman Gwaram et al. (2010).

Experimental top

1-(2-Hydroxyphenyl)ethanone (1 mmol, 136 mg), 2-morpholin-4-ylethylamine (1 mmol, 130 mg), and copper(II) bromide (1 mmol, 223 mg) were dissolved in methanol (80 ml). The mixture was stirred at room temperature for 1 h to give a blue solution. The resulting solution was kept in air for a week, and blue blocks of (I) were formed.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

As part of our ongoing studies of Schiff base complexes (e.g. Zhao, 2008), the title mononuclear copper(II) complex, (I), is reported here.

In the title complex, the Cu atom is four-coordinated by one phenolate O, one imine N, and one amine N atoms of 2-[1-(2-morpholin-4-ylethylimino)ethyl]phenolate, and by one bromide atom, forming a square planar geometry (Fig. 1). The bond lengths (Table 1) in the square planar coordination are comparable with those reported in similar copper structures with Schiff bases (Zhu et al., 2005; Ni et al., 2005; Zhu, 2010; Suleiman Gwaram et al., 2010).

For background to Schiff base complexes and a related structure, see: Zhao (2008). For similar similar copper(II) complexes with Schiff bases, see: Zhu et al. (2005); Ni et al. (2005); Zhu (2010); Suleiman Gwaram et al. (2010).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% displacement ellipsoids (arbitrary spheres for the H atoms).
Bromido(2-{1-[2-(morpholin-4-yl)ethylimino]ethyl}phenolato)copper(II) top
Crystal data top
[CuBr(C14H19N2O2)]F(000) = 788
Mr = 390.76Dx = 1.727 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3491 reflections
a = 10.808 (2) Åθ = 2.7–26.4°
b = 17.152 (3) ŵ = 4.11 mm1
c = 8.107 (2) ÅT = 298 K
β = 90.059 (1)°Block, blue
V = 1502.9 (5) Å30.32 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3211 independent reflections
Radiation source: fine-focus sealed tube2506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.353, Tmax = 0.372k = 2121
9814 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0288P)2 + 17.4414P]
where P = (Fo2 + 2Fc2)/3
3211 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = 1.06 e Å3
Crystal data top
[CuBr(C14H19N2O2)]V = 1502.9 (5) Å3
Mr = 390.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.808 (2) ŵ = 4.11 mm1
b = 17.152 (3) ÅT = 298 K
c = 8.107 (2) Å0.32 × 0.30 × 0.30 mm
β = 90.059 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3211 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2506 reflections with I > 2σ(I)
Tmin = 0.353, Tmax = 0.372Rint = 0.041
9814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0288P)2 + 17.4414P]
where P = (Fo2 + 2Fc2)/3
3211 reflectionsΔρmax = 1.06 e Å3
182 parametersΔρmin = 1.06 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.98896 (9)0.13655 (6)0.00058 (11)0.0314 (3)
Br11.13378 (9)0.10662 (6)0.21461 (11)0.0482 (3)
N10.8594 (6)0.1190 (4)0.1576 (8)0.0364 (16)
N21.1147 (5)0.1243 (4)0.1957 (7)0.0268 (13)
O10.8763 (6)0.1804 (4)0.1494 (8)0.0513 (17)
O21.3588 (5)0.0900 (4)0.3093 (9)0.0535 (17)
C10.6903 (8)0.1273 (5)0.0276 (12)0.042 (2)
C20.7578 (8)0.1655 (5)0.1526 (11)0.0408 (19)
C30.6965 (9)0.1916 (5)0.2956 (12)0.045 (2)
H30.74020.21960.37460.054*
C40.5723 (9)0.1763 (6)0.3203 (13)0.055 (3)
H40.53370.19240.41710.066*
C50.5052 (10)0.1369 (7)0.2008 (14)0.062 (3)
H50.42180.12620.21800.075*
C60.5630 (9)0.1130 (6)0.0536 (14)0.055 (3)
H60.51700.08770.02720.066*
C70.7411 (7)0.1089 (5)0.1327 (11)0.0368 (18)
C80.6584 (9)0.0816 (7)0.2725 (13)0.060 (3)
H8A0.70010.04180.33450.090*
H8B0.58290.06090.22790.090*
H8C0.63980.12480.34360.090*
C90.9094 (8)0.1095 (6)0.3272 (11)0.046 (2)
H9A0.85340.13270.40680.055*
H9B0.91840.05460.35320.055*
C101.0320 (8)0.1490 (5)0.3342 (10)0.041 (2)
H10A1.07170.13690.43850.050*
H10B1.01990.20500.32920.050*
C111.2203 (9)0.1793 (5)0.1721 (12)0.049 (2)
H11A1.19040.23260.17440.058*
H11B1.25860.17010.06570.058*
C121.3139 (9)0.1672 (7)0.3076 (14)0.059 (3)
H12A1.38260.20290.29200.070*
H12B1.27600.17890.41320.070*
C131.2577 (9)0.0373 (6)0.3351 (11)0.048 (2)
H13A1.22140.04730.44230.057*
H13B1.28880.01580.33520.057*
C141.1597 (8)0.0450 (5)0.2050 (10)0.0362 (18)
H14A1.19340.02980.09900.043*
H14B1.09140.01020.23040.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0325 (5)0.0353 (5)0.0264 (5)0.0002 (4)0.0019 (4)0.0039 (4)
Br10.0548 (6)0.0576 (6)0.0322 (5)0.0018 (4)0.0064 (4)0.0000 (4)
N10.038 (4)0.044 (4)0.027 (3)0.008 (3)0.006 (3)0.008 (3)
N20.026 (3)0.038 (4)0.017 (3)0.008 (3)0.006 (2)0.010 (2)
O10.039 (3)0.060 (4)0.055 (4)0.004 (3)0.009 (3)0.030 (3)
O20.028 (3)0.068 (5)0.064 (4)0.005 (3)0.003 (3)0.014 (4)
C10.039 (5)0.029 (4)0.058 (6)0.002 (3)0.001 (4)0.009 (4)
C20.046 (5)0.036 (5)0.040 (5)0.006 (4)0.005 (4)0.004 (4)
C30.049 (5)0.038 (5)0.048 (5)0.006 (4)0.008 (4)0.001 (4)
C40.046 (6)0.058 (6)0.061 (6)0.013 (5)0.024 (5)0.003 (5)
C50.052 (6)0.068 (7)0.068 (7)0.002 (5)0.024 (5)0.012 (6)
C60.039 (5)0.058 (6)0.068 (7)0.005 (4)0.012 (5)0.007 (5)
C70.029 (4)0.035 (4)0.046 (5)0.006 (3)0.006 (3)0.005 (4)
C80.036 (5)0.091 (8)0.054 (6)0.013 (5)0.003 (4)0.018 (6)
C90.038 (5)0.065 (6)0.035 (5)0.005 (4)0.011 (4)0.001 (4)
C100.043 (5)0.052 (5)0.029 (4)0.007 (4)0.002 (3)0.006 (4)
C110.061 (6)0.034 (5)0.051 (6)0.004 (4)0.012 (5)0.003 (4)
C120.041 (5)0.069 (7)0.066 (7)0.014 (5)0.011 (5)0.009 (6)
C130.053 (6)0.049 (6)0.041 (5)0.014 (4)0.004 (4)0.008 (4)
C140.045 (5)0.030 (4)0.035 (4)0.002 (3)0.003 (4)0.001 (3)
Geometric parameters (Å, º) top
Cu1—O11.877 (6)C5—H50.9300
Cu1—N11.917 (7)C6—H60.9300
Cu1—N22.095 (6)C7—C81.518 (12)
Cu1—Br12.4006 (14)C8—H8A0.9600
N1—C71.306 (11)C8—H8B0.9600
N1—C91.486 (11)C8—H8C0.9600
N2—C141.447 (10)C9—C101.489 (13)
N2—C111.494 (11)C9—H9A0.9700
N2—C101.497 (9)C9—H9B0.9700
O1—C21.306 (11)C10—H10A0.9700
O2—C121.411 (13)C10—H10B0.9700
O2—C131.434 (12)C11—C121.508 (13)
C1—C61.413 (12)C11—H11A0.9700
C1—C21.411 (12)C11—H11B0.9700
C1—C71.445 (12)C12—H12A0.9700
C2—C31.408 (12)C12—H12B0.9700
C3—C41.382 (13)C13—C141.500 (12)
C3—H30.9300C13—H13A0.9700
C4—C51.387 (16)C13—H13B0.9700
C4—H40.9300C14—H14A0.9700
C5—C61.407 (14)C14—H14B0.9700
O1—Cu1—N191.1 (3)H8A—C8—H8B109.5
O1—Cu1—N2161.7 (3)C7—C8—H8C109.5
N1—Cu1—N287.5 (2)H8A—C8—H8C109.5
O1—Cu1—Br192.2 (2)H8B—C8—H8C109.5
N1—Cu1—Br1157.9 (2)C10—C9—N1108.0 (7)
N2—Cu1—Br195.99 (16)C10—C9—H9A110.1
C7—N1—C9118.9 (7)N1—C9—H9A110.1
C7—N1—Cu1129.3 (6)C10—C9—H9B110.1
C9—N1—Cu1111.5 (5)N1—C9—H9B110.1
C14—N2—C11110.1 (6)H9A—C9—H9B108.4
C14—N2—C10115.3 (6)C9—C10—N2112.0 (7)
C11—N2—C10112.0 (6)C9—C10—H10A109.2
C14—N2—Cu1110.6 (5)N2—C10—H10A109.2
C11—N2—Cu1109.6 (5)C9—C10—H10B109.2
C10—N2—Cu198.7 (5)N2—C10—H10B109.2
C2—O1—Cu1124.8 (6)H10A—C10—H10B107.9
C12—O2—C13109.3 (7)N2—C11—C12109.4 (7)
C6—C1—C2118.5 (9)N2—C11—H11A109.8
C6—C1—C7117.7 (8)C12—C11—H11A109.8
C2—C1—C7123.4 (8)N2—C11—H11B109.8
O1—C2—C3114.5 (8)C12—C11—H11B109.8
O1—C2—C1125.8 (8)H11A—C11—H11B108.2
C3—C2—C1119.7 (8)O2—C12—C11111.5 (8)
C4—C3—C2121.0 (9)O2—C12—H12A109.3
C4—C3—H3119.5C11—C12—H12A109.3
C2—C3—H3119.5O2—C12—H12B109.3
C5—C4—C3120.0 (9)C11—C12—H12B109.3
C5—C4—H4120.0H12A—C12—H12B108.0
C3—C4—H4120.0O2—C13—C14112.3 (7)
C4—C5—C6120.2 (10)O2—C13—H13A109.1
C4—C5—H5119.9C14—C13—H13A109.1
C6—C5—H5119.9O2—C13—H13B109.1
C5—C6—C1120.5 (10)C14—C13—H13B109.1
C5—C6—H6119.7H13A—C13—H13B107.9
C1—C6—H6119.7N2—C14—C13110.9 (7)
N1—C7—C1118.8 (8)N2—C14—H14A109.5
N1—C7—C8120.2 (8)C13—C14—H14A109.5
C1—C7—C8121.0 (8)N2—C14—H14B109.5
C7—C8—H8A109.5C13—C14—H14B109.5
C7—C8—H8B109.5H14A—C14—H14B108.1

Experimental details

Crystal data
Chemical formula[CuBr(C14H19N2O2)]
Mr390.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.808 (2), 17.152 (3), 8.107 (2)
β (°) 90.059 (1)
V3)1502.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)4.11
Crystal size (mm)0.32 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.353, 0.372
No. of measured, independent and
observed [I > 2σ(I)] reflections
9814, 3211, 2506
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.171, 1.13
No. of reflections3211
No. of parameters182
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0288P)2 + 17.4414P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.06, 1.06

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O11.877 (6)Cu1—N22.095 (6)
Cu1—N11.917 (7)Cu1—Br12.4006 (14)
O1—Cu1—N191.1 (3)O1—Cu1—Br192.2 (2)
O1—Cu1—N2161.7 (3)N1—Cu1—Br1157.9 (2)
N1—Cu1—N287.5 (2)N2—Cu1—Br195.99 (16)
 

Acknowledgements

Financial support from the Shaoxing University research fund is gratefully acknowledged.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNi, J., Chen, Y.-W. & Zhang, H. (2005). Acta Cryst. E61, m2093–m2094.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, X.-F. (2008). Chin. J. Struct. Chem. 27, 853–857.  CAS Google Scholar
First citationZhu, Y. (2010). Acta Cryst. E66, m419.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhu, H.-L., Cheng, K., You, Z.-L. & Li, Y.-G. (2005). Acta Cryst. E61, m755–m756.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds