metal-organic compounds
Bis(2,2′-bi-1H-imidazole)copper(II) bis(1,1,3,3-tetracyano-2-ethoxypropenide)
aFaculté des Sciences, Département de Chimie, Université Ferhat Abbas de Sétif, 19000 Sétif, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri Constantine, 25000 Constantine, Algeria, and cLaboratoire des Matériaux Inorganiques, UMR CNRS 6002, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: fat_setifi@yahoo.fr
In the title compound, [Cu(C6H6N4)2](C9H5N4O)2, the Cu2+ ion (site symmetry ) is coordinated by two N,N′-bidentate 2,2′-biimidazole (H2biim) ligands, generating a square-planar CuN4 geometry. The dihedral angle between the aromatic rings in the ligand is 0.70 (9)°. In the polynitrile 1,1,3,3-tetracyano-2-ethoxypropenide (tcnoet) anion, the C—N, C—C and C—O bond lengths indicate extensive electronic delocalization. An alternative description for the metal-ion geometry is an extremely distorted CuN6 octahedron, with two N-bonded tcnoet anions completing the coordination. In the crystal, the components are linked by N—H⋯N and C—H⋯N interactions.
Related literature
For the structures and properties of related compounds containing polynitrile anions, see: Atmani et al. (2008); Batten & Murray (2003); Bencini & Mani (1988); Benmansour et al. (2007); Cancela et al. (2001); Cromer et al. (1987); Jones et al. (2006); Setifi et al. (2006, 2007); Thétiot et al. (2003); Triki et al. (2005); Yuste et al. (2007). For the synthesis of the H2biim and Ktcnoet ligands, see: Bernarducci et al. (1983) and Middleton & Engelhardt (1958), respecively.
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810029752/hb5555sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810029752/hb5555Isup2.hkl
H2biim and Ktcnoet ligands were synthesized with the published procedures respectively (Bernarducci et al., 1983; Middleton et al., 1958). To a methanolic suspension of H2biim (0.025 g, 5 ml) was added drowpize a solution of CuCl2.2H2O (0.032 g, 5 ml) resulting in a green solution. Ktcnoet was dissolved in water (0.084 g, 10 ml) and was added quickly to the former solution. The final solution was filtred and allowed to evaporate for a week, giving green blocks of (I). X band EPR spectrum from a polycristalline powdred sample of (I) recorded at room temperature exhibits a well defined axial signal with gparallel = 2.27 > gperpendicular = 2.07 consistent with a Cu(II) monomer.
All H atoms were placed in geometrical positions and refined using a riding model, with C—H distances in the range 0.95–0.99 Å and their displacement parameters were set to Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq (C) for all others, while N—H bond lengths were fixed to 0.88 Å with Uiso(H) = 1.2Ueq(carrier N atom).
Polynitrile anions are known to be interesting ligands in coordination chemistry because of their high electronic delocalization and their cyano groups juxtaposed in such a way that they cannot all coordinate to the same metal ion. They adopt different bridging or nonbridging coordination modes wich afford discrete or extended molecular architectures (Atmani et al., 2008; Benmansour et al., 2007; Triki et al., 2005; Thétiot et al., 2003). Following these structural and electronic characteristics, several series of binary systems "polynitrile/M(II)" with only polynitrile bridges or ternary systems "polynitrile/co-ligand/M(II)" (M(II), transition metal ion) involving an additional bridging or chelate co-ligand have been reported. Most of them display one-dimensional, two-dimensional and three-dimensional polymeric assemblies, in which the polynitrile anions act as µ2-, µ3- and/or µ4- bridging ligands and exhibit unusual magnetic properties (Batten & Murray, 2003; Jones et al., 2006; Yuste et al., 2007; Setifi et al., 2006; Setifi et al., 2007).
In our case we have chosen to investigate the ternary system including 2,2'-biimidazole (H2bim) selected as co-ligand because it is bifunctional: the imino moieties can be coordinated to a metal ion acting as the first coordination sphere and the amino N—H and C—H groups, as the second coordination sphere, may donate multifold hydrogen bonds to tcnoet anions, extending the structure into a high-dimensional network. In this contribution we report the synthesis and the
of a new copper(II) compound with neutral 2,2'-biimidazole, Cu(H2biim)2] (tcnoet)2, (I).The crystal of (I) is built of [Cu(H2biim)2]2+ cations and (tcnoet)- anions interconnected by hydrogen bonds. As shown in Fig. 1, the Cu(II) ion has a square coordination geometry, it locates on a symmetry inversion center and relates four nitrogen atoms of two symmetry-related 2,2'-biimidazole molecules which bind bidentately arranged trans to each other in the square plane [Cu1—N1 = 1.973 (2) Å and Cu1—N2 = 2.040 (2) Å] and interacts with two nitrogen atoms belonging to tcnoet ligands occupying the apical coordination sites [Cu1—N7 = 2.821 (3) Å]. Selected interatomic distances and angles are listed in Table 1.
The Cu—N bond distances to H2biim and inter-ring C1—C2 bond length in (I) present no unusual features and are consistent with the previous report in [Cu(H2biim)2]Cl2 [Bencini & Mani, 1988], [Cu(Me4biim)ONO2]Cl [Bernarducci et al., 1983] and [VOCl(H2Biim)2]Cl [Cancela et al., 2001] complexes. In our case the principal coordination is planar and the Cu atom lies within that plane. Both imidazole rings are planar, with no atoms deviating by more than 0.007 A° from the least-squares plane. The two rings of H2biim are nearly coplanar, making an angle of 0.70 (9)°. This value compares well with that found in the mononuclear copper(II) species [Cu(H2biim)2]2+ which are in a strictly planar environment (Bencini & Mani, 1988) and that observed in the free H2biim molecule (Cromer et al., 1987), but it is smaller than that found for the mononuclear oxovanadium(IV) species [VOCl(H2biim)2]Cl (Cancela et al., 2001).
[Cu(H2biim)2](tcnoet)2 units are connected to each other via hydrogen bonds N—H···N resulting in a one-dimensional chains as shown in Fig. 2. Furthermore these chains are maintained through van der Waals interactions on the (ab) plane and connect each other via C—H···N hydrogen bonds into a two-dimensional network (Fig. 3). Interestingly, each tcnoet- anion help to sustain the one-dimensional assembly and at the same time the final two-dimensional array.
In this complex, the three central C atoms (C11, C12 and C13) of the anionic ligand present an sp2 ═C double bond (1.340 A°) and close to those of benzene and (ii) the C11—O1 bond distance 1.352 A° is much shorter than tne normal C—O single bond, suggesting that the two central and the C11—O1 bond present a partial double character.
as indicated by the sum of the three angles around them (359.98° or 360.0°). Two additional facts support the idea of electron delocalization over the three central C atoms: (i) the six central C—C bond distances (1.389 A° -1.428 A°) are longer than a normal CFor the structures and properties of related compounds containing polynitrile anions, see: Atmani et al. (2008); Batten & Murray (2003); Bencini & Mani (1988); Benmansour et al. (2007); Cancela et al. (2001); Cromer et al. (1987); Jones et al. (2006); Setifi et al. (2006, 2007); Thétiot et al. (2003); Triki et al. (2005); Yuste et al. (2007). For the synthesis of the H2biim and Ktcnoet ligands, see: Bernarducci et al. (1983) and Middleton & Engelhardt (1958), respecively.
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell
CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).[Cu(C6H6N4)2](C9H5N4O)2 | F(000) = 718 |
Mr = 702.18 | Dx = 1.503 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3092 reflections |
a = 8.1001 (8) Å | θ = 2.8–31.5° |
b = 26.1834 (11) Å | µ = 0.76 mm−1 |
c = 8.2185 (7) Å | T = 170 K |
β = 117.086 (11)° | Block, green |
V = 1551.9 (2) Å3 | 0.40 × 0.30 × 0.20 mm |
Z = 2 |
Oxford Diffraction Xcalibur CCD diffractometer | 3002 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1854 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 8.3622 pixels mm-1 | θmax = 26.0°, θmin = 2.8° |
ω and φ scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −30→32 |
Tmin = 0.750, Tmax = 0.862 | l = −10→9 |
8646 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0371P)2] where P = (Fo2 + 2Fc2)/3 |
3002 reflections | (Δ/σ)max < 0.001 |
223 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
[Cu(C6H6N4)2](C9H5N4O)2 | V = 1551.9 (2) Å3 |
Mr = 702.18 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.1001 (8) Å | µ = 0.76 mm−1 |
b = 26.1834 (11) Å | T = 170 K |
c = 8.2185 (7) Å | 0.40 × 0.30 × 0.20 mm |
β = 117.086 (11)° |
Oxford Diffraction Xcalibur CCD diffractometer | 3002 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 1854 reflections with I > 2σ(I) |
Tmin = 0.750, Tmax = 0.862 | Rint = 0.037 |
8646 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.38 e Å−3 |
3002 reflections | Δρmin = −0.28 e Å−3 |
223 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.02739 (14) | |
O1 | 0.5765 (2) | 0.72753 (6) | 0.7896 (2) | 0.0279 (4) | |
N1 | 0.3433 (3) | 0.55852 (7) | 0.3669 (3) | 0.0270 (5) | |
N2 | 0.3432 (3) | 0.50383 (7) | 0.6359 (2) | 0.0250 (4) | |
N3 | 0.1123 (3) | 0.54298 (7) | 0.6550 (3) | 0.0276 (5) | |
H3 | 0.0198 | 0.5642 | 0.6311 | 0.033* | |
N4 | 0.1107 (3) | 0.60926 (7) | 0.3218 (3) | 0.0301 (5) | |
H4 | 0.0189 | 0.6235 | 0.3346 | 0.036* | |
N7 | 0.7829 (4) | 0.55883 (8) | 0.7720 (3) | 0.0473 (7) | |
N8 | 0.3624 (4) | 0.63047 (9) | 0.8836 (3) | 0.0523 (7) | |
N9 | 0.8650 (3) | 0.63404 (8) | 0.4902 (3) | 0.0431 (6) | |
N10 | 0.9040 (3) | 0.79164 (8) | 0.6867 (3) | 0.0388 (6) | |
C1 | 0.2179 (3) | 0.57061 (8) | 0.4219 (3) | 0.0240 (6) | |
C2 | 0.2177 (3) | 0.54105 (8) | 0.5686 (3) | 0.0235 (6) | |
C3 | 0.3131 (4) | 0.59086 (9) | 0.2255 (4) | 0.0362 (7) | |
H3A | 0.3820 | 0.5912 | 0.1579 | 0.043* | |
C4 | 0.1704 (4) | 0.62228 (9) | 0.1967 (4) | 0.0365 (7) | |
H4A | 0.1211 | 0.6484 | 0.1069 | 0.044* | |
C5 | 0.3157 (4) | 0.48229 (9) | 0.7740 (3) | 0.0306 (6) | |
H5 | 0.3858 | 0.4548 | 0.8490 | 0.037* | |
C6 | 0.1746 (3) | 0.50594 (9) | 0.7877 (3) | 0.0306 (6) | |
H6 | 0.1278 | 0.4985 | 0.8721 | 0.037* | |
C7 | 0.7098 (4) | 0.59593 (10) | 0.7744 (3) | 0.0312 (7) | |
C8 | 0.4741 (4) | 0.63526 (9) | 0.8363 (3) | 0.0335 (7) | |
C9 | 0.8243 (4) | 0.66396 (10) | 0.5669 (4) | 0.0297 (6) | |
C10 | 0.8449 (3) | 0.75144 (10) | 0.6727 (3) | 0.0286 (6) | |
C11 | 0.6541 (3) | 0.68945 (8) | 0.7366 (3) | 0.0234 (6) | |
C12 | 0.6126 (3) | 0.64089 (8) | 0.7755 (3) | 0.0255 (6) | |
C13 | 0.7714 (3) | 0.70132 (8) | 0.6596 (3) | 0.0241 (6) | |
C14 | 0.4716 (3) | 0.76732 (9) | 0.6587 (3) | 0.0303 (6) | |
H14A | 0.5344 | 0.7762 | 0.5836 | 0.036* | |
H14B | 0.4669 | 0.7984 | 0.7252 | 0.036* | |
C15 | 0.2811 (4) | 0.74960 (11) | 0.5388 (4) | 0.0507 (8) | |
H15A | 0.2125 | 0.7766 | 0.4517 | 0.076* | |
H15B | 0.2185 | 0.7413 | 0.6132 | 0.076* | |
H15C | 0.2860 | 0.7191 | 0.4720 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0314 (3) | 0.0214 (2) | 0.0359 (3) | 0.0069 (2) | 0.0209 (2) | 0.0044 (2) |
O1 | 0.0385 (11) | 0.0222 (8) | 0.0283 (9) | 0.0026 (8) | 0.0200 (9) | 0.0005 (8) |
N1 | 0.0270 (13) | 0.0232 (11) | 0.0362 (13) | 0.0033 (10) | 0.0191 (11) | 0.0019 (10) |
N2 | 0.0249 (12) | 0.0226 (10) | 0.0291 (11) | 0.0045 (10) | 0.0137 (9) | 0.0026 (10) |
N3 | 0.0281 (13) | 0.0241 (11) | 0.0352 (12) | 0.0040 (10) | 0.0183 (11) | −0.0030 (10) |
N4 | 0.0303 (13) | 0.0236 (11) | 0.0426 (14) | 0.0087 (10) | 0.0221 (11) | 0.0039 (10) |
N7 | 0.0602 (18) | 0.0228 (12) | 0.0658 (17) | 0.0040 (12) | 0.0348 (14) | 0.0053 (12) |
N8 | 0.078 (2) | 0.0439 (15) | 0.0591 (17) | −0.0250 (14) | 0.0521 (16) | −0.0141 (13) |
N9 | 0.0543 (17) | 0.0358 (13) | 0.0539 (15) | 0.0115 (12) | 0.0376 (14) | 0.0048 (12) |
N10 | 0.0317 (14) | 0.0336 (13) | 0.0491 (15) | −0.0085 (12) | 0.0165 (12) | 0.0003 (12) |
C1 | 0.0268 (16) | 0.0156 (12) | 0.0318 (15) | 0.0018 (11) | 0.0154 (13) | −0.0030 (11) |
C2 | 0.0231 (15) | 0.0173 (12) | 0.0320 (15) | −0.0031 (11) | 0.0141 (12) | −0.0067 (11) |
C3 | 0.0447 (19) | 0.0298 (15) | 0.0478 (18) | 0.0104 (14) | 0.0330 (16) | 0.0119 (14) |
C4 | 0.0472 (19) | 0.0245 (14) | 0.0442 (18) | 0.0081 (14) | 0.0263 (15) | 0.0093 (13) |
C5 | 0.0335 (17) | 0.0273 (14) | 0.0319 (15) | 0.0063 (12) | 0.0156 (13) | 0.0069 (11) |
C6 | 0.0330 (16) | 0.0345 (15) | 0.0304 (14) | 0.0003 (13) | 0.0198 (12) | 0.0007 (13) |
C7 | 0.0423 (19) | 0.0214 (14) | 0.0312 (16) | −0.0089 (14) | 0.0180 (14) | 0.0014 (12) |
C8 | 0.053 (2) | 0.0215 (13) | 0.0309 (15) | −0.0099 (13) | 0.0231 (15) | −0.0060 (11) |
C9 | 0.0281 (17) | 0.0274 (14) | 0.0380 (16) | 0.0020 (12) | 0.0187 (13) | 0.0087 (13) |
C10 | 0.0212 (16) | 0.0343 (15) | 0.0291 (15) | 0.0023 (13) | 0.0105 (12) | 0.0035 (12) |
C11 | 0.0257 (16) | 0.0216 (13) | 0.0184 (12) | −0.0003 (11) | 0.0062 (11) | −0.0009 (10) |
C12 | 0.0315 (16) | 0.0198 (13) | 0.0280 (14) | −0.0024 (12) | 0.0160 (12) | −0.0011 (11) |
C13 | 0.0257 (15) | 0.0178 (12) | 0.0309 (14) | 0.0012 (11) | 0.0147 (12) | 0.0008 (11) |
C14 | 0.0320 (17) | 0.0243 (13) | 0.0353 (16) | 0.0066 (12) | 0.0158 (13) | 0.0033 (12) |
C15 | 0.039 (2) | 0.0549 (19) | 0.048 (2) | −0.0006 (16) | 0.0106 (16) | −0.0014 (16) |
Cu1—N1 | 1.9727 (19) | N10—C10 | 1.140 (3) |
Cu1—N1i | 1.9727 (19) | C1—C2 | 1.433 (3) |
Cu1—N2i | 2.0397 (18) | C3—C4 | 1.349 (3) |
Cu1—N2 | 2.0397 (18) | C3—H3A | 0.9500 |
Cu1—N7 | 2.821 (2) | C4—H4A | 0.9500 |
O1—C11 | 1.352 (3) | C5—C6 | 1.349 (3) |
O1—C14 | 1.460 (3) | C5—H5 | 0.9500 |
N1—C1 | 1.324 (3) | C6—H6 | 0.9500 |
N1—C3 | 1.367 (3) | C7—C12 | 1.419 (3) |
N2—C2 | 1.333 (3) | C8—C12 | 1.428 (4) |
N2—C5 | 1.374 (3) | C9—C13 | 1.421 (3) |
N3—C2 | 1.337 (3) | C10—C13 | 1.425 (3) |
N3—C6 | 1.372 (3) | C11—C12 | 1.389 (3) |
N3—H3 | 0.8800 | C11—C13 | 1.395 (3) |
N4—C1 | 1.343 (3) | C14—C15 | 1.477 (3) |
N4—C4 | 1.364 (3) | C14—H14A | 0.9900 |
N4—H4 | 0.8800 | C14—H14B | 0.9900 |
N7—C7 | 1.143 (3) | C15—H15A | 0.9800 |
N8—C8 | 1.143 (3) | C15—H15B | 0.9800 |
N9—C9 | 1.144 (3) | C15—H15C | 0.9800 |
N1—Cu1—N1i | 180.00 | C3—C4—H4A | 126.7 |
N1—Cu1—N2i | 97.96 (8) | N4—C4—H4A | 126.7 |
N1i—Cu1—N2i | 82.04 (8) | C6—C5—N2 | 110.0 (2) |
N1—Cu1—N2 | 82.04 (8) | C6—C5—H5 | 125.0 |
N1i—Cu1—N2 | 97.96 (8) | N2—C5—H5 | 125.0 |
N2i—Cu1—N2 | 180.0 | C5—C6—N3 | 106.1 (2) |
N1—Cu1—N7 | 95.79 (7) | C5—C6—H6 | 126.9 |
N1i—Cu1—N7 | 84.21 (7) | N3—C6—H6 | 126.9 |
N2i—Cu1—N7 | 88.69 (7) | N7—C7—C12 | 177.8 (3) |
N2—Cu1—N7 | 91.31 (7) | N8—C8—C12 | 179.4 (3) |
C11—O1—C14 | 119.25 (18) | N9—C9—C13 | 179.1 (3) |
C1—N1—C3 | 105.9 (2) | N10—C10—C13 | 178.6 (3) |
C1—N1—Cu1 | 113.35 (16) | O1—C11—C12 | 113.8 (2) |
C3—N1—Cu1 | 140.66 (17) | O1—C11—C13 | 119.61 (19) |
C2—N2—C5 | 105.23 (19) | C12—C11—C13 | 126.5 (2) |
C2—N2—Cu1 | 110.87 (15) | C11—C12—C7 | 124.4 (2) |
C5—N2—Cu1 | 143.89 (17) | C11—C12—C8 | 119.1 (2) |
C2—N3—C6 | 107.6 (2) | C7—C12—C8 | 116.3 (2) |
C2—N3—H3 | 126.2 | C11—C13—C9 | 121.6 (2) |
C6—N3—H3 | 126.2 | C11—C13—C10 | 121.2 (2) |
C1—N4—C4 | 107.3 (2) | C9—C13—C10 | 117.2 (2) |
C1—N4—H4 | 126.3 | O1—C14—C15 | 110.4 (2) |
C4—N4—H4 | 126.3 | O1—C14—H14A | 109.6 |
C7—N7—Cu1 | 103.7 (2) | C15—C14—H14A | 109.6 |
N1—C1—N4 | 110.7 (2) | O1—C14—H14B | 109.6 |
N1—C1—C2 | 116.9 (2) | C15—C14—H14B | 109.6 |
N4—C1—C2 | 132.4 (2) | H14A—C14—H14B | 108.1 |
N2—C2—N3 | 111.0 (2) | C14—C15—H15A | 109.5 |
N2—C2—C1 | 116.8 (2) | C14—C15—H15B | 109.5 |
N3—C2—C1 | 132.2 (2) | H15A—C15—H15B | 109.5 |
C4—C3—N1 | 109.5 (2) | C14—C15—H15C | 109.5 |
C4—C3—H3A | 125.2 | H15A—C15—H15C | 109.5 |
N1—C3—H3A | 125.2 | H15B—C15—H15C | 109.5 |
C3—C4—N4 | 106.6 (2) | ||
N2i—Cu1—N1—C1 | 178.54 (16) | C6—N3—C2—N2 | 1.3 (3) |
N2—Cu1—N1—C1 | −1.46 (16) | C6—N3—C2—C1 | −179.2 (2) |
N7—Cu1—N1—C1 | −91.98 (17) | N1—C1—C2—N2 | −0.4 (3) |
N2i—Cu1—N1—C3 | 2.7 (3) | N4—C1—C2—N2 | 178.3 (2) |
N2—Cu1—N1—C3 | −177.3 (3) | N1—C1—C2—N3 | −179.9 (2) |
N7—Cu1—N1—C3 | 92.2 (3) | N4—C1—C2—N3 | −1.2 (4) |
N1i—Cu1—N2—C2 | −178.76 (15) | C1—N1—C3—C4 | 0.2 (3) |
N7—Cu1—N2—C2 | 96.90 (16) | Cu1—N1—C3—C4 | 176.3 (2) |
N1—Cu1—N2—C5 | −178.8 (3) | N1—C3—C4—N4 | −0.1 (3) |
N1i—Cu1—N2—C5 | 1.2 (3) | C1—N4—C4—C3 | −0.1 (3) |
N7—Cu1—N2—C5 | −83.1 (3) | C2—N2—C5—C6 | 0.7 (3) |
N1—Cu1—N7—C7 | 24.02 (19) | Cu1—N2—C5—C6 | −179.3 (2) |
N1i—Cu1—N7—C7 | −155.98 (19) | N2—C5—C6—N3 | 0.1 (3) |
N2i—Cu1—N7—C7 | 121.89 (19) | C2—N3—C6—C5 | −0.9 (3) |
N2—Cu1—N7—C7 | −58.11 (19) | C14—O1—C11—C12 | −129.2 (2) |
C3—N1—C1—N4 | −0.2 (3) | C14—O1—C11—C13 | 54.0 (3) |
Cu1—N1—C1—N4 | −177.52 (15) | O1—C11—C12—C7 | −164.3 (2) |
C3—N1—C1—C2 | 178.7 (2) | C13—C11—C12—C7 | 12.3 (4) |
Cu1—N1—C1—C2 | 1.4 (3) | O1—C11—C12—C8 | 10.1 (3) |
C4—N4—C1—N1 | 0.2 (3) | C13—C11—C12—C8 | −173.3 (2) |
C4—N4—C1—C2 | −178.6 (2) | O1—C11—C13—C9 | −166.3 (2) |
C5—N2—C2—N3 | −1.2 (3) | C12—C11—C13—C9 | 17.2 (4) |
Cu1—N2—C2—N3 | 178.75 (15) | O1—C11—C13—C10 | 14.4 (4) |
C5—N2—C2—C1 | 179.2 (2) | C12—C11—C13—C10 | −162.0 (2) |
Cu1—N2—C2—C1 | −0.8 (2) | C11—O1—C14—C15 | 81.6 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···N9ii | 0.88 | 2.22 | 3.011 (3) | 149 |
N4—H4···N9ii | 0.88 | 2.17 | 2.967 (3) | 150 |
C3—H3A···N8iii | 0.95 | 2.42 | 3.187 (3) | 138 |
Symmetry codes: (ii) x−1, y, z; (iii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C6H6N4)2](C9H5N4O)2 |
Mr | 702.18 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 170 |
a, b, c (Å) | 8.1001 (8), 26.1834 (11), 8.2185 (7) |
β (°) | 117.086 (11) |
V (Å3) | 1551.9 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.76 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur CCD |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.750, 0.862 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8646, 3002, 1854 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.077, 0.93 |
No. of reflections | 3002 |
No. of parameters | 223 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.28 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Cu1—N1 | 1.9727 (19) | Cu1—N7 | 2.821 (2) |
Cu1—N2 | 2.0397 (18) | ||
N1—Cu1—N2 | 82.04 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···N9i | 0.88 | 2.22 | 3.011 (3) | 149 |
N4—H4···N9i | 0.88 | 2.17 | 2.967 (3) | 150 |
C3—H3A···N8ii | 0.95 | 2.42 | 3.187 (3) | 138 |
Symmetry codes: (i) x−1, y, z; (ii) x, y, z−1. |
Acknowledgements
The X-ray data were collected at the University of Bretagne Occidentale (UBO; UMR CNRS 6521). FS thanks Professor S. Triki for providing diffraction facilities and the Université Ferhat Abbas de Sétif, Algérie, for financial support.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924. Web of Science CSD CrossRef CAS Google Scholar
Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130. Web of Science CrossRef CAS Google Scholar
Bencini, A. & Mani, F. (1988). Inorg. Chim. Acta, 154, 215–219. CSD CrossRef CAS Web of Science Google Scholar
Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186–194. Web of Science CSD CrossRef Google Scholar
Bernarducci, E. B., Bharadwaj, P. K., Lalancette, R. A., Krogh-Jespersen, K., Potenza, J. A. & Schugar, H. J. (1983). Inorg. Chem. 22, 3911–3920. CSD CrossRef CAS Web of Science Google Scholar
Cancela, J., Gonalez Garmendia, M. J. & Qurs, M. (2001). Inorg. Chim. Acta, 313, 156–159. Web of Science CSD CrossRef CAS Google Scholar
Cromer, D. T., Ryan, R. R. & Storm, C. B. (1987). Acta Cryst. C43, 1435–1437. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Jones, L. F., O'Dea, L., Offermann, D. A., Jensen, P., Moubaraki, B. & Murray, K. S. (2006). Polyhedron, 25, 360–372. Web of Science CSD CrossRef CAS Google Scholar
Middleton, W. J. & Engelhardt, V. A. (1958). J. Am. Chem. Soc. 80, 2788–2795. CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Setifi, F., Benmansour, S., Triki, S., Gómez-García, C. J., Marchivie, M., Salaün, J.-Y. & Maamache, M. (2007). Inorg. Chim. Acta, 360, 3879–3886. Web of Science CSD CrossRef CAS Google Scholar
Setifi, F., Bouchama, A., Sala-Pala, J., Salaün, J.-Y. & Triki, S. (2006). Inorg. Chim. Acta, 359, 3269–3274. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thétiot, F., Triki, S., Sala-Pala, J. & Golhen, S. (2003). Inorg. Chim. Acta, 350, 314–320. Google Scholar
Triki, S., Thétiot, F., Vandevelde, F., Sala-Pala, J. & Gómez-García, C. J. (2005). Inorg. Chem. 44, 4086–4093. Web of Science CSD CrossRef PubMed CAS Google Scholar
Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Yuste, C., Bentama, A., Stiriba, S.-E., Armentano, D., De Munno, G., Lloret, F. & Julve, M. (2007). Dalton Trans. pp. 5190–5200. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polynitrile anions are known to be interesting ligands in coordination chemistry because of their high electronic delocalization and their cyano groups juxtaposed in such a way that they cannot all coordinate to the same metal ion. They adopt different bridging or nonbridging coordination modes wich afford discrete or extended molecular architectures (Atmani et al., 2008; Benmansour et al., 2007; Triki et al., 2005; Thétiot et al., 2003). Following these structural and electronic characteristics, several series of binary systems "polynitrile/M(II)" with only polynitrile bridges or ternary systems "polynitrile/co-ligand/M(II)" (M(II), transition metal ion) involving an additional bridging or chelate co-ligand have been reported. Most of them display one-dimensional, two-dimensional and three-dimensional polymeric assemblies, in which the polynitrile anions act as µ2-, µ3- and/or µ4- bridging ligands and exhibit unusual magnetic properties (Batten & Murray, 2003; Jones et al., 2006; Yuste et al., 2007; Setifi et al., 2006; Setifi et al., 2007).
In our case we have chosen to investigate the ternary system including 2,2'-biimidazole (H2bim) selected as co-ligand because it is bifunctional: the imino moieties can be coordinated to a metal ion acting as the first coordination sphere and the amino N—H and C—H groups, as the second coordination sphere, may donate multifold hydrogen bonds to tcnoet anions, extending the structure into a high-dimensional network. In this contribution we report the synthesis and the crystal structure of a new copper(II) compound with neutral 2,2'-biimidazole, Cu(H2biim)2] (tcnoet)2, (I).
The crystal of (I) is built of [Cu(H2biim)2]2+ cations and (tcnoet)- anions interconnected by hydrogen bonds. As shown in Fig. 1, the Cu(II) ion has a square coordination geometry, it locates on a symmetry inversion center and relates four nitrogen atoms of two symmetry-related 2,2'-biimidazole molecules which bind bidentately arranged trans to each other in the square plane [Cu1—N1 = 1.973 (2) Å and Cu1—N2 = 2.040 (2) Å] and interacts with two nitrogen atoms belonging to tcnoet ligands occupying the apical coordination sites [Cu1—N7 = 2.821 (3) Å]. Selected interatomic distances and angles are listed in Table 1.
The Cu—N bond distances to H2biim and inter-ring C1—C2 bond length in (I) present no unusual features and are consistent with the previous report in [Cu(H2biim)2]Cl2 [Bencini & Mani, 1988], [Cu(Me4biim)ONO2]Cl [Bernarducci et al., 1983] and [VOCl(H2Biim)2]Cl [Cancela et al., 2001] complexes. In our case the principal coordination is planar and the Cu atom lies within that plane. Both imidazole rings are planar, with no atoms deviating by more than 0.007 A° from the least-squares plane. The two rings of H2biim are nearly coplanar, making an angle of 0.70 (9)°. This value compares well with that found in the mononuclear copper(II) species [Cu(H2biim)2]2+ which are in a strictly planar environment (Bencini & Mani, 1988) and that observed in the free H2biim molecule (Cromer et al., 1987), but it is smaller than that found for the mononuclear oxovanadium(IV) species [VOCl(H2biim)2]Cl (Cancela et al., 2001).
[Cu(H2biim)2](tcnoet)2 units are connected to each other via hydrogen bonds N—H···N resulting in a one-dimensional chains as shown in Fig. 2. Furthermore these chains are maintained through van der Waals interactions on the (ab) plane and connect each other via C—H···N hydrogen bonds into a two-dimensional network (Fig. 3). Interestingly, each tcnoet- anion help to sustain the one-dimensional assembly and at the same time the final two-dimensional array.
In this complex, the three central C atoms (C11, C12 and C13) of the anionic ligand present an sp2 hybridization as indicated by the sum of the three angles around them (359.98° or 360.0°). Two additional facts support the idea of electron delocalization over the three central C atoms: (i) the six central C—C bond distances (1.389 A° -1.428 A°) are longer than a normal C═C double bond (1.340 A°) and close to those of benzene and (ii) the C11—O1 bond distance 1.352 A° is much shorter than tne normal C—O single bond, suggesting that the two central and the C11—O1 bond present a partial double character.