metal-organic compounds
Dibromido(2,3,5,6-tetra-2-pyridylpyrazine-κ3N2,N1,N6)zinc(II)
aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: v_amani2002@yahoo.com
In the title compound, [ZnBr2(C24H16N6)], the ZnII ion is coordinated by the N,N′,N′′-tridentate 2,3,5,6-tetra-2-pyridylpyrazine ligand and two bromide ions, generating a distorted ZnN3Br2 trigonal-bipyramidal geometry for the metal ion, with both bromide ions in equatorial sites. The dihedral angles between the pyrazine ring and the coordinated pyridine rings are 13.3 (2) and 24.8 (2)°; those between the pyrazine ring and the uncoordinated pyradine rings are 31.3 (2) and 44.2 (2)°. In the crystal, inversion dimers linked by pairs of weak C—H⋯Br hydrogen bonds occur.
Related literature
For the synthesis of the ligand, see: Goodwin & Lyons (1959). For the structure of the free ligand, see Bock et al. (1992); Greaves & Stoeckli-Evans (1992). For related structures, see: Alizadeh et al. (2009); Carranza et al. (2004); Graf et al. (1993, 1997); Hadadzadeh et al. (2006); Laine et al. (1995); Morsali & Ramazani (2005); Sakai & Kurashima (2003); Seyed Sadjadi et al. (2008); Yamada et al. (2000); Zhang et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810027820/hb5552sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810027820/hb5552Isup2.hkl
A solution of 2,3,5,6-tetra(2-pyridinyl)pyrazine (0.40 g, 1.00 mmol) in HCCl3 (20 ml) was added to a solution of ZnBr2 (0.23 g, 1.00 mmol) in methanol (20 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Yellow prisms of (I) were isolated after one week (yield; 0.45 g, 73.3%).
All H atoms were positioned geometrically, with C—H = 0.93Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Goodwin & Lyons (1959) reported the synthesis of 2,3,5,6-tetra(2-pyridinyl)pyrazine (tppz). Bock et al. (1992) and Greaves & Stoeckli-Evans (1992) determined the structure of tppz by single-crystal X-ray diffraction methods. tppz is a good bis-tridentate bridging ligand, and numerous complexes with tppz have been prepared, such as that of ruthenium (Hadadzadeh et al., 2006), platinum (Sakai & Kurashima, 2003), mercury (Zhang et al., 2005), copper (Carranza et al., 2004), iron (Laine et al., 1995), nickel (Graf et al., 1997), palladium (Yamada et al., 2000), cadmium (Seyed Sadjadi et al., 2008) and lead (Morsali & Ramazani, 2005). For further investigation of 2,3,5,6-tetra(2-pyridinyl)pyrazine, we synthesis the title complex, (I), and report herein its crystal structure.
In the title compound, (Fig. 1), the ZnII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by three N atoms from one 2,3,5,6-tetra(2-pyridinyl)pyrazine and two terminal Br. The Zn—N and Zn—Br bond lengths and angles (Table 1) are within normal range of [ZnCl2 (tppz)], (Graf et al., 1993) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.
In the
intermolecular C—H···Br hydrogen bonds (Table 2, Fig. 2) may stabilize the structure.For the synthesis of the ligand, see: Goodwin & Lyons (1959). For the structure of the free ligand, see Bock et al. (1992); Greaves & Stoeckli-Evans (1992). For related structures, see: Alizadeh et al. (2009); Carranza et al. (2004); Graf et al. (1993, 1997); Hadadzadeh et al. (2006); Laine et al. (1995); Morsali & Ramazani (2005); Sakai & Kurashima (2003); Seyed Sadjadi et al. (2008); Yamada et al. (2000); Zhang et al. (2005).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. Unit-cell packing diagram for (I). |
[ZnBr2(C24H16N6)] | Z = 2 |
Mr = 613.62 | F(000) = 604 |
Triclinic, P1 | Dx = 1.708 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.3985 (8) Å | Cell parameters from 998 reflections |
b = 10.5378 (8) Å | θ = 1.8–29.3° |
c = 12.3034 (10) Å | µ = 4.40 mm−1 |
α = 64.898 (6)° | T = 298 K |
β = 83.187 (6)° | Prism, yellow |
γ = 77.901 (6)° | 0.50 × 0.40 × 0.28 mm |
V = 1193.05 (16) Å3 |
Bruker SMART CCD diffractometer | 6412 independent reflections |
Radiation source: fine-focus sealed tube | 4954 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
phi and ω scans | θmax = 29.2°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −14→14 |
Tmin = 0.206, Tmax = 0.369 | k = −13→14 |
13823 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0524P)2 + 0.8386P] where P = (Fo2 + 2Fc2)/3 |
6412 reflections | (Δ/σ)max = 0.010 |
298 parameters | Δρmax = 0.89 e Å−3 |
0 restraints | Δρmin = −0.91 e Å−3 |
[ZnBr2(C24H16N6)] | γ = 77.901 (6)° |
Mr = 613.62 | V = 1193.05 (16) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.3985 (8) Å | Mo Kα radiation |
b = 10.5378 (8) Å | µ = 4.40 mm−1 |
c = 12.3034 (10) Å | T = 298 K |
α = 64.898 (6)° | 0.50 × 0.40 × 0.28 mm |
β = 83.187 (6)° |
Bruker SMART CCD diffractometer | 6412 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 4954 reflections with I > 2σ(I) |
Tmin = 0.206, Tmax = 0.369 | Rint = 0.049 |
13823 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.89 e Å−3 |
6412 reflections | Δρmin = −0.91 e Å−3 |
298 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.69495 (4) | 0.37649 (4) | 0.71272 (4) | 0.03753 (11) | |
Br2 | 0.62972 (5) | 0.62861 (4) | 0.64284 (4) | 0.05470 (13) | |
Br1 | 0.52355 (5) | 0.24651 (6) | 0.74414 (5) | 0.07140 (16) | |
N5 | 1.1123 (3) | 0.0445 (4) | 0.5766 (3) | 0.0452 (7) | |
N3 | 1.1520 (3) | 0.1584 (3) | 0.7992 (3) | 0.0397 (6) | |
C7 | 1.0799 (3) | 0.2101 (4) | 0.8729 (3) | 0.0379 (7) | |
C20 | 0.9186 (3) | 0.3265 (3) | 0.5446 (3) | 0.0352 (7) | |
C16 | 1.3156 (3) | 0.0461 (4) | 0.6499 (3) | 0.0397 (7) | |
H16 | 1.3598 | 0.0784 | 0.6918 | 0.048* | |
C6 | 0.9439 (3) | 0.2551 (4) | 0.8580 (3) | 0.0350 (7) | |
C17 | 1.1801 (3) | 0.0874 (4) | 0.6368 (3) | 0.0363 (7) | |
N6 | 0.7888 (3) | 0.3729 (3) | 0.5459 (3) | 0.0407 (7) | |
N2 | 0.8986 (3) | 0.2850 (3) | 0.7503 (2) | 0.0339 (6) | |
C8 | 1.1517 (4) | 0.2208 (4) | 0.9655 (3) | 0.0423 (8) | |
C19 | 0.9768 (3) | 0.2574 (4) | 0.6653 (3) | 0.0341 (6) | |
C5 | 0.8400 (4) | 0.2731 (4) | 0.9463 (3) | 0.0377 (7) | |
C18 | 1.1009 (3) | 0.1719 (4) | 0.6992 (3) | 0.0353 (7) | |
N4 | 1.1146 (3) | 0.3429 (4) | 0.9781 (3) | 0.0457 (7) | |
N1 | 0.7200 (3) | 0.3285 (4) | 0.9022 (3) | 0.0475 (7) | |
C13 | 1.1800 (4) | −0.0388 (5) | 0.5255 (4) | 0.0499 (9) | |
H13 | 1.1346 | −0.0669 | 0.4811 | 0.060* | |
C15 | 1.3823 (4) | −0.0435 (4) | 0.5994 (3) | 0.0453 (8) | |
H15 | 1.4724 | −0.0751 | 0.6087 | 0.054* | |
C21 | 0.9930 (4) | 0.3513 (4) | 0.4381 (3) | 0.0448 (8) | |
H21 | 1.0837 | 0.3210 | 0.4388 | 0.054* | |
C3 | 0.7577 (5) | 0.2571 (5) | 1.1400 (4) | 0.0567 (11) | |
H3 | 0.7711 | 0.2326 | 1.2204 | 0.068* | |
C23 | 0.7940 (5) | 0.4678 (5) | 0.3319 (4) | 0.0584 (11) | |
H23 | 0.7493 | 0.5150 | 0.2605 | 0.070* | |
C12 | 1.1751 (5) | 0.3588 (5) | 1.0604 (4) | 0.0592 (11) | |
H12 | 1.1516 | 0.4439 | 1.0696 | 0.071* | |
C1 | 0.6194 (5) | 0.3486 (6) | 0.9748 (4) | 0.0646 (13) | |
H1 | 0.5356 | 0.3851 | 0.9440 | 0.078* | |
C22 | 0.9278 (5) | 0.4225 (5) | 0.3307 (3) | 0.0525 (10) | |
H22 | 0.9746 | 0.4396 | 0.2581 | 0.063* | |
C9 | 1.2494 (5) | 0.1128 (6) | 1.0304 (5) | 0.0731 (16) | |
H9 | 1.2749 | 0.0302 | 1.0174 | 0.088* | |
C24 | 0.7276 (4) | 0.4421 (5) | 0.4402 (4) | 0.0548 (10) | |
H24 | 0.6371 | 0.4735 | 0.4410 | 0.066* | |
C2 | 0.6354 (5) | 0.3171 (6) | 1.0948 (4) | 0.0660 (13) | |
H2 | 0.5648 | 0.3364 | 1.1427 | 0.079* | |
C11 | 1.2693 (7) | 0.2565 (7) | 1.1313 (6) | 0.0866 (19) | |
H11 | 1.3067 | 0.2706 | 1.1893 | 0.104* | |
C10 | 1.3082 (7) | 0.1332 (8) | 1.1165 (7) | 0.103 (3) | |
H10 | 1.3737 | 0.0629 | 1.1635 | 0.123* | |
C14 | 1.3150 (4) | −0.0862 (4) | 0.5348 (4) | 0.0486 (9) | |
H14 | 1.3587 | −0.1453 | 0.4983 | 0.058* | |
C4 | 0.8616 (4) | 0.2330 (5) | 1.0660 (3) | 0.0488 (9) | |
H4 | 0.9450 | 0.1903 | 1.0964 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.03347 (19) | 0.0393 (2) | 0.0397 (2) | 0.00120 (15) | −0.00453 (14) | −0.01878 (17) |
Br2 | 0.0683 (3) | 0.0393 (2) | 0.0545 (2) | 0.00334 (18) | −0.00494 (19) | −0.02253 (18) |
Br1 | 0.0635 (3) | 0.0628 (3) | 0.0887 (4) | −0.0252 (2) | −0.0112 (2) | −0.0232 (3) |
N5 | 0.0386 (15) | 0.0507 (18) | 0.0572 (19) | 0.0007 (13) | −0.0060 (13) | −0.0352 (16) |
N3 | 0.0376 (14) | 0.0409 (16) | 0.0463 (16) | 0.0017 (12) | −0.0089 (12) | −0.0254 (13) |
C7 | 0.0416 (17) | 0.0347 (16) | 0.0412 (17) | 0.0010 (13) | −0.0091 (14) | −0.0208 (14) |
C20 | 0.0408 (17) | 0.0304 (15) | 0.0355 (16) | −0.0001 (13) | −0.0045 (13) | −0.0167 (13) |
C16 | 0.0341 (16) | 0.0428 (19) | 0.0438 (18) | −0.0068 (14) | 0.0001 (13) | −0.0196 (15) |
C6 | 0.0415 (17) | 0.0304 (15) | 0.0329 (15) | −0.0010 (13) | −0.0051 (12) | −0.0143 (13) |
C17 | 0.0326 (15) | 0.0370 (17) | 0.0432 (17) | −0.0034 (13) | −0.0016 (13) | −0.0213 (14) |
N6 | 0.0410 (15) | 0.0462 (17) | 0.0352 (14) | 0.0037 (13) | −0.0065 (11) | −0.0209 (13) |
N2 | 0.0347 (13) | 0.0361 (14) | 0.0325 (13) | −0.0015 (11) | −0.0033 (10) | −0.0171 (11) |
C8 | 0.0427 (18) | 0.046 (2) | 0.0423 (18) | −0.0025 (15) | −0.0101 (14) | −0.0226 (16) |
C19 | 0.0357 (15) | 0.0329 (16) | 0.0375 (16) | −0.0008 (12) | −0.0026 (12) | −0.0201 (13) |
C5 | 0.0475 (18) | 0.0317 (16) | 0.0321 (15) | −0.0049 (14) | −0.0008 (13) | −0.0124 (13) |
C18 | 0.0331 (15) | 0.0352 (16) | 0.0409 (17) | −0.0011 (13) | −0.0040 (12) | −0.0202 (14) |
N4 | 0.0570 (19) | 0.0462 (18) | 0.0403 (16) | −0.0087 (15) | −0.0024 (13) | −0.0240 (14) |
N1 | 0.0447 (17) | 0.057 (2) | 0.0392 (16) | −0.0019 (14) | 0.0025 (13) | −0.0222 (15) |
C13 | 0.054 (2) | 0.054 (2) | 0.056 (2) | −0.0044 (18) | −0.0046 (17) | −0.037 (2) |
C15 | 0.0332 (16) | 0.048 (2) | 0.048 (2) | −0.0018 (15) | 0.0086 (14) | −0.0184 (17) |
C21 | 0.048 (2) | 0.044 (2) | 0.0414 (18) | −0.0037 (16) | 0.0009 (15) | −0.0192 (16) |
C3 | 0.073 (3) | 0.061 (3) | 0.0342 (18) | −0.024 (2) | 0.0111 (18) | −0.0161 (18) |
C23 | 0.078 (3) | 0.055 (3) | 0.0374 (19) | 0.002 (2) | −0.0141 (19) | −0.0172 (18) |
C12 | 0.077 (3) | 0.063 (3) | 0.054 (2) | −0.021 (2) | −0.003 (2) | −0.035 (2) |
C1 | 0.048 (2) | 0.087 (4) | 0.051 (2) | 0.005 (2) | 0.0068 (18) | −0.030 (2) |
C22 | 0.071 (3) | 0.051 (2) | 0.0328 (18) | −0.007 (2) | 0.0037 (17) | −0.0168 (16) |
C9 | 0.077 (3) | 0.065 (3) | 0.089 (4) | 0.025 (3) | −0.046 (3) | −0.049 (3) |
C24 | 0.052 (2) | 0.063 (3) | 0.045 (2) | 0.0123 (19) | −0.0168 (17) | −0.0246 (19) |
C2 | 0.066 (3) | 0.082 (3) | 0.046 (2) | −0.012 (3) | 0.020 (2) | −0.028 (2) |
C11 | 0.105 (4) | 0.097 (4) | 0.082 (4) | −0.007 (4) | −0.044 (3) | −0.054 (3) |
C10 | 0.110 (5) | 0.094 (5) | 0.113 (5) | 0.028 (4) | −0.079 (4) | −0.053 (4) |
C14 | 0.053 (2) | 0.047 (2) | 0.048 (2) | −0.0031 (17) | 0.0114 (16) | −0.0272 (17) |
C4 | 0.058 (2) | 0.056 (2) | 0.0307 (17) | −0.0159 (19) | −0.0017 (15) | −0.0132 (16) |
Zn1—N2 | 2.151 (3) | N1—C1 | 1.335 (5) |
Zn1—N6 | 2.177 (3) | C13—C14 | 1.388 (6) |
Zn1—N1 | 2.202 (3) | C13—H13 | 0.9300 |
Zn1—Br1 | 2.3692 (7) | C15—C14 | 1.376 (6) |
Zn1—Br2 | 2.3880 (6) | C15—H15 | 0.9300 |
N5—C13 | 1.330 (5) | C21—C22 | 1.388 (6) |
N5—C17 | 1.339 (4) | C21—H21 | 0.9300 |
N3—C7 | 1.330 (4) | C3—C2 | 1.363 (7) |
N3—C18 | 1.339 (4) | C3—C4 | 1.381 (6) |
C7—C6 | 1.403 (5) | C3—H3 | 0.9300 |
C7—C8 | 1.487 (5) | C23—C24 | 1.372 (6) |
C20—N6 | 1.336 (4) | C23—C22 | 1.372 (7) |
C20—C21 | 1.392 (5) | C23—H23 | 0.9300 |
C20—C19 | 1.488 (4) | C12—C11 | 1.357 (8) |
C16—C15 | 1.371 (5) | C12—H12 | 0.9300 |
C16—C17 | 1.392 (5) | C1—C2 | 1.392 (6) |
C16—H16 | 0.9300 | C1—H1 | 0.9300 |
C6—N2 | 1.344 (4) | C22—H22 | 0.9300 |
C6—C5 | 1.481 (5) | C9—C10 | 1.394 (7) |
C17—C18 | 1.477 (4) | C9—H9 | 0.9300 |
N6—C24 | 1.351 (5) | C24—H24 | 0.9300 |
N2—C19 | 1.341 (4) | C2—H2 | 0.9300 |
C8—N4 | 1.333 (5) | C11—C10 | 1.359 (9) |
C8—C9 | 1.379 (6) | C11—H11 | 0.9300 |
C19—C18 | 1.404 (4) | C10—H10 | 0.9300 |
C5—N1 | 1.334 (5) | C14—H14 | 0.9300 |
C5—C4 | 1.382 (5) | C4—H4 | 0.9300 |
N4—C12 | 1.338 (5) | ||
N2—Zn1—N6 | 73.75 (10) | C5—N1—Zn1 | 118.2 (2) |
N2—Zn1—N1 | 72.96 (11) | C1—N1—Zn1 | 122.6 (3) |
N6—Zn1—N1 | 146.71 (11) | N5—C13—C14 | 123.5 (4) |
N2—Zn1—Br1 | 125.38 (8) | N5—C13—H13 | 118.3 |
N6—Zn1—Br1 | 102.12 (9) | C14—C13—H13 | 118.3 |
N1—Zn1—Br1 | 97.43 (10) | C16—C15—C14 | 119.5 (3) |
N2—Zn1—Br2 | 118.61 (8) | C16—C15—H15 | 120.2 |
N6—Zn1—Br2 | 97.55 (9) | C14—C15—H15 | 120.2 |
N1—Zn1—Br2 | 97.76 (10) | C22—C21—C20 | 118.0 (4) |
Br1—Zn1—Br2 | 115.93 (2) | C22—C21—H21 | 121.0 |
C13—N5—C17 | 117.3 (3) | C20—C21—H21 | 121.0 |
C7—N3—C18 | 120.4 (3) | C2—C3—C4 | 119.8 (4) |
N3—C7—C6 | 119.5 (3) | C2—C3—H3 | 120.1 |
N3—C7—C8 | 116.7 (3) | C4—C3—H3 | 120.1 |
C6—C7—C8 | 123.8 (3) | C24—C23—C22 | 118.8 (4) |
N6—C20—C21 | 122.2 (3) | C24—C23—H23 | 120.6 |
N6—C20—C19 | 114.2 (3) | C22—C23—H23 | 120.6 |
C21—C20—C19 | 123.5 (3) | N4—C12—C11 | 123.1 (4) |
C15—C16—C17 | 118.4 (3) | N4—C12—H12 | 118.4 |
C15—C16—H16 | 120.8 | C11—C12—H12 | 118.4 |
C17—C16—H16 | 120.8 | N1—C1—C2 | 122.4 (4) |
N2—C6—C7 | 117.2 (3) | N1—C1—H1 | 118.8 |
N2—C6—C5 | 114.1 (3) | C2—C1—H1 | 118.8 |
C7—C6—C5 | 128.7 (3) | C23—C22—C21 | 119.9 (4) |
N5—C17—C16 | 123.0 (3) | C23—C22—H22 | 120.0 |
N5—C17—C18 | 115.8 (3) | C21—C22—H22 | 120.0 |
C16—C17—C18 | 120.9 (3) | C8—C9—C10 | 116.9 (5) |
C20—N6—C24 | 118.6 (3) | C8—C9—H9 | 121.6 |
C20—N6—Zn1 | 117.8 (2) | C10—C9—H9 | 121.6 |
C24—N6—Zn1 | 122.1 (3) | N6—C24—C23 | 122.4 (4) |
C19—N2—C6 | 121.7 (3) | N6—C24—H24 | 118.8 |
C19—N2—Zn1 | 118.5 (2) | C23—C24—H24 | 118.8 |
C6—N2—Zn1 | 119.7 (2) | C3—C2—C1 | 118.0 (4) |
N4—C8—C9 | 123.8 (4) | C3—C2—H2 | 121.0 |
N4—C8—C7 | 114.3 (3) | C1—C2—H2 | 121.0 |
C9—C8—C7 | 121.9 (4) | C12—C11—C10 | 119.3 (4) |
N2—C19—C18 | 117.6 (3) | C12—C11—H11 | 120.3 |
N2—C19—C20 | 113.7 (3) | C10—C11—H11 | 120.3 |
C18—C19—C20 | 128.6 (3) | C11—C10—C9 | 119.6 (5) |
N1—C5—C4 | 121.3 (3) | C11—C10—H10 | 120.2 |
N1—C5—C6 | 114.6 (3) | C9—C10—H10 | 120.2 |
C4—C5—C6 | 124.1 (3) | C15—C14—C13 | 118.2 (3) |
N3—C18—C19 | 118.8 (3) | C15—C14—H14 | 120.9 |
N3—C18—C17 | 115.5 (3) | C13—C14—H14 | 120.9 |
C19—C18—C17 | 125.6 (3) | C3—C4—C5 | 119.1 (4) |
C8—N4—C12 | 117.2 (4) | C3—C4—H4 | 120.4 |
C5—N1—C1 | 119.2 (3) | C5—C4—H4 | 120.4 |
C18—N3—C7—C6 | 11.8 (5) | C7—C6—C5—C4 | −6.9 (6) |
C18—N3—C7—C8 | −166.3 (3) | C7—N3—C18—C19 | 8.3 (5) |
N3—C7—C6—N2 | −20.0 (5) | C7—N3—C18—C17 | −168.8 (3) |
C8—C7—C6—N2 | 157.9 (3) | N2—C19—C18—N3 | −20.2 (5) |
N3—C7—C6—C5 | 159.1 (4) | C20—C19—C18—N3 | 158.3 (3) |
C8—C7—C6—C5 | −22.9 (6) | N2—C19—C18—C17 | 156.6 (3) |
C13—N5—C17—C16 | −1.5 (6) | C20—C19—C18—C17 | −24.9 (6) |
C13—N5—C17—C18 | −176.1 (4) | N5—C17—C18—N3 | 149.6 (3) |
C15—C16—C17—N5 | −0.5 (6) | C16—C17—C18—N3 | −25.1 (5) |
C15—C16—C17—C18 | 173.9 (3) | N5—C17—C18—C19 | −27.2 (5) |
C21—C20—N6—C24 | 2.2 (6) | C16—C17—C18—C19 | 158.1 (4) |
C19—C20—N6—C24 | 177.5 (3) | C9—C8—N4—C12 | −1.2 (7) |
C21—C20—N6—Zn1 | −164.1 (3) | C7—C8—N4—C12 | 179.7 (4) |
C19—C20—N6—Zn1 | 11.1 (4) | C4—C5—N1—C1 | 1.6 (6) |
N2—Zn1—N6—C20 | −3.2 (3) | C6—C5—N1—C1 | 179.8 (4) |
N1—Zn1—N6—C20 | −2.2 (4) | C4—C5—N1—Zn1 | −176.4 (3) |
Br1—Zn1—N6—C20 | −126.8 (3) | C6—C5—N1—Zn1 | 1.9 (4) |
Br2—Zn1—N6—C20 | 114.5 (3) | N2—Zn1—N1—C5 | 1.4 (3) |
N2—Zn1—N6—C24 | −169.0 (4) | N6—Zn1—N1—C5 | 0.4 (4) |
N1—Zn1—N6—C24 | −168.1 (3) | Br1—Zn1—N1—C5 | 126.2 (3) |
Br1—Zn1—N6—C24 | 67.3 (3) | Br2—Zn1—N1—C5 | −116.2 (3) |
Br2—Zn1—N6—C24 | −51.3 (3) | N2—Zn1—N1—C1 | −176.5 (4) |
C7—C6—N2—C19 | 7.8 (5) | N6—Zn1—N1—C1 | −177.5 (4) |
C5—C6—N2—C19 | −171.5 (3) | Br1—Zn1—N1—C1 | −51.7 (4) |
C7—C6—N2—Zn1 | −173.3 (2) | Br2—Zn1—N1—C1 | 65.9 (4) |
C5—C6—N2—Zn1 | 7.5 (4) | C17—N5—C13—C14 | 2.1 (7) |
N6—Zn1—N2—C19 | −6.5 (3) | C17—C16—C15—C14 | 1.9 (6) |
N1—Zn1—N2—C19 | 174.1 (3) | N6—C20—C21—C22 | −2.2 (6) |
Br1—Zn1—N2—C19 | 87.0 (3) | C19—C20—C21—C22 | −177.1 (4) |
Br2—Zn1—N2—C19 | −96.3 (2) | C8—N4—C12—C11 | −1.1 (7) |
N6—Zn1—N2—C6 | 174.5 (3) | C5—N1—C1—C2 | 1.6 (8) |
N1—Zn1—N2—C6 | −4.9 (3) | Zn1—N1—C1—C2 | 179.5 (4) |
Br1—Zn1—N2—C6 | −92.0 (3) | C24—C23—C22—C21 | 0.5 (7) |
Br2—Zn1—N2—C6 | 84.7 (3) | C20—C21—C22—C23 | 0.8 (6) |
N3—C7—C8—N4 | 135.7 (4) | N4—C8—C9—C10 | 2.2 (9) |
C6—C7—C8—N4 | −42.3 (5) | C7—C8—C9—C10 | −178.8 (6) |
N3—C7—C8—C9 | −43.4 (6) | C20—N6—C24—C23 | −0.8 (7) |
C6—C7—C8—C9 | 138.6 (5) | Zn1—N6—C24—C23 | 164.9 (4) |
C6—N2—C19—C18 | 11.8 (5) | C22—C23—C24—N6 | −0.5 (7) |
Zn1—N2—C19—C18 | −167.2 (2) | C4—C3—C2—C1 | 1.6 (8) |
C6—N2—C19—C20 | −167.0 (3) | N1—C1—C2—C3 | −3.2 (8) |
Zn1—N2—C19—C20 | 14.1 (4) | N4—C12—C11—C10 | 2.2 (10) |
N6—C20—C19—N2 | −16.2 (4) | C12—C11—C10—C9 | −1.1 (12) |
C21—C20—C19—N2 | 159.0 (3) | C8—C9—C10—C11 | −1.0 (12) |
N6—C20—C19—C18 | 165.2 (4) | C16—C15—C14—C13 | −1.4 (6) |
C21—C20—C19—C18 | −19.6 (6) | N5—C13—C14—C15 | −0.7 (7) |
N2—C6—C5—N1 | −5.9 (5) | C2—C3—C4—C5 | 1.3 (7) |
C7—C6—C5—N1 | 174.9 (4) | N1—C5—C4—C3 | −3.1 (6) |
N2—C6—C5—C4 | 172.3 (4) | C6—C5—C4—C3 | 178.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···Br2i | 0.93 | 2.88 | 3.791 (7) | 166 |
Symmetry code: (i) −x+2, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [ZnBr2(C24H16N6)] |
Mr | 613.62 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 10.3985 (8), 10.5378 (8), 12.3034 (10) |
α, β, γ (°) | 64.898 (6), 83.187 (6), 77.901 (6) |
V (Å3) | 1193.05 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.40 |
Crystal size (mm) | 0.50 × 0.40 × 0.28 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.206, 0.369 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13823, 6412, 4954 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.126, 1.14 |
No. of reflections | 6412 |
No. of parameters | 298 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.89, −0.91 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).
Zn1—N2 | 2.151 (3) | Zn1—Br1 | 2.3692 (7) |
Zn1—N6 | 2.177 (3) | Zn1—Br2 | 2.3880 (6) |
Zn1—N1 | 2.202 (3) | ||
N2—Zn1—N6 | 73.75 (10) | N1—Zn1—Br1 | 97.43 (10) |
N2—Zn1—N1 | 72.96 (11) | N2—Zn1—Br2 | 118.61 (8) |
N6—Zn1—N1 | 146.71 (11) | N6—Zn1—Br2 | 97.55 (9) |
N2—Zn1—Br1 | 125.38 (8) | N1—Zn1—Br2 | 97.76 (10) |
N6—Zn1—Br1 | 102.12 (9) | Br1—Zn1—Br2 | 115.93 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11···Br2i | 0.93 | 2.88 | 3.791 (7) | 166 |
Symmetry code: (i) −x+2, −y+1, −z+2. |
Acknowledgements
We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.
References
Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. 31, 299–301. CSD CrossRef Google Scholar
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carranza, J., Sletten, J., Brennan, C., Lloret, F., Canoa, J. & Julve, M. (2004). Dalton Trans. pp. 3997–4005. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Goodwin, H. A. & Lyons, F. (1959). J. Am. Chem. Soc. 81, 6415–6422. CrossRef CAS Web of Science Google Scholar
Graf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239–246. CSD CrossRef CAS Web of Science Google Scholar
Graf, M., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1997). Inorg. Chim. Acta, 257, 89–97. CSD CrossRef CAS Web of Science Google Scholar
Greaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269–2271. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Hadadzadeh, H., Yap, G. P. A. & Crutchley, R. J. (2006). Acta Cryst. E62, m2002–m2004. Web of Science CSD CrossRef IUCr Journals Google Scholar
Laine, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156–5165. CrossRef CAS Web of Science Google Scholar
Morsali, A. & Ramazani, A. (2005). Z. Anorg. Allg. Chem. 631, 1759–1760. Web of Science CSD CrossRef CAS Google Scholar
Sakai, K. & Kurashima, M. (2003). Acta Cryst. E59, m411–m413. Web of Science CSD CrossRef IUCr Journals Google Scholar
Seyed Sadjadi, M., Ebadi, A., Zare, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1050–m1051. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamada, Y., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2000). Bull. Chem. Soc. Jpn, 73, 1843–1844. Web of Science CSD CrossRef CAS Google Scholar
Zhang, L., Zhao, X.-H. & Zhao, Y. (2005). Acta Cryst. E61, m1760–m1761. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Goodwin & Lyons (1959) reported the synthesis of 2,3,5,6-tetra(2-pyridinyl)pyrazine (tppz). Bock et al. (1992) and Greaves & Stoeckli-Evans (1992) determined the structure of tppz by single-crystal X-ray diffraction methods. tppz is a good bis-tridentate bridging ligand, and numerous complexes with tppz have been prepared, such as that of ruthenium (Hadadzadeh et al., 2006), platinum (Sakai & Kurashima, 2003), mercury (Zhang et al., 2005), copper (Carranza et al., 2004), iron (Laine et al., 1995), nickel (Graf et al., 1997), palladium (Yamada et al., 2000), cadmium (Seyed Sadjadi et al., 2008) and lead (Morsali & Ramazani, 2005). For further investigation of 2,3,5,6-tetra(2-pyridinyl)pyrazine, we synthesis the title complex, (I), and report herein its crystal structure.
In the title compound, (Fig. 1), the ZnII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by three N atoms from one 2,3,5,6-tetra(2-pyridinyl)pyrazine and two terminal Br. The Zn—N and Zn—Br bond lengths and angles (Table 1) are within normal range of [ZnCl2 (tppz)], (Graf et al., 1993) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.
In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2, Fig. 2) may stabilize the structure.