metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)zinc(II)

aSchool of Chemistry, Damghan University, Damghan, Iran, and bIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: robabeh_alizadeh@yahoo.com

(Received 17 July 2010; accepted 18 July 2010; online 24 July 2010)

The asymmetric unit of the title compound, [ZnBr2(C12H12N2)], contains two half-mol­ecules; both are completed by crystallographic twofold axes running through the ZnII atoms which are coordinated by an N,N′-bidentate 4,4′-dimethyl-2,2′-bipyridine ligand and two Br ions, resulting in distorted ZnN2Br2 tetra­hedral coordination geometries. In the crystal, C—H⋯Br inter­actions link the mol­ecules.

Related literature

For related structures, see: Ahmadi et al. (2008[Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.]); Amani et al. (2009[Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939-1950.]); Bellusci et al. (2008[Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114-3122.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.]); Kalateh et al. (2008[Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397-m1398.], 2010[Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.]); Sakamoto et al. (2004[Sakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352-m353.]); Sofetis et al. (2006[Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389-3395.]); Willett et al. (2001[Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342-4352.]); Yoshikawa et al. (2003[Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155-m156.]); Yousefi et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C12H12N2)]

  • Mr = 409.43

  • Monoclinic, P 2/c

  • a = 13.801 (3) Å

  • b = 8.2454 (16) Å

  • c = 13.716 (3) Å

  • β = 117.47 (3)°

  • V = 1384.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.52 mm−1

  • T = 120 K

  • 0.30 × 0.22 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.157, Tmax = 0.479

  • 8352 measured reflections

  • 3560 independent reflections

  • 2963 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.099

  • S = 1.07

  • 3560 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N1 2.053 (3)
Zn2—N2 2.050 (3)
Zn1—Br1 2.3428 (6)
Zn2—Br2 2.3356 (9)
N1—Zn1—N1i 80.61 (17)
N2—Zn2—N2ii 81.15 (17)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯Br1iii 0.96 2.89 3.772 (5) 152
Symmetry code: (iii) x, y-1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), iridium (Yoshikawa et al., 2003) and cadmium (Kalateh et al., 2010). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains two half-molecule. The ZnII atom is for-coordinated in distorted tetragonal configurations by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine and two Br atoms. The Zn—Br and Zn—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2) may stabilize the structure (Fig. 2).

Related literature top

For related structures, see: Ahmadi et al. (2008); Amani et al. (2009); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Sakamoto et al. (2004); Sofetis et al. (2006); Willett et al. (2001); Yoshikawa et al. (2003); Yousefi et al. (2008).

Experimental top

A solution of 4,4'-dimethyl-2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (10 ml) was added to a solution of ZnBr2 (0.25 g, 1.10 mmol) in methanol (5 ml) at room temperature. Colourless prisms of (I) were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.35 g, 77.7%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), iridium (Yoshikawa et al., 2003) and cadmium (Kalateh et al., 2010). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains two half-molecule. The ZnII atom is for-coordinated in distorted tetragonal configurations by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine and two Br atoms. The Zn—Br and Zn—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2) may stabilize the structure (Fig. 2).

For related structures, see: Ahmadi et al. (2008); Amani et al. (2009); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Sakamoto et al. (2004); Sofetis et al. (2006); Willett et al. (2001); Yoshikawa et al. (2003); Yousefi et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Atoms with suffix a are generated by (1–x, y, 1/2–z); those with suffix b are generated by (–x, y, 1/2–z).
[Figure 2] Fig. 2. Unit-cell packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Dibromido(4,4'-dimethyl-2,2'-bipyridine-κ2N,N')zinc(II) top
Crystal data top
[ZnBr2(C12H12N2)]F(000) = 792
Mr = 409.43Dx = 1.964 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 984 reflections
a = 13.801 (3) Åθ = 2.5–29.2°
b = 8.2454 (16) ŵ = 7.52 mm1
c = 13.716 (3) ÅT = 120 K
β = 117.47 (3)°Prism, colorless
V = 1384.9 (6) Å30.30 × 0.22 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3560 independent reflections
Radiation source: fine-focus sealed tube2963 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
phi and ω scansθmax = 29.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1318
Tmin = 0.157, Tmax = 0.479k = 1111
8352 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0449P)2 + 2.823P]
where P = (Fo2 + 2Fc2)/3
3560 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 1.04 e Å3
Crystal data top
[ZnBr2(C12H12N2)]V = 1384.9 (6) Å3
Mr = 409.43Z = 4
Monoclinic, P2/cMo Kα radiation
a = 13.801 (3) ŵ = 7.52 mm1
b = 8.2454 (16) ÅT = 120 K
c = 13.716 (3) Å0.30 × 0.22 × 0.10 mm
β = 117.47 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3560 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2963 reflections with I > 2σ(I)
Tmin = 0.157, Tmax = 0.479Rint = 0.050
8352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.07Δρmax = 0.62 e Å3
3560 reflectionsΔρmin = 1.04 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3828 (3)0.7308 (4)0.0326 (3)0.0225 (7)
H10.36500.83270.00010.027*
C20.3490 (3)0.5946 (5)0.0343 (3)0.0251 (8)
H20.30820.60560.11010.030*
C30.3767 (3)0.4417 (4)0.0131 (3)0.0234 (7)
C40.3428 (4)0.2903 (5)0.0556 (4)0.0313 (9)
H4A0.29790.22520.03450.038*
H4B0.40650.22990.04440.038*
H4C0.30220.31910.13180.038*
C50.4366 (3)0.4324 (4)0.1268 (3)0.0220 (7)
H50.45620.33190.16110.026*
C60.4671 (3)0.5733 (4)0.1892 (3)0.0185 (7)
C70.1273 (3)0.7510 (4)0.1512 (3)0.0231 (7)
H70.15120.85210.14110.028*
C80.1556 (3)0.6153 (5)0.1110 (3)0.0236 (7)
H80.19770.62600.07460.028*
C90.1209 (3)0.4623 (4)0.1250 (3)0.0208 (7)
C100.1447 (4)0.3130 (5)0.0775 (4)0.0287 (8)
H10C0.13710.33700.00580.034*
H10B0.09430.22890.07180.034*
H10A0.21790.27740.12440.034*
C110.0594 (3)0.4535 (4)0.1817 (3)0.0218 (7)
H110.03570.35340.19380.026*
C120.0334 (3)0.5942 (4)0.2202 (3)0.0181 (7)
N10.4399 (3)0.7211 (3)0.1415 (3)0.0186 (6)
N20.0668 (3)0.7419 (3)0.2042 (3)0.0186 (6)
Zn10.50000.91089 (6)0.25000.02024 (14)
Zn20.00000.93068 (6)0.25000.01997 (14)
Br10.37461 (4)1.05907 (4)0.28513 (4)0.02607 (11)
Br20.12396 (4)1.07654 (4)0.40271 (4)0.02828 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0274 (19)0.0185 (15)0.0221 (19)0.0011 (14)0.0119 (16)0.0019 (13)
C20.0263 (19)0.0284 (18)0.0186 (18)0.0019 (15)0.0085 (15)0.0024 (14)
C30.0261 (19)0.0232 (16)0.0232 (19)0.0021 (14)0.0134 (16)0.0059 (14)
C40.035 (2)0.0265 (18)0.026 (2)0.0044 (17)0.0089 (18)0.0115 (16)
C50.0271 (19)0.0141 (14)0.0249 (19)0.0016 (13)0.0121 (16)0.0035 (12)
C60.0262 (18)0.0125 (13)0.0187 (18)0.0021 (12)0.0118 (15)0.0013 (12)
C70.0268 (19)0.0184 (15)0.025 (2)0.0015 (14)0.0127 (16)0.0010 (13)
C80.028 (2)0.0240 (16)0.025 (2)0.0003 (15)0.0171 (17)0.0010 (14)
C90.0227 (18)0.0196 (15)0.0191 (18)0.0039 (13)0.0087 (15)0.0007 (13)
C100.033 (2)0.0238 (17)0.033 (2)0.0066 (16)0.0183 (19)0.0023 (15)
C110.0289 (19)0.0138 (14)0.0249 (19)0.0006 (13)0.0142 (16)0.0001 (12)
C120.0227 (17)0.0133 (14)0.0192 (18)0.0012 (12)0.0104 (15)0.0003 (11)
N10.0222 (15)0.0147 (12)0.0177 (15)0.0004 (11)0.0082 (12)0.0013 (10)
N20.0253 (16)0.0129 (12)0.0175 (15)0.0004 (11)0.0097 (13)0.0004 (10)
Zn10.0277 (3)0.0107 (2)0.0231 (3)0.0000.0123 (3)0.000
Zn20.0274 (3)0.0106 (2)0.0212 (3)0.0000.0106 (3)0.000
Br10.0329 (2)0.01709 (16)0.0322 (2)0.00397 (14)0.01838 (17)0.00109 (14)
Br20.0317 (2)0.01954 (17)0.0281 (2)0.00180 (14)0.00900 (17)0.00723 (14)
Geometric parameters (Å, º) top
C1—N11.332 (5)C8—H80.9300
C1—C21.388 (5)C9—C111.394 (5)
C1—H10.9300C9—C101.498 (5)
C2—C31.388 (5)C10—H10C0.9600
C2—H20.9300C10—H10B0.9600
C3—C51.390 (6)C10—H10A0.9600
C3—C41.503 (5)C11—C121.389 (5)
C4—H4A0.9600C11—H110.9300
C4—H4B0.9600C12—N21.355 (4)
C4—H4C0.9600C12—C12ii1.488 (7)
C5—C61.387 (5)Zn1—N12.053 (3)
C5—H50.9300Zn2—N22.050 (3)
C6—N11.351 (4)Zn1—N1i2.053 (3)
C6—C6i1.487 (8)Zn1—Br1i2.3428 (6)
C7—N21.339 (5)Zn1—Br12.3428 (6)
C7—C81.380 (5)Zn2—N2ii2.050 (3)
C7—H70.9300Zn2—Br22.3356 (9)
C8—C91.393 (5)Zn2—Br2ii2.3356 (9)
N1—C1—C2122.5 (3)C9—C10—H10C109.5
N1—C1—H1118.7C9—C10—H10B109.5
C2—C1—H1118.7H10C—C10—H10B109.5
C1—C2—C3119.3 (4)C9—C10—H10A109.5
C1—C2—H2120.4H10C—C10—H10A109.5
C3—C2—H2120.4H10B—C10—H10A109.5
C2—C3—C5117.9 (3)C12—C11—C9120.0 (3)
C2—C3—C4121.4 (4)C12—C11—H11120.0
C5—C3—C4120.6 (4)C9—C11—H11120.0
C3—C4—H4A109.5N2—C12—C11121.5 (3)
C3—C4—H4B109.5N2—C12—C12ii115.6 (2)
H4A—C4—H4B109.5C11—C12—C12ii122.9 (2)
C3—C4—H4C109.5C1—N1—C6119.0 (3)
H4A—C4—H4C109.5C1—N1—Zn1126.8 (2)
H4B—C4—H4C109.5C6—N1—Zn1114.1 (2)
C6—C5—C3120.0 (3)C7—N2—C12118.8 (3)
C6—C5—H5120.0C7—N2—Zn2127.2 (2)
C3—C5—H5120.0C12—N2—Zn2113.5 (2)
N1—C6—C5121.3 (4)N1—Zn1—N1i80.61 (17)
N1—C6—C6i115.6 (2)N1—Zn1—Br1i109.77 (9)
C5—C6—C6i123.1 (2)N1i—Zn1—Br1i117.20 (9)
N2—C7—C8122.2 (3)N1—Zn1—Br1117.20 (9)
N2—C7—H7118.9N1i—Zn1—Br1109.77 (9)
C8—C7—H7118.9Br1i—Zn1—Br1117.13 (3)
C7—C8—C9120.1 (3)N2—Zn2—N2ii81.15 (17)
C7—C8—H8119.9N2—Zn2—Br2114.76 (9)
C9—C8—H8119.9N2ii—Zn2—Br2111.31 (9)
C8—C9—C11117.4 (3)N2—Zn2—Br2ii111.31 (9)
C8—C9—C10121.8 (3)N2ii—Zn2—Br2ii114.76 (9)
C11—C9—C10120.8 (3)Br2—Zn2—Br2ii118.01 (4)
N1—C1—C2—C31.1 (6)C6i—C6—N1—Zn11.4 (5)
C1—C2—C3—C50.8 (6)C8—C7—N2—C120.9 (6)
C1—C2—C3—C4179.6 (4)C8—C7—N2—Zn2170.8 (3)
C2—C3—C5—C60.2 (6)C11—C12—N2—C70.8 (6)
C4—C3—C5—C6179.9 (4)C12ii—C12—N2—C7179.9 (4)
C3—C5—C6—N10.2 (6)C11—C12—N2—Zn2172.0 (3)
C3—C5—C6—C6i178.8 (4)C12ii—C12—N2—Zn27.3 (5)
N2—C7—C8—C90.0 (6)C1—N1—Zn1—N1i177.6 (4)
C7—C8—C9—C111.0 (6)C6—N1—Zn1—N1i0.5 (2)
C7—C8—C9—C10176.7 (4)C1—N1—Zn1—Br1i62.0 (3)
C8—C9—C11—C121.0 (6)C6—N1—Zn1—Br1i115.1 (3)
C10—C9—C11—C12176.7 (4)C1—N1—Zn1—Br174.9 (3)
C9—C11—C12—N20.2 (6)C6—N1—Zn1—Br1108.0 (3)
C9—C11—C12—C12ii179.1 (4)C7—N2—Zn2—N2ii174.8 (4)
C2—C1—N1—C60.7 (6)C12—N2—Zn2—N2ii2.71 (19)
C2—C1—N1—Zn1177.7 (3)C7—N2—Zn2—Br275.8 (3)
C5—C6—N1—C10.1 (6)C12—N2—Zn2—Br2112.2 (3)
C6i—C6—N1—C1178.7 (4)C7—N2—Zn2—Br2ii61.5 (3)
C5—C6—N1—Zn1177.4 (3)C12—N2—Zn2—Br2ii110.5 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Br1iii0.962.893.772 (5)152
Symmetry code: (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[ZnBr2(C12H12N2)]
Mr409.43
Crystal system, space groupMonoclinic, P2/c
Temperature (K)120
a, b, c (Å)13.801 (3), 8.2454 (16), 13.716 (3)
β (°) 117.47 (3)
V3)1384.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)7.52
Crystal size (mm)0.30 × 0.22 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.157, 0.479
No. of measured, independent and
observed [I > 2σ(I)] reflections
8352, 3560, 2963
Rint0.050
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.07
No. of reflections3560
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 1.04

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—N12.053 (3)Zn1—Br12.3428 (6)
Zn2—N22.050 (3)Zn2—Br22.3356 (9)
N1—Zn1—N1i80.61 (17)N2—Zn2—N2ii81.15 (17)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Br1iii0.962.893.772 (5)152
Symmetry code: (iii) x, y1, z.
 

Acknowledgements

We are grateful to Damghan University for financial support.

References

First citationAhmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.  Web of Science CSD CrossRef CAS Google Scholar
First citationBellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114–3122.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352–m353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395.  Web of Science CSD CrossRef CAS Google Scholar
First citationWillett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155–m156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds