metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(2,3,5,6-tetra-2-pyridyl­pyrazine-κ3N2,N1,N6)zinc(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 11 July 2010; accepted 13 July 2010; online 17 July 2010)

In the title compound, [ZnBr2(C24H16N6)], the ZnII ion is coordinated by the N,N′,N′′-tridentate 2,3,5,6-tetra-2-pyridyl­pyrazine ligand and two bromide ions, generating a distorted ZnN3Br2 trigonal-bipyramidal geometry for the metal ion, with both bromide ions in equatorial sites. The dihedral angles between the pyrazine ring and the coordinated pyridine rings are 13.3 (2) and 24.8 (2)°; those between the pyrazine ring and the uncoordinated pyradine rings are 31.3 (2) and 44.2 (2)°. In the crystal, inversion dimers linked by pairs of weak C—H⋯Br hydrogen bonds occur.

Related literature

For the synthesis of the ligand, see: Goodwin & Lyons (1959[Goodwin, H. A. & Lyons, F. (1959). J. Am. Chem. Soc. 81, 6415-6422.]). For the structure of the free ligand, see Bock et al. (1992[Bock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. 31, 299-301.]); Greaves & Stoeckli-Evans (1992[Greaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269-2271.]). For related structures, see: Alizadeh et al. (2009[Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.]); Carranza et al. (2004[Carranza, J., Sletten, J., Brennan, C., Lloret, F., Canoa, J. & Julve, M. (2004). Dalton Trans. pp. 3997-4005.]); Graf et al. (1993[Graf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239-246.], 1997[Graf, M., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1997). Inorg. Chim. Acta, 257, 89-97.]); Hadadzadeh et al. (2006[Hadadzadeh, H., Yap, G. P. A. & Crutchley, R. J. (2006). Acta Cryst. E62, m2002-m2004.]); Laine et al. (1995[Laine, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156-5165.]); Morsali & Ramazani (2005[Morsali, A. & Ramazani, A. (2005). Z. Anorg. Allg. Chem. 631, 1759-1760.]); Sakai & Kurashima (2003[Sakai, K. & Kurashima, M. (2003). Acta Cryst. E59, m411-m413.]); Seyed Sadjadi et al. (2008[Seyed Sadjadi, M., Ebadi, A., Zare, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1050-m1051.]); Yamada et al. (2000[Yamada, Y., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2000). Bull. Chem. Soc. Jpn, 73, 1843-1844.]); Zhang et al. (2005[Zhang, L., Zhao, X.-H. & Zhao, Y. (2005). Acta Cryst. E61, m1760-m1761.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C24H16N6)]

  • Mr = 613.62

  • Triclinic, [P \overline 1]

  • a = 10.3985 (8) Å

  • b = 10.5378 (8) Å

  • c = 12.3034 (10) Å

  • α = 64.898 (6)°

  • β = 83.187 (6)°

  • γ = 77.901 (6)°

  • V = 1193.05 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.40 mm−1

  • T = 298 K

  • 0.50 × 0.40 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.206, Tmax = 0.369

  • 13823 measured reflections

  • 6412 independent reflections

  • 4954 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.126

  • S = 1.14

  • 6412 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N2 2.151 (3)
Zn1—N6 2.177 (3)
Zn1—N1 2.202 (3)
Zn1—Br1 2.3692 (7)
Zn1—Br2 2.3880 (6)
N2—Zn1—N6 73.75 (10)
N2—Zn1—N1 72.96 (11)
N6—Zn1—N1 146.71 (11)
N2—Zn1—Br1 125.38 (8)
N6—Zn1—Br1 102.12 (9)
N1—Zn1—Br1 97.43 (10)
N2—Zn1—Br2 118.61 (8)
N6—Zn1—Br2 97.55 (9)
N1—Zn1—Br2 97.76 (10)
Br1—Zn1—Br2 115.93 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Br2i 0.93 2.88 3.791 (7) 166
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Goodwin & Lyons (1959) reported the synthesis of 2,3,5,6-tetra(2-pyridinyl)pyrazine (tppz). Bock et al. (1992) and Greaves & Stoeckli-Evans (1992) determined the structure of tppz by single-crystal X-ray diffraction methods. tppz is a good bis-tridentate bridging ligand, and numerous complexes with tppz have been prepared, such as that of ruthenium (Hadadzadeh et al., 2006), platinum (Sakai & Kurashima, 2003), mercury (Zhang et al., 2005), copper (Carranza et al., 2004), iron (Laine et al., 1995), nickel (Graf et al., 1997), palladium (Yamada et al., 2000), cadmium (Seyed Sadjadi et al., 2008) and lead (Morsali & Ramazani, 2005). For further investigation of 2,3,5,6-tetra(2-pyridinyl)pyrazine, we synthesis the title complex, (I), and report herein its crystal structure.

In the title compound, (Fig. 1), the ZnII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by three N atoms from one 2,3,5,6-tetra(2-pyridinyl)pyrazine and two terminal Br. The Zn—N and Zn—Br bond lengths and angles (Table 1) are within normal range of [ZnCl2 (tppz)], (Graf et al., 1993) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.

In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2, Fig. 2) may stabilize the structure.

Related literature top

For the synthesis of the ligand, see: Goodwin & Lyons (1959). For the structure of the free ligand, see Bock et al. (1992); Greaves & Stoeckli-Evans (1992). For related structures, see: Alizadeh et al. (2009); Carranza et al. (2004); Graf et al. (1993, 1997); Hadadzadeh et al. (2006); Laine et al. (1995); Morsali & Ramazani (2005); Sakai & Kurashima (2003); Seyed Sadjadi et al. (2008); Yamada et al. (2000); Zhang et al. (2005).

Experimental top

A solution of 2,3,5,6-tetra(2-pyridinyl)pyrazine (0.40 g, 1.00 mmol) in HCCl3 (20 ml) was added to a solution of ZnBr2 (0.23 g, 1.00 mmol) in methanol (20 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Yellow prisms of (I) were isolated after one week (yield; 0.45 g, 73.3%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Goodwin & Lyons (1959) reported the synthesis of 2,3,5,6-tetra(2-pyridinyl)pyrazine (tppz). Bock et al. (1992) and Greaves & Stoeckli-Evans (1992) determined the structure of tppz by single-crystal X-ray diffraction methods. tppz is a good bis-tridentate bridging ligand, and numerous complexes with tppz have been prepared, such as that of ruthenium (Hadadzadeh et al., 2006), platinum (Sakai & Kurashima, 2003), mercury (Zhang et al., 2005), copper (Carranza et al., 2004), iron (Laine et al., 1995), nickel (Graf et al., 1997), palladium (Yamada et al., 2000), cadmium (Seyed Sadjadi et al., 2008) and lead (Morsali & Ramazani, 2005). For further investigation of 2,3,5,6-tetra(2-pyridinyl)pyrazine, we synthesis the title complex, (I), and report herein its crystal structure.

In the title compound, (Fig. 1), the ZnII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by three N atoms from one 2,3,5,6-tetra(2-pyridinyl)pyrazine and two terminal Br. The Zn—N and Zn—Br bond lengths and angles (Table 1) are within normal range of [ZnCl2 (tppz)], (Graf et al., 1993) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.

In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2, Fig. 2) may stabilize the structure.

For the synthesis of the ligand, see: Goodwin & Lyons (1959). For the structure of the free ligand, see Bock et al. (1992); Greaves & Stoeckli-Evans (1992). For related structures, see: Alizadeh et al. (2009); Carranza et al. (2004); Graf et al. (1993, 1997); Hadadzadeh et al. (2006); Laine et al. (1995); Morsali & Ramazani (2005); Sakai & Kurashima (2003); Seyed Sadjadi et al. (2008); Yamada et al. (2000); Zhang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I).
Dibromido(2,3,5,6-tetra-2-pyridylpyrazine- κ3N2,N1,N6)zinc(II) top
Crystal data top
[ZnBr2(C24H16N6)]Z = 2
Mr = 613.62F(000) = 604
Triclinic, P1Dx = 1.708 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3985 (8) ÅCell parameters from 998 reflections
b = 10.5378 (8) Åθ = 1.8–29.3°
c = 12.3034 (10) ŵ = 4.40 mm1
α = 64.898 (6)°T = 298 K
β = 83.187 (6)°Prism, yellow
γ = 77.901 (6)°0.50 × 0.40 × 0.28 mm
V = 1193.05 (16) Å3
Data collection top
Bruker SMART CCD
diffractometer
6412 independent reflections
Radiation source: fine-focus sealed tube4954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
phi and ω scansθmax = 29.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1414
Tmin = 0.206, Tmax = 0.369k = 1314
13823 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.8386P]
where P = (Fo2 + 2Fc2)/3
6412 reflections(Δ/σ)max = 0.010
298 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[ZnBr2(C24H16N6)]γ = 77.901 (6)°
Mr = 613.62V = 1193.05 (16) Å3
Triclinic, P1Z = 2
a = 10.3985 (8) ÅMo Kα radiation
b = 10.5378 (8) ŵ = 4.40 mm1
c = 12.3034 (10) ÅT = 298 K
α = 64.898 (6)°0.50 × 0.40 × 0.28 mm
β = 83.187 (6)°
Data collection top
Bruker SMART CCD
diffractometer
6412 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4954 reflections with I > 2σ(I)
Tmin = 0.206, Tmax = 0.369Rint = 0.049
13823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.14Δρmax = 0.89 e Å3
6412 reflectionsΔρmin = 0.91 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.69495 (4)0.37649 (4)0.71272 (4)0.03753 (11)
Br20.62972 (5)0.62861 (4)0.64284 (4)0.05470 (13)
Br10.52355 (5)0.24651 (6)0.74414 (5)0.07140 (16)
N51.1123 (3)0.0445 (4)0.5766 (3)0.0452 (7)
N31.1520 (3)0.1584 (3)0.7992 (3)0.0397 (6)
C71.0799 (3)0.2101 (4)0.8729 (3)0.0379 (7)
C200.9186 (3)0.3265 (3)0.5446 (3)0.0352 (7)
C161.3156 (3)0.0461 (4)0.6499 (3)0.0397 (7)
H161.35980.07840.69180.048*
C60.9439 (3)0.2551 (4)0.8580 (3)0.0350 (7)
C171.1801 (3)0.0874 (4)0.6368 (3)0.0363 (7)
N60.7888 (3)0.3729 (3)0.5459 (3)0.0407 (7)
N20.8986 (3)0.2850 (3)0.7503 (2)0.0339 (6)
C81.1517 (4)0.2208 (4)0.9655 (3)0.0423 (8)
C190.9768 (3)0.2574 (4)0.6653 (3)0.0341 (6)
C50.8400 (4)0.2731 (4)0.9463 (3)0.0377 (7)
C181.1009 (3)0.1719 (4)0.6992 (3)0.0353 (7)
N41.1146 (3)0.3429 (4)0.9781 (3)0.0457 (7)
N10.7200 (3)0.3285 (4)0.9022 (3)0.0475 (7)
C131.1800 (4)0.0388 (5)0.5255 (4)0.0499 (9)
H131.13460.06690.48110.060*
C151.3823 (4)0.0435 (4)0.5994 (3)0.0453 (8)
H151.47240.07510.60870.054*
C210.9930 (4)0.3513 (4)0.4381 (3)0.0448 (8)
H211.08370.32100.43880.054*
C30.7577 (5)0.2571 (5)1.1400 (4)0.0567 (11)
H30.77110.23261.22040.068*
C230.7940 (5)0.4678 (5)0.3319 (4)0.0584 (11)
H230.74930.51500.26050.070*
C121.1751 (5)0.3588 (5)1.0604 (4)0.0592 (11)
H121.15160.44391.06960.071*
C10.6194 (5)0.3486 (6)0.9748 (4)0.0646 (13)
H10.53560.38510.94400.078*
C220.9278 (5)0.4225 (5)0.3307 (3)0.0525 (10)
H220.97460.43960.25810.063*
C91.2494 (5)0.1128 (6)1.0304 (5)0.0731 (16)
H91.27490.03021.01740.088*
C240.7276 (4)0.4421 (5)0.4402 (4)0.0548 (10)
H240.63710.47350.44100.066*
C20.6354 (5)0.3171 (6)1.0948 (4)0.0660 (13)
H20.56480.33641.14270.079*
C111.2693 (7)0.2565 (7)1.1313 (6)0.0866 (19)
H111.30670.27061.18930.104*
C101.3082 (7)0.1332 (8)1.1165 (7)0.103 (3)
H101.37370.06291.16350.123*
C141.3150 (4)0.0862 (4)0.5348 (4)0.0486 (9)
H141.35870.14530.49830.058*
C40.8616 (4)0.2330 (5)1.0660 (3)0.0488 (9)
H40.94500.19031.09640.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03347 (19)0.0393 (2)0.0397 (2)0.00120 (15)0.00453 (14)0.01878 (17)
Br20.0683 (3)0.0393 (2)0.0545 (2)0.00334 (18)0.00494 (19)0.02253 (18)
Br10.0635 (3)0.0628 (3)0.0887 (4)0.0252 (2)0.0112 (2)0.0232 (3)
N50.0386 (15)0.0507 (18)0.0572 (19)0.0007 (13)0.0060 (13)0.0352 (16)
N30.0376 (14)0.0409 (16)0.0463 (16)0.0017 (12)0.0089 (12)0.0254 (13)
C70.0416 (17)0.0347 (16)0.0412 (17)0.0010 (13)0.0091 (14)0.0208 (14)
C200.0408 (17)0.0304 (15)0.0355 (16)0.0001 (13)0.0045 (13)0.0167 (13)
C160.0341 (16)0.0428 (19)0.0438 (18)0.0068 (14)0.0001 (13)0.0196 (15)
C60.0415 (17)0.0304 (15)0.0329 (15)0.0010 (13)0.0051 (12)0.0143 (13)
C170.0326 (15)0.0370 (17)0.0432 (17)0.0034 (13)0.0016 (13)0.0213 (14)
N60.0410 (15)0.0462 (17)0.0352 (14)0.0037 (13)0.0065 (11)0.0209 (13)
N20.0347 (13)0.0361 (14)0.0325 (13)0.0015 (11)0.0033 (10)0.0171 (11)
C80.0427 (18)0.046 (2)0.0423 (18)0.0025 (15)0.0101 (14)0.0226 (16)
C190.0357 (15)0.0329 (16)0.0375 (16)0.0008 (12)0.0026 (12)0.0201 (13)
C50.0475 (18)0.0317 (16)0.0321 (15)0.0049 (14)0.0008 (13)0.0124 (13)
C180.0331 (15)0.0352 (16)0.0409 (17)0.0011 (13)0.0040 (12)0.0202 (14)
N40.0570 (19)0.0462 (18)0.0403 (16)0.0087 (15)0.0024 (13)0.0240 (14)
N10.0447 (17)0.057 (2)0.0392 (16)0.0019 (14)0.0025 (13)0.0222 (15)
C130.054 (2)0.054 (2)0.056 (2)0.0044 (18)0.0046 (17)0.037 (2)
C150.0332 (16)0.048 (2)0.048 (2)0.0018 (15)0.0086 (14)0.0184 (17)
C210.048 (2)0.044 (2)0.0414 (18)0.0037 (16)0.0009 (15)0.0192 (16)
C30.073 (3)0.061 (3)0.0342 (18)0.024 (2)0.0111 (18)0.0161 (18)
C230.078 (3)0.055 (3)0.0374 (19)0.002 (2)0.0141 (19)0.0172 (18)
C120.077 (3)0.063 (3)0.054 (2)0.021 (2)0.003 (2)0.035 (2)
C10.048 (2)0.087 (4)0.051 (2)0.005 (2)0.0068 (18)0.030 (2)
C220.071 (3)0.051 (2)0.0328 (18)0.007 (2)0.0037 (17)0.0168 (16)
C90.077 (3)0.065 (3)0.089 (4)0.025 (3)0.046 (3)0.049 (3)
C240.052 (2)0.063 (3)0.045 (2)0.0123 (19)0.0168 (17)0.0246 (19)
C20.066 (3)0.082 (3)0.046 (2)0.012 (3)0.020 (2)0.028 (2)
C110.105 (4)0.097 (4)0.082 (4)0.007 (4)0.044 (3)0.054 (3)
C100.110 (5)0.094 (5)0.113 (5)0.028 (4)0.079 (4)0.053 (4)
C140.053 (2)0.047 (2)0.048 (2)0.0031 (17)0.0114 (16)0.0272 (17)
C40.058 (2)0.056 (2)0.0307 (17)0.0159 (19)0.0017 (15)0.0132 (16)
Geometric parameters (Å, º) top
Zn1—N22.151 (3)N1—C11.335 (5)
Zn1—N62.177 (3)C13—C141.388 (6)
Zn1—N12.202 (3)C13—H130.9300
Zn1—Br12.3692 (7)C15—C141.376 (6)
Zn1—Br22.3880 (6)C15—H150.9300
N5—C131.330 (5)C21—C221.388 (6)
N5—C171.339 (4)C21—H210.9300
N3—C71.330 (4)C3—C21.363 (7)
N3—C181.339 (4)C3—C41.381 (6)
C7—C61.403 (5)C3—H30.9300
C7—C81.487 (5)C23—C241.372 (6)
C20—N61.336 (4)C23—C221.372 (7)
C20—C211.392 (5)C23—H230.9300
C20—C191.488 (4)C12—C111.357 (8)
C16—C151.371 (5)C12—H120.9300
C16—C171.392 (5)C1—C21.392 (6)
C16—H160.9300C1—H10.9300
C6—N21.344 (4)C22—H220.9300
C6—C51.481 (5)C9—C101.394 (7)
C17—C181.477 (4)C9—H90.9300
N6—C241.351 (5)C24—H240.9300
N2—C191.341 (4)C2—H20.9300
C8—N41.333 (5)C11—C101.359 (9)
C8—C91.379 (6)C11—H110.9300
C19—C181.404 (4)C10—H100.9300
C5—N11.334 (5)C14—H140.9300
C5—C41.382 (5)C4—H40.9300
N4—C121.338 (5)
N2—Zn1—N673.75 (10)C5—N1—Zn1118.2 (2)
N2—Zn1—N172.96 (11)C1—N1—Zn1122.6 (3)
N6—Zn1—N1146.71 (11)N5—C13—C14123.5 (4)
N2—Zn1—Br1125.38 (8)N5—C13—H13118.3
N6—Zn1—Br1102.12 (9)C14—C13—H13118.3
N1—Zn1—Br197.43 (10)C16—C15—C14119.5 (3)
N2—Zn1—Br2118.61 (8)C16—C15—H15120.2
N6—Zn1—Br297.55 (9)C14—C15—H15120.2
N1—Zn1—Br297.76 (10)C22—C21—C20118.0 (4)
Br1—Zn1—Br2115.93 (2)C22—C21—H21121.0
C13—N5—C17117.3 (3)C20—C21—H21121.0
C7—N3—C18120.4 (3)C2—C3—C4119.8 (4)
N3—C7—C6119.5 (3)C2—C3—H3120.1
N3—C7—C8116.7 (3)C4—C3—H3120.1
C6—C7—C8123.8 (3)C24—C23—C22118.8 (4)
N6—C20—C21122.2 (3)C24—C23—H23120.6
N6—C20—C19114.2 (3)C22—C23—H23120.6
C21—C20—C19123.5 (3)N4—C12—C11123.1 (4)
C15—C16—C17118.4 (3)N4—C12—H12118.4
C15—C16—H16120.8C11—C12—H12118.4
C17—C16—H16120.8N1—C1—C2122.4 (4)
N2—C6—C7117.2 (3)N1—C1—H1118.8
N2—C6—C5114.1 (3)C2—C1—H1118.8
C7—C6—C5128.7 (3)C23—C22—C21119.9 (4)
N5—C17—C16123.0 (3)C23—C22—H22120.0
N5—C17—C18115.8 (3)C21—C22—H22120.0
C16—C17—C18120.9 (3)C8—C9—C10116.9 (5)
C20—N6—C24118.6 (3)C8—C9—H9121.6
C20—N6—Zn1117.8 (2)C10—C9—H9121.6
C24—N6—Zn1122.1 (3)N6—C24—C23122.4 (4)
C19—N2—C6121.7 (3)N6—C24—H24118.8
C19—N2—Zn1118.5 (2)C23—C24—H24118.8
C6—N2—Zn1119.7 (2)C3—C2—C1118.0 (4)
N4—C8—C9123.8 (4)C3—C2—H2121.0
N4—C8—C7114.3 (3)C1—C2—H2121.0
C9—C8—C7121.9 (4)C12—C11—C10119.3 (4)
N2—C19—C18117.6 (3)C12—C11—H11120.3
N2—C19—C20113.7 (3)C10—C11—H11120.3
C18—C19—C20128.6 (3)C11—C10—C9119.6 (5)
N1—C5—C4121.3 (3)C11—C10—H10120.2
N1—C5—C6114.6 (3)C9—C10—H10120.2
C4—C5—C6124.1 (3)C15—C14—C13118.2 (3)
N3—C18—C19118.8 (3)C15—C14—H14120.9
N3—C18—C17115.5 (3)C13—C14—H14120.9
C19—C18—C17125.6 (3)C3—C4—C5119.1 (4)
C8—N4—C12117.2 (4)C3—C4—H4120.4
C5—N1—C1119.2 (3)C5—C4—H4120.4
C18—N3—C7—C611.8 (5)C7—C6—C5—C46.9 (6)
C18—N3—C7—C8166.3 (3)C7—N3—C18—C198.3 (5)
N3—C7—C6—N220.0 (5)C7—N3—C18—C17168.8 (3)
C8—C7—C6—N2157.9 (3)N2—C19—C18—N320.2 (5)
N3—C7—C6—C5159.1 (4)C20—C19—C18—N3158.3 (3)
C8—C7—C6—C522.9 (6)N2—C19—C18—C17156.6 (3)
C13—N5—C17—C161.5 (6)C20—C19—C18—C1724.9 (6)
C13—N5—C17—C18176.1 (4)N5—C17—C18—N3149.6 (3)
C15—C16—C17—N50.5 (6)C16—C17—C18—N325.1 (5)
C15—C16—C17—C18173.9 (3)N5—C17—C18—C1927.2 (5)
C21—C20—N6—C242.2 (6)C16—C17—C18—C19158.1 (4)
C19—C20—N6—C24177.5 (3)C9—C8—N4—C121.2 (7)
C21—C20—N6—Zn1164.1 (3)C7—C8—N4—C12179.7 (4)
C19—C20—N6—Zn111.1 (4)C4—C5—N1—C11.6 (6)
N2—Zn1—N6—C203.2 (3)C6—C5—N1—C1179.8 (4)
N1—Zn1—N6—C202.2 (4)C4—C5—N1—Zn1176.4 (3)
Br1—Zn1—N6—C20126.8 (3)C6—C5—N1—Zn11.9 (4)
Br2—Zn1—N6—C20114.5 (3)N2—Zn1—N1—C51.4 (3)
N2—Zn1—N6—C24169.0 (4)N6—Zn1—N1—C50.4 (4)
N1—Zn1—N6—C24168.1 (3)Br1—Zn1—N1—C5126.2 (3)
Br1—Zn1—N6—C2467.3 (3)Br2—Zn1—N1—C5116.2 (3)
Br2—Zn1—N6—C2451.3 (3)N2—Zn1—N1—C1176.5 (4)
C7—C6—N2—C197.8 (5)N6—Zn1—N1—C1177.5 (4)
C5—C6—N2—C19171.5 (3)Br1—Zn1—N1—C151.7 (4)
C7—C6—N2—Zn1173.3 (2)Br2—Zn1—N1—C165.9 (4)
C5—C6—N2—Zn17.5 (4)C17—N5—C13—C142.1 (7)
N6—Zn1—N2—C196.5 (3)C17—C16—C15—C141.9 (6)
N1—Zn1—N2—C19174.1 (3)N6—C20—C21—C222.2 (6)
Br1—Zn1—N2—C1987.0 (3)C19—C20—C21—C22177.1 (4)
Br2—Zn1—N2—C1996.3 (2)C8—N4—C12—C111.1 (7)
N6—Zn1—N2—C6174.5 (3)C5—N1—C1—C21.6 (8)
N1—Zn1—N2—C64.9 (3)Zn1—N1—C1—C2179.5 (4)
Br1—Zn1—N2—C692.0 (3)C24—C23—C22—C210.5 (7)
Br2—Zn1—N2—C684.7 (3)C20—C21—C22—C230.8 (6)
N3—C7—C8—N4135.7 (4)N4—C8—C9—C102.2 (9)
C6—C7—C8—N442.3 (5)C7—C8—C9—C10178.8 (6)
N3—C7—C8—C943.4 (6)C20—N6—C24—C230.8 (7)
C6—C7—C8—C9138.6 (5)Zn1—N6—C24—C23164.9 (4)
C6—N2—C19—C1811.8 (5)C22—C23—C24—N60.5 (7)
Zn1—N2—C19—C18167.2 (2)C4—C3—C2—C11.6 (8)
C6—N2—C19—C20167.0 (3)N1—C1—C2—C33.2 (8)
Zn1—N2—C19—C2014.1 (4)N4—C12—C11—C102.2 (10)
N6—C20—C19—N216.2 (4)C12—C11—C10—C91.1 (12)
C21—C20—C19—N2159.0 (3)C8—C9—C10—C111.0 (12)
N6—C20—C19—C18165.2 (4)C16—C15—C14—C131.4 (6)
C21—C20—C19—C1819.6 (6)N5—C13—C14—C150.7 (7)
N2—C6—C5—N15.9 (5)C2—C3—C4—C51.3 (7)
C7—C6—C5—N1174.9 (4)N1—C5—C4—C33.1 (6)
N2—C6—C5—C4172.3 (4)C6—C5—C4—C3178.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Br2i0.932.883.791 (7)166
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[ZnBr2(C24H16N6)]
Mr613.62
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.3985 (8), 10.5378 (8), 12.3034 (10)
α, β, γ (°)64.898 (6), 83.187 (6), 77.901 (6)
V3)1193.05 (16)
Z2
Radiation typeMo Kα
µ (mm1)4.40
Crystal size (mm)0.50 × 0.40 × 0.28
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.206, 0.369
No. of measured, independent and
observed [I > 2σ(I)] reflections
13823, 6412, 4954
Rint0.049
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.126, 1.14
No. of reflections6412
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.91

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—N22.151 (3)Zn1—Br12.3692 (7)
Zn1—N62.177 (3)Zn1—Br22.3880 (6)
Zn1—N12.202 (3)
N2—Zn1—N673.75 (10)N1—Zn1—Br197.43 (10)
N2—Zn1—N172.96 (11)N2—Zn1—Br2118.61 (8)
N6—Zn1—N1146.71 (11)N6—Zn1—Br297.55 (9)
N2—Zn1—Br1125.38 (8)N1—Zn1—Br297.76 (10)
N6—Zn1—Br1102.12 (9)Br1—Zn1—Br2115.93 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Br2i0.932.883.791 (7)166
Symmetry code: (i) x+2, y+1, z+2.
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAlizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBock, H., Vaupel, T., Näther, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. 31, 299–301.  CSD CrossRef Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarranza, J., Sletten, J., Brennan, C., Lloret, F., Canoa, J. & Julve, M. (2004). Dalton Trans. pp. 3997–4005.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoodwin, H. A. & Lyons, F. (1959). J. Am. Chem. Soc. 81, 6415–6422.  CrossRef CAS Web of Science Google Scholar
First citationGraf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239–246.  CSD CrossRef CAS Web of Science Google Scholar
First citationGraf, M., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1997). Inorg. Chim. Acta, 257, 89–97.  CSD CrossRef CAS Web of Science Google Scholar
First citationGreaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269–2271.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHadadzadeh, H., Yap, G. P. A. & Crutchley, R. J. (2006). Acta Cryst. E62, m2002–m2004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLaine, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156–5165.  CrossRef CAS Web of Science Google Scholar
First citationMorsali, A. & Ramazani, A. (2005). Z. Anorg. Allg. Chem. 631, 1759–1760.  Web of Science CSD CrossRef CAS Google Scholar
First citationSakai, K. & Kurashima, M. (2003). Acta Cryst. E59, m411–m413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeyed Sadjadi, M., Ebadi, A., Zare, K., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1050–m1051.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamada, Y., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2000). Bull. Chem. Soc. Jpn, 73, 1843–1844.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, L., Zhao, X.-H. & Zhao, Y. (2005). Acta Cryst. E61, m1760–m1761.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds