organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,4-Di­methyl­benzyl­­idene)furan-2-carbohydrazide

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: liyufeng8111@163.com

(Received 12 July 2010; accepted 14 July 2010; online 17 July 2010)

The title compound, C14H14N2O2, was prepared by the reaction of 3,4-dimethyl­benzaldehyde and furan-2-carbohydrazide. The dihedral angle between the aromatic rings is 35.48 (14)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(4) chains propagating in [010].

Related literature

For a related structure, see: Li & Jian (2010[Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1720.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N2O2

  • Mr = 242.27

  • Orthorhombic, P b c a

  • a = 17.655 (3) Å

  • b = 7.6304 (15) Å

  • c = 19.020 (4) Å

  • V = 2562.3 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 21744 measured reflections

  • 2921 independent reflections

  • 1563 reflections with I > 2σ(I)

  • Rint = 0.127

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.177

  • S = 0.90

  • 2921 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.06 2.921 (3) 174
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For a related structure, see: Li & Jian (2010).

Experimental top

A mixture of 3,4-dimethylbenzaldehyde (0.1 mol), and furan-2-carbohydrazide (0.1 mol) was stirred in refluxing ethanol (20 mL) for 2 h to afford the title compound (0.090 mol, yield 90%). olourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances=0.97 Å, and with Uiso=1.2–1.5Ueq.

Structure description top

For a related structure, see: Li & Jian (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
N'-(3,4-Dimethylbenzylidene)furan-2-carbohydrazide top
Crystal data top
C14H14N2O2F(000) = 1024
Mr = 242.27Dx = 1.256 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1563 reflections
a = 17.655 (3) Åθ = 3.1–27.5°
b = 7.6304 (15) ŵ = 0.09 mm1
c = 19.020 (4) ÅT = 293 K
V = 2562.3 (9) Å3Block, colorless
Z = 80.22 × 0.21 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
1563 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.127
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
phi and ω scansh = 2222
21744 measured reflectionsk = 99
2921 independent reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2921 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H14N2O2V = 2562.3 (9) Å3
Mr = 242.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.655 (3) ŵ = 0.09 mm1
b = 7.6304 (15) ÅT = 293 K
c = 19.020 (4) Å0.22 × 0.21 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
1563 reflections with I > 2σ(I)
21744 measured reflectionsRint = 0.127
2921 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 0.90Δρmax = 0.15 e Å3
2921 reflectionsΔρmin = 0.21 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.34251 (10)0.2908 (2)0.40087 (10)0.0493 (5)
N20.23842 (12)0.1209 (2)0.38067 (10)0.0404 (5)
H2A0.21470.02510.38970.048*
N10.20989 (11)0.2401 (3)0.33290 (10)0.0391 (5)
C10.32632 (14)0.0301 (3)0.46664 (13)0.0393 (6)
C60.15127 (14)0.1915 (3)0.29934 (12)0.0412 (6)
H6A0.13080.08130.30790.049*
C50.30454 (14)0.1586 (3)0.41282 (12)0.0384 (6)
C70.11563 (14)0.3062 (3)0.24746 (12)0.0397 (6)
C90.11430 (15)0.5784 (3)0.18082 (13)0.0456 (7)
C40.40945 (19)0.1050 (4)0.53228 (14)0.0580 (8)
H4A0.45540.14250.55080.070*
C80.14661 (15)0.4693 (3)0.23064 (13)0.0439 (7)
H8A0.19030.50580.25360.053*
C20.28720 (16)0.0713 (3)0.51175 (13)0.0469 (7)
H2B0.23480.08190.51470.056*
C120.04994 (14)0.2541 (3)0.21381 (12)0.0441 (7)
H12A0.02770.14720.22490.053*
C110.01738 (15)0.3619 (4)0.16343 (13)0.0475 (7)
H11A0.02650.32520.14070.057*
C30.34193 (18)0.1595 (4)0.55411 (14)0.0532 (7)
H3A0.33230.23940.58990.064*
C140.1495 (2)0.7546 (4)0.16590 (19)0.0728 (10)
H14A0.19400.76910.19440.109*
H14B0.11380.84550.17670.109*
H14C0.16320.76140.11710.109*
C130.01177 (19)0.6353 (4)0.09024 (15)0.0709 (9)
H13A0.03250.57710.07240.106*
H13B0.04700.65430.05250.106*
H13C0.00250.74590.11030.106*
O10.40208 (10)0.0140 (3)0.47873 (9)0.0542 (6)
C100.04847 (15)0.5226 (4)0.14611 (12)0.0459 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0437 (11)0.0356 (10)0.0687 (12)0.0029 (9)0.0024 (8)0.0115 (9)
N20.0499 (14)0.0268 (11)0.0444 (12)0.0013 (10)0.0043 (10)0.0097 (9)
N10.0449 (13)0.0310 (12)0.0414 (12)0.0036 (10)0.0041 (10)0.0055 (9)
C10.0420 (15)0.0323 (14)0.0437 (14)0.0024 (12)0.0047 (11)0.0028 (10)
C60.0483 (16)0.0307 (14)0.0446 (15)0.0021 (12)0.0013 (12)0.0039 (11)
C50.0420 (15)0.0307 (14)0.0424 (14)0.0062 (12)0.0032 (11)0.0005 (11)
C70.0424 (15)0.0371 (15)0.0395 (13)0.0048 (11)0.0014 (11)0.0012 (11)
C90.0524 (17)0.0404 (16)0.0439 (14)0.0035 (13)0.0026 (12)0.0060 (11)
C40.064 (2)0.059 (2)0.0503 (16)0.0179 (17)0.0090 (14)0.0095 (14)
C80.0466 (16)0.0403 (16)0.0448 (15)0.0000 (13)0.0052 (12)0.0042 (11)
C20.0533 (17)0.0425 (16)0.0450 (15)0.0056 (13)0.0088 (12)0.0069 (12)
C120.0444 (16)0.0435 (16)0.0444 (15)0.0036 (13)0.0012 (12)0.0010 (11)
C110.0379 (15)0.0606 (19)0.0440 (14)0.0055 (14)0.0016 (11)0.0060 (13)
C30.068 (2)0.0452 (17)0.0461 (16)0.0005 (15)0.0108 (14)0.0060 (13)
C140.084 (2)0.050 (2)0.085 (2)0.0049 (18)0.0098 (18)0.0256 (16)
C130.071 (2)0.085 (2)0.0564 (17)0.0207 (19)0.0098 (16)0.0175 (16)
O10.0446 (11)0.0575 (13)0.0604 (12)0.0110 (10)0.0020 (9)0.0143 (9)
C100.0486 (16)0.0547 (18)0.0345 (13)0.0138 (14)0.0026 (11)0.0035 (12)
Geometric parameters (Å, º) top
O2—C51.232 (3)C4—H4A0.9300
N2—C51.349 (3)C8—H8A0.9300
N2—N11.381 (3)C2—C31.427 (4)
N2—H2A0.8600C2—H2B0.9300
N1—C61.271 (3)C12—C111.388 (4)
C1—C21.346 (4)C12—H12A0.9300
C1—O11.363 (3)C11—C101.383 (4)
C1—C51.469 (3)C11—H11A0.9300
C6—C71.462 (3)C3—H3A0.9300
C6—H6A0.9300C14—H14A0.9600
C7—C121.383 (3)C14—H14B0.9600
C7—C81.396 (4)C14—H14C0.9600
C9—C81.384 (3)C13—C101.513 (4)
C9—C101.403 (4)C13—H13A0.9600
C9—C141.508 (4)C13—H13B0.9600
C4—C31.329 (4)C13—H13C0.9600
C4—O11.371 (3)
C5—N2—N1118.3 (2)C3—C2—H2B126.8
C5—N2—H2A120.9C7—C12—C11119.8 (2)
N1—N2—H2A120.9C7—C12—H12A120.1
C6—N1—N2115.8 (2)C11—C12—H12A120.1
C2—C1—O1110.1 (2)C10—C11—C12121.7 (3)
C2—C1—C5133.9 (2)C10—C11—H11A119.1
O1—C1—C5115.8 (2)C12—C11—H11A119.1
N1—C6—C7121.0 (2)C4—C3—C2106.5 (3)
N1—C6—H6A119.5C4—C3—H3A126.8
C7—C6—H6A119.5C2—C3—H3A126.8
O2—C5—N2124.2 (2)C9—C14—H14A109.5
O2—C5—C1122.2 (2)C9—C14—H14B109.5
N2—C5—C1113.6 (2)H14A—C14—H14B109.5
C12—C7—C8118.6 (2)C9—C14—H14C109.5
C12—C7—C6120.1 (2)H14A—C14—H14C109.5
C8—C7—C6121.3 (2)H14B—C14—H14C109.5
C8—C9—C10118.7 (2)C10—C13—H13A109.5
C8—C9—C14119.7 (3)C10—C13—H13B109.5
C10—C9—C14121.6 (2)H13A—C13—H13B109.5
C3—C4—O1110.8 (3)C10—C13—H13C109.5
C3—C4—H4A124.6H13A—C13—H13C109.5
O1—C4—H4A124.6H13B—C13—H13C109.5
C9—C8—C7122.1 (2)C1—O1—C4106.2 (2)
C9—C8—H8A118.9C11—C10—C9119.1 (2)
C7—C8—H8A118.9C11—C10—C13120.1 (3)
C1—C2—C3106.5 (3)C9—C10—C13120.9 (3)
C1—C2—H2B126.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.062.921 (3)174
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC14H14N2O2
Mr242.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)17.655 (3), 7.6304 (15), 19.020 (4)
V3)2562.3 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21744, 2921, 1563
Rint0.127
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.177, 0.90
No. of reflections2921
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.062.921 (3)174
Symmetry code: (i) x+1/2, y1/2, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds