metal-organic compounds
Dibromido(4,4′-dimethyl-2,2′-bipyridine-κ2N,N′)zinc(II)
aSchool of Chemistry, Damghan University, Damghan, Iran, and bIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: robabeh_alizadeh@yahoo.com
The 2(C12H12N2)], contains two half-molecules; both are completed by crystallographic twofold axes running through the ZnII atoms which are coordinated by an N,N′-bidentate 4,4′-dimethyl-2,2′-bipyridine ligand and two Br− ions, resulting in distorted ZnN2Br2 tetrahedral coordination geometries. In the crystal, C—H⋯Br interactions link the molecules.
of the title compound, [ZnBrRelated literature
For related structures, see: Ahmadi et al. (2008); Amani et al. (2009); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Sakamoto et al. (2004); Sofetis et al. (2006); Willett et al. (2001); Yoshikawa et al. (2003); Yousefi et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810028692/hb5556sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810028692/hb5556Isup2.hkl
A solution of 4,4'-dimethyl-2,2'-bipyridine (0.20 g, 1.10 mmol) in methanol (10 ml) was added to a solution of ZnBr2 (0.25 g, 1.10 mmol) in methanol (5 ml) at room temperature. Colourless prisms of (I) were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.35 g, 77.7%).
All H atoms were positioned geometrically, with C—H = 0.93Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), iridium (Yoshikawa et al., 2003) and cadmium (Kalateh et al., 2010). Here, we report the synthesis and structure of the title compound.
The
of the title compound, (Fig. 1), contains two half-molecule. The ZnII atom is for-coordinated in distorted tetragonal configurations by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine and two Br atoms. The Zn—Br and Zn—N bond lengths and angles are collected in Table 1.In the
intermolecular C—H···Br hydrogen bonds (Table 2) may stabilize the structure (Fig. 2).For related structures, see: Ahmadi et al. (2008); Amani et al. (2009); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Sakamoto et al. (2004); Sofetis et al. (2006); Willett et al. (2001); Yoshikawa et al. (2003); Yousefi et al. (2008).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[ZnBr2(C12H12N2)] | F(000) = 792 |
Mr = 409.43 | Dx = 1.964 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 984 reflections |
a = 13.801 (3) Å | θ = 2.5–29.2° |
b = 8.2454 (16) Å | µ = 7.52 mm−1 |
c = 13.716 (3) Å | T = 120 K |
β = 117.47 (3)° | Prism, colorless |
V = 1384.9 (6) Å3 | 0.30 × 0.22 × 0.10 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 3560 independent reflections |
Radiation source: fine-focus sealed tube | 2963 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
phi and ω scans | θmax = 29.2°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −13→18 |
Tmin = 0.157, Tmax = 0.479 | k = −11→11 |
8352 measured reflections | l = −18→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0449P)2 + 2.823P] where P = (Fo2 + 2Fc2)/3 |
3560 reflections | (Δ/σ)max = 0.001 |
156 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −1.04 e Å−3 |
[ZnBr2(C12H12N2)] | V = 1384.9 (6) Å3 |
Mr = 409.43 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 13.801 (3) Å | µ = 7.52 mm−1 |
b = 8.2454 (16) Å | T = 120 K |
c = 13.716 (3) Å | 0.30 × 0.22 × 0.10 mm |
β = 117.47 (3)° |
Bruker SMART CCD diffractometer | 3560 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 2963 reflections with I > 2σ(I) |
Tmin = 0.157, Tmax = 0.479 | Rint = 0.050 |
8352 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.62 e Å−3 |
3560 reflections | Δρmin = −1.04 e Å−3 |
156 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3828 (3) | 0.7308 (4) | 0.0326 (3) | 0.0225 (7) | |
H1 | 0.3650 | 0.8327 | 0.0001 | 0.027* | |
C2 | 0.3490 (3) | 0.5946 (5) | −0.0343 (3) | 0.0251 (8) | |
H2 | 0.3082 | 0.6056 | −0.1101 | 0.030* | |
C3 | 0.3767 (3) | 0.4417 (4) | 0.0131 (3) | 0.0234 (7) | |
C4 | 0.3428 (4) | 0.2903 (5) | −0.0556 (4) | 0.0313 (9) | |
H4A | 0.2979 | 0.2252 | −0.0345 | 0.038* | |
H4B | 0.4065 | 0.2299 | −0.0444 | 0.038* | |
H4C | 0.3022 | 0.3191 | −0.1318 | 0.038* | |
C5 | 0.4366 (3) | 0.4324 (4) | 0.1268 (3) | 0.0220 (7) | |
H5 | 0.4562 | 0.3319 | 0.1611 | 0.026* | |
C6 | 0.4671 (3) | 0.5733 (4) | 0.1892 (3) | 0.0185 (7) | |
C7 | 0.1273 (3) | 0.7510 (4) | 0.1512 (3) | 0.0231 (7) | |
H7 | 0.1512 | 0.8521 | 0.1411 | 0.028* | |
C8 | 0.1556 (3) | 0.6153 (5) | 0.1110 (3) | 0.0236 (7) | |
H8 | 0.1977 | 0.6260 | 0.0746 | 0.028* | |
C9 | 0.1209 (3) | 0.4623 (4) | 0.1250 (3) | 0.0208 (7) | |
C10 | 0.1447 (4) | 0.3130 (5) | 0.0775 (4) | 0.0287 (8) | |
H10C | 0.1371 | 0.3370 | 0.0058 | 0.034* | |
H10B | 0.0943 | 0.2289 | 0.0718 | 0.034* | |
H10A | 0.2179 | 0.2774 | 0.1244 | 0.034* | |
C11 | 0.0594 (3) | 0.4535 (4) | 0.1817 (3) | 0.0218 (7) | |
H11 | 0.0357 | 0.3534 | 0.1938 | 0.026* | |
C12 | 0.0334 (3) | 0.5942 (4) | 0.2202 (3) | 0.0181 (7) | |
N1 | 0.4399 (3) | 0.7211 (3) | 0.1415 (3) | 0.0186 (6) | |
N2 | 0.0668 (3) | 0.7419 (3) | 0.2042 (3) | 0.0186 (6) | |
Zn1 | 0.5000 | 0.91089 (6) | 0.2500 | 0.02024 (14) | |
Zn2 | 0.0000 | 0.93068 (6) | 0.2500 | 0.01997 (14) | |
Br1 | 0.37461 (4) | 1.05907 (4) | 0.28513 (4) | 0.02607 (11) | |
Br2 | 0.12396 (4) | 1.07654 (4) | 0.40271 (4) | 0.02828 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0274 (19) | 0.0185 (15) | 0.0221 (19) | 0.0011 (14) | 0.0119 (16) | 0.0019 (13) |
C2 | 0.0263 (19) | 0.0284 (18) | 0.0186 (18) | −0.0019 (15) | 0.0085 (15) | −0.0024 (14) |
C3 | 0.0261 (19) | 0.0232 (16) | 0.0232 (19) | −0.0021 (14) | 0.0134 (16) | −0.0059 (14) |
C4 | 0.035 (2) | 0.0265 (18) | 0.026 (2) | −0.0044 (17) | 0.0089 (18) | −0.0115 (16) |
C5 | 0.0271 (19) | 0.0141 (14) | 0.0249 (19) | −0.0016 (13) | 0.0121 (16) | −0.0035 (12) |
C6 | 0.0262 (18) | 0.0125 (13) | 0.0187 (18) | −0.0021 (12) | 0.0118 (15) | −0.0013 (12) |
C7 | 0.0268 (19) | 0.0184 (15) | 0.025 (2) | −0.0015 (14) | 0.0127 (16) | 0.0010 (13) |
C8 | 0.028 (2) | 0.0240 (16) | 0.025 (2) | 0.0003 (15) | 0.0171 (17) | 0.0010 (14) |
C9 | 0.0227 (18) | 0.0196 (15) | 0.0191 (18) | 0.0039 (13) | 0.0087 (15) | −0.0007 (13) |
C10 | 0.033 (2) | 0.0238 (17) | 0.033 (2) | 0.0066 (16) | 0.0183 (19) | −0.0023 (15) |
C11 | 0.0289 (19) | 0.0138 (14) | 0.0249 (19) | 0.0006 (13) | 0.0142 (16) | −0.0001 (12) |
C12 | 0.0227 (17) | 0.0133 (14) | 0.0192 (18) | 0.0012 (12) | 0.0104 (15) | 0.0003 (11) |
N1 | 0.0222 (15) | 0.0147 (12) | 0.0177 (15) | −0.0004 (11) | 0.0082 (12) | −0.0013 (10) |
N2 | 0.0253 (16) | 0.0129 (12) | 0.0175 (15) | −0.0004 (11) | 0.0097 (13) | 0.0004 (10) |
Zn1 | 0.0277 (3) | 0.0107 (2) | 0.0231 (3) | 0.000 | 0.0123 (3) | 0.000 |
Zn2 | 0.0274 (3) | 0.0106 (2) | 0.0212 (3) | 0.000 | 0.0106 (3) | 0.000 |
Br1 | 0.0329 (2) | 0.01709 (16) | 0.0322 (2) | 0.00397 (14) | 0.01838 (17) | 0.00109 (14) |
Br2 | 0.0317 (2) | 0.01954 (17) | 0.0281 (2) | −0.00180 (14) | 0.00900 (17) | −0.00723 (14) |
C1—N1 | 1.332 (5) | C8—H8 | 0.9300 |
C1—C2 | 1.388 (5) | C9—C11 | 1.394 (5) |
C1—H1 | 0.9300 | C9—C10 | 1.498 (5) |
C2—C3 | 1.388 (5) | C10—H10C | 0.9600 |
C2—H2 | 0.9300 | C10—H10B | 0.9600 |
C3—C5 | 1.390 (6) | C10—H10A | 0.9600 |
C3—C4 | 1.503 (5) | C11—C12 | 1.389 (5) |
C4—H4A | 0.9600 | C11—H11 | 0.9300 |
C4—H4B | 0.9600 | C12—N2 | 1.355 (4) |
C4—H4C | 0.9600 | C12—C12ii | 1.488 (7) |
C5—C6 | 1.387 (5) | Zn1—N1 | 2.053 (3) |
C5—H5 | 0.9300 | Zn2—N2 | 2.050 (3) |
C6—N1 | 1.351 (4) | Zn1—N1i | 2.053 (3) |
C6—C6i | 1.487 (8) | Zn1—Br1i | 2.3428 (6) |
C7—N2 | 1.339 (5) | Zn1—Br1 | 2.3428 (6) |
C7—C8 | 1.380 (5) | Zn2—N2ii | 2.050 (3) |
C7—H7 | 0.9300 | Zn2—Br2 | 2.3356 (9) |
C8—C9 | 1.393 (5) | Zn2—Br2ii | 2.3356 (9) |
N1—C1—C2 | 122.5 (3) | C9—C10—H10C | 109.5 |
N1—C1—H1 | 118.7 | C9—C10—H10B | 109.5 |
C2—C1—H1 | 118.7 | H10C—C10—H10B | 109.5 |
C1—C2—C3 | 119.3 (4) | C9—C10—H10A | 109.5 |
C1—C2—H2 | 120.4 | H10C—C10—H10A | 109.5 |
C3—C2—H2 | 120.4 | H10B—C10—H10A | 109.5 |
C2—C3—C5 | 117.9 (3) | C12—C11—C9 | 120.0 (3) |
C2—C3—C4 | 121.4 (4) | C12—C11—H11 | 120.0 |
C5—C3—C4 | 120.6 (4) | C9—C11—H11 | 120.0 |
C3—C4—H4A | 109.5 | N2—C12—C11 | 121.5 (3) |
C3—C4—H4B | 109.5 | N2—C12—C12ii | 115.6 (2) |
H4A—C4—H4B | 109.5 | C11—C12—C12ii | 122.9 (2) |
C3—C4—H4C | 109.5 | C1—N1—C6 | 119.0 (3) |
H4A—C4—H4C | 109.5 | C1—N1—Zn1 | 126.8 (2) |
H4B—C4—H4C | 109.5 | C6—N1—Zn1 | 114.1 (2) |
C6—C5—C3 | 120.0 (3) | C7—N2—C12 | 118.8 (3) |
C6—C5—H5 | 120.0 | C7—N2—Zn2 | 127.2 (2) |
C3—C5—H5 | 120.0 | C12—N2—Zn2 | 113.5 (2) |
N1—C6—C5 | 121.3 (4) | N1—Zn1—N1i | 80.61 (17) |
N1—C6—C6i | 115.6 (2) | N1—Zn1—Br1i | 109.77 (9) |
C5—C6—C6i | 123.1 (2) | N1i—Zn1—Br1i | 117.20 (9) |
N2—C7—C8 | 122.2 (3) | N1—Zn1—Br1 | 117.20 (9) |
N2—C7—H7 | 118.9 | N1i—Zn1—Br1 | 109.77 (9) |
C8—C7—H7 | 118.9 | Br1i—Zn1—Br1 | 117.13 (3) |
C7—C8—C9 | 120.1 (3) | N2—Zn2—N2ii | 81.15 (17) |
C7—C8—H8 | 119.9 | N2—Zn2—Br2 | 114.76 (9) |
C9—C8—H8 | 119.9 | N2ii—Zn2—Br2 | 111.31 (9) |
C8—C9—C11 | 117.4 (3) | N2—Zn2—Br2ii | 111.31 (9) |
C8—C9—C10 | 121.8 (3) | N2ii—Zn2—Br2ii | 114.76 (9) |
C11—C9—C10 | 120.8 (3) | Br2—Zn2—Br2ii | 118.01 (4) |
N1—C1—C2—C3 | −1.1 (6) | C6i—C6—N1—Zn1 | 1.4 (5) |
C1—C2—C3—C5 | 0.8 (6) | C8—C7—N2—C12 | 0.9 (6) |
C1—C2—C3—C4 | −179.6 (4) | C8—C7—N2—Zn2 | −170.8 (3) |
C2—C3—C5—C6 | −0.2 (6) | C11—C12—N2—C7 | −0.8 (6) |
C4—C3—C5—C6 | −179.9 (4) | C12ii—C12—N2—C7 | 179.9 (4) |
C3—C5—C6—N1 | −0.2 (6) | C11—C12—N2—Zn2 | 172.0 (3) |
C3—C5—C6—C6i | −178.8 (4) | C12ii—C12—N2—Zn2 | −7.3 (5) |
N2—C7—C8—C9 | 0.0 (6) | C1—N1—Zn1—N1i | −177.6 (4) |
C7—C8—C9—C11 | −1.0 (6) | C6—N1—Zn1—N1i | −0.5 (2) |
C7—C8—C9—C10 | 176.7 (4) | C1—N1—Zn1—Br1i | −62.0 (3) |
C8—C9—C11—C12 | 1.0 (6) | C6—N1—Zn1—Br1i | 115.1 (3) |
C10—C9—C11—C12 | −176.7 (4) | C1—N1—Zn1—Br1 | 74.9 (3) |
C9—C11—C12—N2 | −0.2 (6) | C6—N1—Zn1—Br1 | −108.0 (3) |
C9—C11—C12—C12ii | 179.1 (4) | C7—N2—Zn2—N2ii | 174.8 (4) |
C2—C1—N1—C6 | 0.7 (6) | C12—N2—Zn2—N2ii | 2.71 (19) |
C2—C1—N1—Zn1 | 177.7 (3) | C7—N2—Zn2—Br2 | −75.8 (3) |
C5—C6—N1—C1 | −0.1 (6) | C12—N2—Zn2—Br2 | 112.2 (3) |
C6i—C6—N1—C1 | 178.7 (4) | C7—N2—Zn2—Br2ii | 61.5 (3) |
C5—C6—N1—Zn1 | −177.4 (3) | C12—N2—Zn2—Br2ii | −110.5 (3) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···Br1iii | 0.96 | 2.89 | 3.772 (5) | 152 |
Symmetry code: (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [ZnBr2(C12H12N2)] |
Mr | 409.43 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 120 |
a, b, c (Å) | 13.801 (3), 8.2454 (16), 13.716 (3) |
β (°) | 117.47 (3) |
V (Å3) | 1384.9 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.52 |
Crystal size (mm) | 0.30 × 0.22 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.157, 0.479 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8352, 3560, 2963 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.687 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.099, 1.07 |
No. of reflections | 3560 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −1.04 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
Zn1—N1 | 2.053 (3) | Zn1—Br1 | 2.3428 (6) |
Zn2—N2 | 2.050 (3) | Zn2—Br2 | 2.3356 (9) |
N1—Zn1—N1i | 80.61 (17) | N2—Zn2—N2ii | 81.15 (17) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···Br1iii | 0.96 | 2.89 | 3.772 (5) | 152 |
Symmetry code: (iii) x, y−1, z. |
Acknowledgements
We are grateful to Damghan University for financial support.
References
Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307. Web of Science CSD CrossRef IUCr Journals Google Scholar
Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950. Web of Science CSD CrossRef CAS Google Scholar
Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114–3122. Web of Science CSD CrossRef CAS Google Scholar
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352–m353. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395. Web of Science CSD CrossRef CAS Google Scholar
Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155–m156. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), iridium (Yoshikawa et al., 2003) and cadmium (Kalateh et al., 2010). Here, we report the synthesis and structure of the title compound.
The asymmetric unit of the title compound, (Fig. 1), contains two half-molecule. The ZnII atom is for-coordinated in distorted tetragonal configurations by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine and two Br atoms. The Zn—Br and Zn—N bond lengths and angles are collected in Table 1.
In the crystal structure, intermolecular C—H···Br hydrogen bonds (Table 2) may stabilize the structure (Fig. 2).