organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[4-(methyl­sulfan­yl)phen­yl]arsine

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 17 July 2010; accepted 19 July 2010; online 24 July 2010)

In the title compound, C21H21AsS3, the three benzene rings make dihedral angles of 88.41 (10), 87.75 (9) and 74.74 (10)° with each other. The methyl­sulfanyl groups are roughly coplanar with their attached benzene rings [C—S—C—C torsion angles = −7.6 (2), 11.2 (2) and 4.1 (2)°]. In the crystal, weak C—H⋯π inter­actions link the mol­ecules.

Related literature

For related structures of tris­aryl­arsines with osmium and ruthenium, see: Cullen et al. (1995[Cullen, W. R., Rettig, S. J. & Zheng, T. C. (1995). Organometallics, 14, 1466-1470.]); Shawkataly et al. (2009a[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009a). Acta Cryst. E65, m1622-m1623.],b[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009b). Acta Cryst. E65, m1624-m1625.], 2010a[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, m30-m31.],b[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, m180-m181.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21AsS3

  • Mr = 444.48

  • Monoclinic, P 21 /c

  • a = 11.0839 (2) Å

  • b = 11.4556 (2) Å

  • c = 17.3247 (2) Å

  • β = 110.860 (1)°

  • V = 2055.58 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 100 K

  • 0.35 × 0.13 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.545, Tmax = 0.821

  • 31130 measured reflections

  • 7111 independent reflections

  • 5098 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.01

  • 7111 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21ACg1i 0.96 2.55 3.441 (3) 155
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Trisarylarsines are used in the synthesis of osmium and ruthenium cluster derivatives (Cullen et al., 1995; Shawkataly et al., 2009a, b, 2010a, b).

The three benzene rings of the title compound (Fig. 1) make dihedral angles (C1–C6/C7–C12, C1–C6/C13–C18 and C7–C12/C13–C18) of 88.41 (10), 87.75 (9) and 74.74 (10)° with each other respectively. The methylsulfanyl groups are nearly coplanar with the attached benzene rings [torsion angles of C19–S1–C4–C3 = -7.6 (2), C20–S2–C10–C9 = 11.2 (2) and C21–S3–C16–C17 = 4.1 (2)°]. In the crystal structure, the molecules are stacked along a axis (Fig. 2). Weak intermolecular C—H···π interactions further stabilize the crystal structure (Table 1).

Related literature top

For related structures of trisarylarsines with osmium and ruthenium, see: Cullen et al. (1995); Shawkataly et al. (2009a,b, 2010a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The reactions were conducted under an atmosphere of high purity nitrogen using standard Schlenk techniques and tetrahydrofuran (THF) dried over sodium metal. Tris(4-(methylsulfanyl)phenyl)arsine was prepared from arsenic trichloride and 4-(methylsulfanyl)phenylmagnesium bromide in tetrahydrofuran. Colourless blocks of (I) were obtained by slow evaporation from a chloroform solution.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was applied to the methyl groups.

Structure description top

Trisarylarsines are used in the synthesis of osmium and ruthenium cluster derivatives (Cullen et al., 1995; Shawkataly et al., 2009a, b, 2010a, b).

The three benzene rings of the title compound (Fig. 1) make dihedral angles (C1–C6/C7–C12, C1–C6/C13–C18 and C7–C12/C13–C18) of 88.41 (10), 87.75 (9) and 74.74 (10)° with each other respectively. The methylsulfanyl groups are nearly coplanar with the attached benzene rings [torsion angles of C19–S1–C4–C3 = -7.6 (2), C20–S2–C10–C9 = 11.2 (2) and C21–S3–C16–C17 = 4.1 (2)°]. In the crystal structure, the molecules are stacked along a axis (Fig. 2). Weak intermolecular C—H···π interactions further stabilize the crystal structure (Table 1).

For related structures of trisarylarsines with osmium and ruthenium, see: Cullen et al. (1995); Shawkataly et al. (2009a,b, 2010a,b). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis, showing the molecules are stacked along a axis.
Tris[4-(methylsulfanyl)phenyl]arsine top
Crystal data top
C21H21AsS3F(000) = 912
Mr = 444.48Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6720 reflections
a = 11.0839 (2) Åθ = 2.7–31.0°
b = 11.4556 (2) ŵ = 1.96 mm1
c = 17.3247 (2) ÅT = 100 K
β = 110.860 (1)°Block, colourless
V = 2055.58 (6) Å30.35 × 0.13 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
7111 independent reflections
Radiation source: fine-focus sealed tube5098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 32.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.545, Tmax = 0.821k = 1117
31130 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0486P)2]
where P = (Fo2 + 2Fc2)/3
7111 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C21H21AsS3V = 2055.58 (6) Å3
Mr = 444.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0839 (2) ŵ = 1.96 mm1
b = 11.4556 (2) ÅT = 100 K
c = 17.3247 (2) Å0.35 × 0.13 × 0.11 mm
β = 110.860 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
7111 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5098 reflections with I > 2σ(I)
Tmin = 0.545, Tmax = 0.821Rint = 0.051
31130 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.01Δρmax = 0.86 e Å3
7111 reflectionsΔρmin = 0.51 e Å3
229 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.851830 (19)0.703422 (18)0.496255 (12)0.01802 (6)
S10.60863 (5)1.03859 (5)0.17158 (3)0.03019 (13)
S20.83788 (6)1.05708 (5)0.78874 (3)0.02996 (13)
S31.44348 (5)0.76333 (6)0.50798 (4)0.03192 (14)
C10.78015 (19)0.80668 (17)0.40006 (12)0.0183 (4)
C20.64685 (19)0.81069 (18)0.35944 (13)0.0224 (4)
H2A0.59440.76530.37900.027*
C30.59018 (19)0.88051 (19)0.29053 (12)0.0234 (4)
H3A0.50080.88240.26510.028*
C40.66768 (19)0.94822 (18)0.25918 (12)0.0204 (4)
C50.80152 (19)0.94533 (17)0.29981 (11)0.0192 (4)
H5A0.85420.99050.28020.023*
C60.85652 (18)0.87601 (17)0.36893 (11)0.0183 (4)
H6A0.94580.87540.39520.022*
C70.84768 (18)0.81425 (17)0.58127 (12)0.0178 (4)
C80.8544 (2)0.77177 (19)0.65816 (13)0.0262 (5)
H8A0.86050.69180.66800.031*
C90.8520 (2)0.8473 (2)0.71996 (13)0.0286 (5)
H9A0.85670.81740.77090.034*
C100.84255 (19)0.96751 (18)0.70672 (12)0.0204 (4)
C110.83575 (18)1.01047 (18)0.63009 (12)0.0197 (4)
H11A0.82931.09040.62010.024*
C120.83859 (18)0.93414 (17)0.56862 (12)0.0186 (4)
H12A0.83430.96390.51780.022*
C131.03380 (18)0.72022 (17)0.50883 (12)0.0178 (4)
C141.0843 (2)0.64556 (18)0.46419 (12)0.0214 (4)
H14A1.03320.58570.43300.026*
C151.2091 (2)0.65933 (19)0.46564 (12)0.0230 (4)
H15A1.24080.60920.43510.028*
C161.28772 (19)0.74795 (19)0.51259 (12)0.0209 (4)
C171.24043 (19)0.81979 (18)0.56012 (12)0.0198 (4)
H17A1.29310.87680.59380.024*
C181.11392 (19)0.80605 (17)0.55710 (11)0.0190 (4)
H18A1.08250.85550.58810.023*
C190.4396 (2)1.0054 (2)0.12929 (14)0.0353 (6)
H19A0.40181.04270.07650.053*
H19B0.39841.03330.16600.053*
H19C0.42810.92250.12280.053*
C200.7909 (3)1.1960 (2)0.73922 (14)0.0367 (6)
H20A0.77051.24840.77610.055*
H20B0.71641.18620.68990.055*
H20C0.86061.22760.72520.055*
C211.5139 (2)0.8774 (3)0.58105 (19)0.0518 (8)
H21A1.59940.89370.58210.078*
H21B1.51800.85310.63500.078*
H21C1.46190.94650.56520.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.01501 (10)0.01771 (11)0.02239 (10)0.00177 (8)0.00793 (8)0.00007 (8)
S10.0216 (3)0.0365 (3)0.0284 (3)0.0021 (2)0.0039 (2)0.0102 (2)
S20.0388 (3)0.0320 (3)0.0207 (2)0.0064 (3)0.0126 (2)0.0011 (2)
S30.0181 (3)0.0435 (4)0.0390 (3)0.0006 (2)0.0161 (2)0.0026 (3)
C10.0159 (9)0.0198 (10)0.0199 (9)0.0017 (8)0.0074 (7)0.0023 (7)
C20.0152 (9)0.0263 (11)0.0274 (10)0.0050 (8)0.0096 (8)0.0010 (8)
C30.0136 (9)0.0296 (12)0.0265 (10)0.0020 (8)0.0065 (8)0.0013 (9)
C40.0186 (10)0.0214 (10)0.0210 (9)0.0002 (8)0.0069 (8)0.0015 (8)
C50.0176 (9)0.0208 (10)0.0208 (9)0.0029 (8)0.0088 (7)0.0033 (8)
C60.0135 (9)0.0216 (10)0.0210 (9)0.0027 (7)0.0075 (7)0.0029 (8)
C70.0122 (9)0.0209 (10)0.0220 (9)0.0005 (7)0.0081 (7)0.0017 (7)
C80.0351 (13)0.0199 (11)0.0282 (11)0.0051 (9)0.0168 (9)0.0061 (8)
C90.0379 (13)0.0277 (12)0.0230 (10)0.0047 (10)0.0143 (9)0.0071 (9)
C100.0164 (9)0.0260 (11)0.0199 (9)0.0016 (8)0.0077 (7)0.0003 (8)
C110.0166 (9)0.0191 (10)0.0243 (9)0.0007 (8)0.0085 (8)0.0010 (8)
C120.0175 (9)0.0197 (10)0.0210 (9)0.0007 (8)0.0097 (7)0.0037 (7)
C130.0145 (9)0.0195 (10)0.0196 (9)0.0002 (7)0.0061 (7)0.0016 (7)
C140.0210 (10)0.0200 (10)0.0232 (9)0.0013 (8)0.0078 (8)0.0015 (8)
C150.0215 (10)0.0256 (11)0.0239 (10)0.0044 (9)0.0106 (8)0.0015 (8)
C160.0156 (9)0.0248 (11)0.0238 (10)0.0037 (8)0.0087 (8)0.0046 (8)
C170.0137 (9)0.0239 (11)0.0215 (9)0.0006 (7)0.0059 (7)0.0019 (8)
C180.0169 (9)0.0215 (10)0.0194 (9)0.0011 (8)0.0076 (7)0.0001 (7)
C190.0242 (12)0.0306 (13)0.0392 (13)0.0000 (10)0.0033 (10)0.0034 (10)
C200.0505 (16)0.0318 (14)0.0249 (11)0.0106 (11)0.0100 (11)0.0038 (9)
C210.0193 (12)0.069 (2)0.0692 (19)0.0159 (13)0.0189 (12)0.0260 (16)
Geometric parameters (Å, º) top
As1—C71.9574 (19)C9—H9A0.9300
As1—C131.960 (2)C10—C111.392 (3)
As1—C11.9660 (19)C11—C121.387 (3)
S1—C41.760 (2)C11—H11A0.9300
S1—C191.793 (2)C12—H12A0.9300
S2—C101.768 (2)C13—C181.388 (3)
S2—C201.795 (2)C13—C141.397 (3)
S3—C161.765 (2)C14—C151.384 (3)
S3—C211.793 (3)C14—H14A0.9300
C1—C21.393 (3)C15—C161.395 (3)
C1—C61.401 (3)C15—H15A0.9300
C2—C31.388 (3)C16—C171.392 (3)
C2—H2A0.9300C17—C181.393 (3)
C3—C41.402 (3)C17—H17A0.9300
C3—H3A0.9300C18—H18A0.9300
C4—C51.398 (3)C19—H19A0.9600
C5—C61.384 (3)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C6—H6A0.9300C20—H20A0.9600
C7—C121.389 (3)C20—H20B0.9600
C7—C81.395 (3)C20—H20C0.9600
C8—C91.384 (3)C21—H21A0.9600
C8—H8A0.9300C21—H21B0.9600
C9—C101.394 (3)C21—H21C0.9600
C7—As1—C1398.73 (8)C11—C12—C7121.50 (18)
C7—As1—C197.87 (8)C11—C12—H12A119.2
C13—As1—C197.15 (8)C7—C12—H12A119.2
C4—S1—C19103.97 (10)C18—C13—C14118.11 (18)
C10—S2—C20102.53 (10)C18—C13—As1123.30 (15)
C16—S3—C21103.15 (11)C14—C13—As1118.53 (15)
C2—C1—C6117.67 (18)C15—C14—C13121.01 (19)
C2—C1—As1118.95 (14)C15—C14—H14A119.5
C6—C1—As1123.38 (14)C13—C14—H14A119.5
C3—C2—C1121.84 (18)C14—C15—C16120.41 (19)
C3—C2—H2A119.1C14—C15—H15A119.8
C1—C2—H2A119.1C16—C15—H15A119.8
C2—C3—C4120.00 (19)C17—C16—C15119.12 (18)
C2—C3—H3A120.0C17—C16—S3123.24 (16)
C4—C3—H3A120.0C15—C16—S3117.64 (16)
C5—C4—C3118.59 (18)C16—C17—C18119.79 (19)
C5—C4—S1116.77 (15)C16—C17—H17A120.1
C3—C4—S1124.64 (15)C18—C17—H17A120.1
C6—C5—C4120.71 (18)C13—C18—C17121.48 (19)
C6—C5—H5A119.6C13—C18—H18A119.3
C4—C5—H5A119.6C17—C18—H18A119.3
C5—C6—C1121.18 (18)S1—C19—H19A109.5
C5—C6—H6A119.4S1—C19—H19B109.5
C1—C6—H6A119.4H19A—C19—H19B109.5
C12—C7—C8118.15 (18)S1—C19—H19C109.5
C12—C7—As1122.86 (14)H19A—C19—H19C109.5
C8—C7—As1118.99 (15)H19B—C19—H19C109.5
C9—C8—C7120.8 (2)S2—C20—H20A109.5
C9—C8—H8A119.6S2—C20—H20B109.5
C7—C8—H8A119.6H20A—C20—H20B109.5
C8—C9—C10120.74 (19)S2—C20—H20C109.5
C8—C9—H9A119.6H20A—C20—H20C109.5
C10—C9—H9A119.6H20B—C20—H20C109.5
C11—C10—C9118.78 (18)S3—C21—H21A109.5
C11—C10—S2123.63 (16)S3—C21—H21B109.5
C9—C10—S2117.58 (15)H21A—C21—H21B109.5
C12—C11—C10120.06 (19)S3—C21—H21C109.5
C12—C11—H11A120.0H21A—C21—H21C109.5
C10—C11—H11A120.0H21B—C21—H21C109.5
C7—As1—C1—C289.18 (16)C8—C9—C10—S2179.13 (18)
C13—As1—C1—C2170.93 (16)C20—S2—C10—C1111.2 (2)
C7—As1—C1—C691.80 (17)C20—S2—C10—C9167.94 (19)
C13—As1—C1—C68.09 (17)C9—C10—C11—C120.1 (3)
C6—C1—C2—C30.1 (3)S2—C10—C11—C12179.27 (15)
As1—C1—C2—C3179.13 (16)C10—C11—C12—C70.2 (3)
C1—C2—C3—C41.0 (3)C8—C7—C12—C110.2 (3)
C2—C3—C4—C51.3 (3)As1—C7—C12—C11179.94 (14)
C2—C3—C4—S1179.00 (16)C7—As1—C13—C189.49 (18)
C19—S1—C4—C5172.71 (16)C1—As1—C13—C1889.65 (17)
C19—S1—C4—C37.6 (2)C7—As1—C13—C14173.47 (16)
C3—C4—C5—C60.8 (3)C1—As1—C13—C1487.39 (16)
S1—C4—C5—C6179.54 (15)C18—C13—C14—C152.3 (3)
C4—C5—C6—C10.2 (3)As1—C13—C14—C15174.91 (15)
C2—C1—C6—C50.5 (3)C13—C14—C15—C160.6 (3)
As1—C1—C6—C5178.50 (14)C14—C15—C16—C172.2 (3)
C13—As1—C7—C1279.74 (17)C14—C15—C16—S3177.57 (16)
C1—As1—C7—C1218.79 (18)C21—S3—C16—C174.1 (2)
C13—As1—C7—C8100.12 (17)C21—S3—C16—C15176.15 (18)
C1—As1—C7—C8161.35 (16)C15—C16—C17—C183.1 (3)
C12—C7—C8—C90.0 (3)S3—C16—C17—C18176.61 (15)
As1—C7—C8—C9179.87 (17)C14—C13—C18—C171.3 (3)
C7—C8—C9—C100.1 (3)As1—C13—C18—C17175.74 (14)
C8—C9—C10—C110.1 (3)C16—C17—C18—C131.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C21—H21A···Cg1i0.962.553.441 (3)155
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H21AsS3
Mr444.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.0839 (2), 11.4556 (2), 17.3247 (2)
β (°) 110.860 (1)
V3)2055.58 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.35 × 0.13 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.545, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
31130, 7111, 5098
Rint0.051
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.01
No. of reflections7111
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.51

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C21—H21A···Cg1i0.962.553.441 (3)155
Symmetry code: (i) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: E-2833-2010.

Thomson Reuters ResearcherID: A-5523-2009.

‡‡Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant No. 1001/PJJAUH/811115. IAK is grateful to USM for a Visiting Researcher position. HKF and CSY thank USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY also thanks USM for the award of a USM Fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCullen, W. R., Rettig, S. J. & Zheng, T. C. (1995). Organometallics, 14, 1466–1470.  CSD CrossRef CAS Web of Science Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009a). Acta Cryst. E65, m1622–m1623.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009b). Acta Cryst. E65, m1624–m1625.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, m30–m31.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, m180–m181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds