organic compounds
3-Phenyl-4-{3-[(p-tolyloxy)methyl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazin-6-yl}sydnone
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my
In the title compound (systematic name: 3-phenyl-4-{3-[(p-tolyloxy)methyl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazin-6-yl}-1,2,3-oxadiazol-3-ium-5-olate), C20H16N6O3S, an intramolecular C—H⋯O hydrogen bond generates an S(6) ring motif. The 3,6-dihydro-1,3,4-thiadiazine ring adopts a twist-boat conformation. The 1,2,3-oxadiazole and 1,2,4-triazole rings are inclined to each other at an interplanar angle of 44.13 (13)°. The phenyl ring makes an interplanar angle of 67.40 (13)° with the attached 1,2,3-oxadiazole ring. In the adjacent molecules are interconnected into two-molecule-thick arrays parallel to (100) via C—H⋯O and C—H⋯N hydrogen bonds. A short S⋯O contact [2.9512 (18) Å] is observed.
Related literature
For general background to, and applications of materials related to the title compound, see: Hedge et al. (2008), Kalluraya & Rahiman (1997); Kalluraya et al. (2003). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related structures, see: Goh et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S160053681002982X/hb5565sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681002982X/hb5565Isup2.hkl
A solution of triazole (0.01 mol) and 4-bromoacetyl-3-phenylsydnone (0.01 mol) in absolute ethanol (20 ml) was heated under reflux for 10–12 h. The solution was concentrated, cooled to room temperature and neutrallized with 10 % sodium bicarbonate solution. The separated solid was filtered, washed with water, dried and recrystallized from ethanol. Colourless blocks of (I) were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.
All hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was used for the methyl group.
Triazolothiadiazines have shown to possess significant biological and pharmacological activities such as anthelmintic, analgesic and anti-inflammatory (Kalluraya & Rahiman, 1997) properties. Encouraged by these literatures, we have synthesized triazolothiadiazines containing the sydnone moiety. The introduction of sydnone moiety into an heterocyclic compound will increase the biological and pharmacological activities of heterocyclic system (Hedge et al., 2008). Triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).
In the title compound, (I), an intramolecular C10—H10A···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The 3,6-dihydro-1,3,4-thiadiazine ring (C9-C11/N3/N4/S1) adopts twist-boat conformation, with puckering parameters of Q = 0.630 (2) Å, θ = 67.03 (18)° and φ = 323.0 (2)° (Cremer & Pople, 1975). The essentially planar 1,2,3-oxadiazole (C12/C13/O2/N5/N6) and 1,2,4-triazole (C8/N1/N2/C9/N3) rings are inclined to each other at interplanar angle of 44.13 (13)°. The C14-C19 phenyl ring is inclined at interplanar angle of 67.40 (13)° with respect to the attached 1,2,3-oxadiazole ring. The geometric parameters are comparable to those reported in closely related structures (Goh et al., 2010a,b,c).
In the
intermolecular C10—H10A···O3, C10—H10B···O3 and C19—H19A···N5 hydrogen bonds (Table 1) link adjacent molecules into two-molecule-thick arrays parallel to (100) plane (Fig. 2). Interestingly, further stabilization of the is provided by intermolecular short S1···O3 interaction [2.9512 (18) Å; symmetry code: -x+1/2, -y+1/2, -z] which is significantly shorter than the sum of Van der Waals radii of the relevant atoms.For general background to, and applications of materials related to the title compound, see: Hedge et al. (2008), Kalluraya & Rahiman (1997); Kalluraya et al. (2003). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related structures, see: Goh et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For puckering parameters, see: Cremer & Pople (1975).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C20H16N6O3S | F(000) = 1744 |
Mr = 420.45 | Dx = 1.477 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2771 reflections |
a = 42.0781 (12) Å | θ = 2.5–30.0° |
b = 8.2304 (2) Å | µ = 0.21 mm−1 |
c = 11.1488 (3) Å | T = 100 K |
β = 101.630 (2)° | Block, colourless |
V = 3781.78 (17) Å3 | 0.29 × 0.13 × 0.05 mm |
Z = 8 |
Bruker SMART APEXII CCD diffractometer | 3486 independent reflections |
Radiation source: fine-focus sealed tube | 2496 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
φ and ω scans | θmax = 25.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −50→48 |
Tmin = 0.942, Tmax = 0.989 | k = −9→9 |
11383 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0388P)2 + 2.5537P] where P = (Fo2 + 2Fc2)/3 |
3486 reflections | (Δ/σ)max < 0.001 |
272 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
C20H16N6O3S | V = 3781.78 (17) Å3 |
Mr = 420.45 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 42.0781 (12) Å | µ = 0.21 mm−1 |
b = 8.2304 (2) Å | T = 100 K |
c = 11.1488 (3) Å | 0.29 × 0.13 × 0.05 mm |
β = 101.630 (2)° |
Bruker SMART APEXII CCD diffractometer | 3486 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2496 reflections with I > 2σ(I) |
Tmin = 0.942, Tmax = 0.989 | Rint = 0.059 |
11383 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.38 e Å−3 |
3486 reflections | Δρmin = −0.40 e Å−3 |
272 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.220066 (15) | 0.57970 (8) | 0.11452 (6) | 0.01457 (18) | |
O1 | 0.10960 (4) | 0.4996 (2) | 0.35734 (14) | 0.0177 (4) | |
O2 | 0.19581 (4) | −0.0842 (2) | −0.00307 (14) | 0.0172 (4) | |
O3 | 0.24309 (4) | 0.0525 (2) | 0.06238 (15) | 0.0184 (4) | |
N1 | 0.16869 (5) | 0.7388 (3) | 0.34427 (18) | 0.0153 (5) | |
N2 | 0.19003 (5) | 0.7681 (3) | 0.26397 (18) | 0.0152 (5) | |
N3 | 0.17980 (5) | 0.5056 (3) | 0.26683 (17) | 0.0129 (5) | |
N4 | 0.17428 (5) | 0.3462 (3) | 0.22624 (17) | 0.0129 (5) | |
N5 | 0.16398 (5) | −0.0737 (3) | 0.00868 (18) | 0.0167 (5) | |
N6 | 0.16286 (5) | 0.0537 (3) | 0.07725 (18) | 0.0132 (5) | |
C1 | 0.05562 (6) | 0.4348 (4) | 0.3630 (2) | 0.0206 (7) | |
H1A | 0.0495 | 0.4827 | 0.2862 | 0.025* | |
C2 | 0.03244 (6) | 0.3680 (4) | 0.4195 (2) | 0.0245 (7) | |
H2A | 0.0108 | 0.3711 | 0.3796 | 0.029* | |
C3 | 0.04051 (6) | 0.2958 (4) | 0.5348 (2) | 0.0204 (7) | |
C4 | 0.07298 (6) | 0.2943 (3) | 0.5906 (2) | 0.0211 (7) | |
H4A | 0.0790 | 0.2479 | 0.6679 | 0.025* | |
C5 | 0.09682 (6) | 0.3592 (3) | 0.5357 (2) | 0.0187 (6) | |
H5A | 0.1185 | 0.3552 | 0.5753 | 0.022* | |
C6 | 0.08808 (6) | 0.4304 (3) | 0.4209 (2) | 0.0159 (6) | |
C7 | 0.14297 (6) | 0.4960 (4) | 0.4192 (2) | 0.0163 (6) | |
H7A | 0.1503 | 0.3844 | 0.4318 | 0.020* | |
H7B | 0.1454 | 0.5481 | 0.4986 | 0.020* | |
C8 | 0.16269 (6) | 0.5830 (3) | 0.3431 (2) | 0.0135 (6) | |
C9 | 0.19615 (6) | 0.6265 (3) | 0.2203 (2) | 0.0129 (6) | |
C10 | 0.22834 (6) | 0.3743 (3) | 0.1735 (2) | 0.0139 (6) | |
H10A | 0.2405 | 0.3153 | 0.1223 | 0.017* | |
H10B | 0.2414 | 0.3788 | 0.2558 | 0.017* | |
C11 | 0.19694 (6) | 0.2875 (3) | 0.1751 (2) | 0.0111 (6) | |
C12 | 0.19158 (6) | 0.1326 (3) | 0.1140 (2) | 0.0117 (6) | |
C13 | 0.21431 (6) | 0.0430 (3) | 0.0616 (2) | 0.0138 (6) | |
C14 | 0.13078 (6) | 0.0942 (3) | 0.0973 (2) | 0.0145 (6) | |
C15 | 0.10783 (6) | 0.1424 (3) | −0.0032 (2) | 0.0178 (6) | |
H15A | 0.1131 | 0.1511 | −0.0802 | 0.021* | |
C16 | 0.07679 (6) | 0.1774 (4) | 0.0136 (2) | 0.0230 (7) | |
H16A | 0.0608 | 0.2094 | −0.0526 | 0.028* | |
C17 | 0.06952 (6) | 0.1648 (3) | 0.1288 (2) | 0.0225 (7) | |
H17A | 0.0487 | 0.1896 | 0.1399 | 0.027* | |
C18 | 0.09303 (6) | 0.1153 (3) | 0.2280 (2) | 0.0210 (7) | |
H18A | 0.0879 | 0.1066 | 0.3050 | 0.025* | |
C19 | 0.12400 (6) | 0.0791 (3) | 0.2130 (2) | 0.0173 (6) | |
H19A | 0.1399 | 0.0453 | 0.2789 | 0.021* | |
C20 | 0.01502 (7) | 0.2227 (4) | 0.5972 (3) | 0.0314 (8) | |
H20D | 0.0252 | 0.1820 | 0.6764 | 0.047* | |
H20A | 0.0043 | 0.1352 | 0.5483 | 0.047* | |
H20B | −0.0006 | 0.3044 | 0.6066 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0188 (3) | 0.0096 (4) | 0.0166 (3) | 0.0008 (3) | 0.0066 (2) | −0.0007 (3) |
O1 | 0.0168 (9) | 0.0222 (12) | 0.0141 (9) | −0.0022 (9) | 0.0028 (7) | 0.0017 (9) |
O2 | 0.0226 (10) | 0.0125 (11) | 0.0172 (9) | 0.0016 (9) | 0.0059 (7) | −0.0051 (9) |
O3 | 0.0185 (10) | 0.0192 (12) | 0.0184 (9) | 0.0015 (9) | 0.0057 (7) | −0.0013 (9) |
N1 | 0.0197 (12) | 0.0147 (14) | 0.0119 (11) | 0.0013 (11) | 0.0039 (9) | −0.0007 (11) |
N2 | 0.0194 (12) | 0.0124 (14) | 0.0144 (11) | 0.0007 (10) | 0.0050 (9) | −0.0002 (11) |
N3 | 0.0160 (11) | 0.0083 (13) | 0.0140 (11) | 0.0006 (10) | 0.0026 (9) | −0.0036 (11) |
N4 | 0.0200 (11) | 0.0073 (13) | 0.0116 (10) | 0.0006 (10) | 0.0033 (9) | 0.0009 (11) |
N5 | 0.0208 (12) | 0.0139 (14) | 0.0156 (11) | 0.0019 (11) | 0.0044 (9) | −0.0011 (12) |
N6 | 0.0202 (12) | 0.0088 (13) | 0.0101 (10) | 0.0031 (10) | 0.0021 (8) | 0.0001 (11) |
C1 | 0.0234 (14) | 0.0203 (18) | 0.0171 (14) | −0.0002 (14) | 0.0020 (11) | −0.0008 (14) |
C2 | 0.0171 (14) | 0.0258 (19) | 0.0298 (16) | −0.0009 (14) | 0.0030 (11) | −0.0038 (15) |
C3 | 0.0232 (15) | 0.0153 (17) | 0.0245 (15) | −0.0003 (13) | 0.0093 (12) | −0.0029 (14) |
C4 | 0.0292 (16) | 0.0193 (18) | 0.0164 (14) | 0.0005 (14) | 0.0086 (12) | 0.0016 (14) |
C5 | 0.0179 (14) | 0.0181 (17) | 0.0202 (14) | 0.0017 (13) | 0.0036 (11) | 0.0007 (14) |
C6 | 0.0206 (14) | 0.0108 (16) | 0.0179 (13) | 0.0008 (13) | 0.0074 (10) | −0.0028 (13) |
C7 | 0.0163 (13) | 0.0182 (17) | 0.0141 (13) | 0.0026 (13) | 0.0024 (10) | 0.0003 (13) |
C8 | 0.0142 (13) | 0.0140 (16) | 0.0119 (12) | 0.0023 (13) | 0.0015 (10) | −0.0012 (14) |
C9 | 0.0162 (13) | 0.0105 (16) | 0.0112 (13) | −0.0009 (12) | 0.0004 (10) | 0.0014 (13) |
C10 | 0.0171 (13) | 0.0079 (16) | 0.0168 (13) | 0.0030 (12) | 0.0035 (10) | 0.0011 (13) |
C11 | 0.0171 (13) | 0.0072 (15) | 0.0078 (12) | 0.0042 (12) | −0.0003 (10) | 0.0019 (12) |
C12 | 0.0139 (13) | 0.0099 (15) | 0.0110 (12) | 0.0008 (12) | 0.0018 (10) | 0.0013 (12) |
C13 | 0.0263 (15) | 0.0057 (16) | 0.0086 (12) | −0.0009 (13) | 0.0016 (10) | 0.0015 (12) |
C14 | 0.0152 (13) | 0.0099 (16) | 0.0181 (13) | −0.0043 (12) | 0.0025 (10) | −0.0021 (13) |
C15 | 0.0222 (14) | 0.0157 (17) | 0.0149 (13) | −0.0029 (13) | 0.0026 (11) | 0.0012 (13) |
C16 | 0.0210 (15) | 0.0209 (19) | 0.0256 (15) | −0.0005 (14) | 0.0009 (11) | 0.0035 (15) |
C17 | 0.0207 (14) | 0.0170 (18) | 0.0316 (16) | 0.0002 (13) | 0.0094 (12) | −0.0016 (15) |
C18 | 0.0284 (15) | 0.0171 (18) | 0.0198 (14) | −0.0048 (14) | 0.0105 (12) | −0.0033 (13) |
C19 | 0.0253 (14) | 0.0123 (16) | 0.0131 (13) | −0.0032 (13) | 0.0010 (10) | 0.0009 (13) |
C20 | 0.0276 (16) | 0.031 (2) | 0.0377 (18) | −0.0037 (15) | 0.0126 (13) | −0.0001 (17) |
S1—C9 | 1.741 (2) | C4—H4A | 0.9300 |
S1—C10 | 1.822 (3) | C5—C6 | 1.387 (3) |
O1—C6 | 1.381 (3) | C5—H5A | 0.9300 |
O1—C7 | 1.435 (3) | C7—C8 | 1.485 (3) |
O2—N5 | 1.375 (2) | C7—H7A | 0.9700 |
O2—C13 | 1.413 (3) | C7—H7B | 0.9700 |
O3—C13 | 1.212 (3) | C10—C11 | 1.505 (3) |
N1—C8 | 1.306 (3) | C10—H10A | 0.9700 |
N1—N2 | 1.411 (3) | C10—H10B | 0.9700 |
N2—C9 | 1.309 (3) | C11—C12 | 1.442 (4) |
N3—C9 | 1.369 (3) | C12—C13 | 1.423 (3) |
N3—C8 | 1.376 (3) | C14—C19 | 1.382 (3) |
N3—N4 | 1.392 (3) | C14—C15 | 1.382 (3) |
N4—C11 | 1.299 (3) | C15—C16 | 1.387 (3) |
N5—N6 | 1.304 (3) | C15—H15A | 0.9300 |
N6—C12 | 1.360 (3) | C16—C17 | 1.382 (4) |
N6—C14 | 1.451 (3) | C16—H16A | 0.9300 |
C1—C2 | 1.378 (4) | C17—C18 | 1.388 (4) |
C1—C6 | 1.389 (3) | C17—H17A | 0.9300 |
C1—H1A | 0.9300 | C18—C19 | 1.380 (3) |
C2—C3 | 1.395 (4) | C18—H18A | 0.9300 |
C2—H2A | 0.9300 | C19—H19A | 0.9300 |
C3—C4 | 1.382 (3) | C20—H20D | 0.9600 |
C3—C20 | 1.516 (4) | C20—H20A | 0.9600 |
C4—C5 | 1.384 (3) | C20—H20B | 0.9600 |
C9—S1—C10 | 93.16 (12) | N2—C9—S1 | 129.3 (2) |
C6—O1—C7 | 115.08 (18) | N3—C9—S1 | 119.9 (2) |
N5—O2—C13 | 110.62 (18) | C11—C10—S1 | 109.88 (17) |
C8—N1—N2 | 107.9 (2) | C11—C10—H10A | 109.7 |
C9—N2—N1 | 106.4 (2) | S1—C10—H10A | 109.7 |
C9—N3—C8 | 105.3 (2) | C11—C10—H10B | 109.7 |
C9—N3—N4 | 128.70 (19) | S1—C10—H10B | 109.7 |
C8—N3—N4 | 124.3 (2) | H10A—C10—H10B | 108.2 |
C11—N4—N3 | 113.8 (2) | N4—C11—C12 | 118.5 (2) |
N6—N5—O2 | 104.90 (18) | N4—C11—C10 | 123.5 (2) |
N5—N6—C12 | 115.2 (2) | C12—C11—C10 | 117.9 (2) |
N5—N6—C14 | 114.8 (2) | N6—C12—C13 | 105.0 (2) |
C12—N6—C14 | 129.9 (2) | N6—C12—C11 | 127.6 (2) |
C2—C1—C6 | 119.8 (2) | C13—C12—C11 | 126.7 (2) |
C2—C1—H1A | 120.1 | O3—C13—O2 | 119.9 (2) |
C6—C1—H1A | 120.1 | O3—C13—C12 | 135.8 (2) |
C1—C2—C3 | 121.9 (2) | O2—C13—C12 | 104.3 (2) |
C1—C2—H2A | 119.1 | C19—C14—C15 | 122.7 (2) |
C3—C2—H2A | 119.1 | C19—C14—N6 | 119.8 (2) |
C4—C3—C2 | 117.0 (2) | C15—C14—N6 | 117.5 (2) |
C4—C3—C20 | 121.1 (2) | C14—C15—C16 | 118.2 (2) |
C2—C3—C20 | 121.9 (2) | C14—C15—H15A | 120.9 |
C3—C4—C5 | 122.4 (3) | C16—C15—H15A | 120.9 |
C3—C4—H4A | 118.8 | C17—C16—C15 | 120.1 (2) |
C5—C4—H4A | 118.8 | C17—C16—H16A | 120.0 |
C4—C5—C6 | 119.3 (2) | C15—C16—H16A | 120.0 |
C4—C5—H5A | 120.3 | C16—C17—C18 | 120.4 (2) |
C6—C5—H5A | 120.3 | C16—C17—H17A | 119.8 |
O1—C6—C5 | 124.7 (2) | C18—C17—H17A | 119.8 |
O1—C6—C1 | 115.8 (2) | C19—C18—C17 | 120.4 (2) |
C5—C6—C1 | 119.5 (2) | C19—C18—H18A | 119.8 |
O1—C7—C8 | 108.69 (19) | C17—C18—H18A | 119.8 |
O1—C7—H7A | 110.0 | C18—C19—C14 | 118.1 (2) |
C8—C7—H7A | 110.0 | C18—C19—H19A | 120.9 |
O1—C7—H7B | 110.0 | C14—C19—H19A | 120.9 |
C8—C7—H7B | 110.0 | C3—C20—H20D | 109.5 |
H7A—C7—H7B | 108.3 | C3—C20—H20A | 109.5 |
N1—C8—N3 | 109.7 (2) | H20D—C20—H20A | 109.5 |
N1—C8—C7 | 126.6 (2) | C3—C20—H20B | 109.5 |
N3—C8—C7 | 123.5 (2) | H20D—C20—H20B | 109.5 |
N2—C9—N3 | 110.8 (2) | H20A—C20—H20B | 109.5 |
C8—N1—N2—C9 | −1.1 (3) | C10—S1—C9—N2 | 154.0 (2) |
C9—N3—N4—C11 | 30.0 (3) | C10—S1—C9—N3 | −28.0 (2) |
C8—N3—N4—C11 | −167.4 (2) | C9—S1—C10—C11 | 54.13 (18) |
C13—O2—N5—N6 | 0.0 (2) | N3—N4—C11—C12 | −171.17 (19) |
O2—N5—N6—C12 | 0.0 (3) | N3—N4—C11—C10 | 7.4 (3) |
O2—N5—N6—C14 | 176.97 (18) | S1—C10—C11—N4 | −52.4 (3) |
C6—C1—C2—C3 | 0.4 (4) | S1—C10—C11—C12 | 126.2 (2) |
C1—C2—C3—C4 | 0.1 (4) | N5—N6—C12—C13 | 0.0 (3) |
C1—C2—C3—C20 | 179.9 (3) | C14—N6—C12—C13 | −176.4 (2) |
C2—C3—C4—C5 | −0.6 (4) | N5—N6—C12—C11 | 170.7 (2) |
C20—C3—C4—C5 | 179.6 (3) | C14—N6—C12—C11 | −5.7 (4) |
C3—C4—C5—C6 | 0.7 (4) | N4—C11—C12—N6 | 16.6 (4) |
C7—O1—C6—C5 | −0.8 (4) | C10—C11—C12—N6 | −162.0 (2) |
C7—O1—C6—C1 | 179.2 (2) | N4—C11—C12—C13 | −174.6 (2) |
C4—C5—C6—O1 | 179.7 (3) | C10—C11—C12—C13 | 6.8 (4) |
C4—C5—C6—C1 | −0.2 (4) | N5—O2—C13—O3 | 179.4 (2) |
C2—C1—C6—O1 | 179.8 (2) | N5—O2—C13—C12 | 0.0 (2) |
C2—C1—C6—C5 | −0.3 (4) | N6—C12—C13—O3 | −179.3 (3) |
C6—O1—C7—C8 | −176.7 (2) | C11—C12—C13—O3 | 9.9 (5) |
N2—N1—C8—N3 | 1.3 (3) | N6—C12—C13—O2 | 0.0 (2) |
N2—N1—C8—C7 | 176.2 (2) | C11—C12—C13—O2 | −170.8 (2) |
C9—N3—C8—N1 | −1.1 (3) | N5—N6—C14—C19 | 112.8 (3) |
N4—N3—C8—N1 | −167.0 (2) | C12—N6—C14—C19 | −70.9 (4) |
C9—N3—C8—C7 | −176.1 (2) | N5—N6—C14—C15 | −65.3 (3) |
N4—N3—C8—C7 | 18.0 (3) | C12—N6—C14—C15 | 111.1 (3) |
O1—C7—C8—N1 | 87.1 (3) | C19—C14—C15—C16 | 0.3 (4) |
O1—C7—C8—N3 | −98.7 (3) | N6—C14—C15—C16 | 178.3 (2) |
N1—N2—C9—N3 | 0.5 (3) | C14—C15—C16—C17 | 0.4 (4) |
N1—N2—C9—S1 | 178.59 (18) | C15—C16—C17—C18 | −0.7 (4) |
C8—N3—C9—N2 | 0.3 (3) | C16—C17—C18—C19 | 0.4 (4) |
N4—N3—C9—N2 | 165.4 (2) | C17—C18—C19—C14 | 0.3 (4) |
C8—N3—C9—S1 | −178.00 (17) | C15—C14—C19—C18 | −0.7 (4) |
N4—N3—C9—S1 | −12.9 (3) | N6—C14—C19—C18 | −178.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O3 | 0.97 | 2.27 | 3.041 (3) | 135 |
C10—H10A···O3i | 0.97 | 2.54 | 3.162 (3) | 122 |
C10—H10B···O3ii | 0.97 | 2.46 | 3.292 (3) | 144 |
C19—H19A···N5iii | 0.93 | 2.57 | 3.386 (3) | 147 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x, −y, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H16N6O3S |
Mr | 420.45 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 42.0781 (12), 8.2304 (2), 11.1488 (3) |
β (°) | 101.630 (2) |
V (Å3) | 3781.78 (17) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.29 × 0.13 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.942, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11383, 3486, 2496 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.101, 1.03 |
No. of reflections | 3486 |
No. of parameters | 272 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.40 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O3 | 0.97 | 2.27 | 3.041 (3) | 135 |
C10—H10A···O3i | 0.97 | 2.54 | 3.162 (3) | 122 |
C10—H10B···O3ii | 0.97 | 2.46 | 3.292 (3) | 144 |
C19—H19A···N5iii | 0.93 | 2.57 | 3.386 (3) | 147 |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x, −y, z+1/2. |
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1225–o1226. Google Scholar
Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1303. Google Scholar
Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o1394–o1395. Google Scholar
Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem., 43, 2831–2834. Web of Science PubMed Google Scholar
Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052. CAS Google Scholar
Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Triazolothiadiazines have shown to possess significant biological and pharmacological activities such as anthelmintic, analgesic and anti-inflammatory (Kalluraya & Rahiman, 1997) properties. Encouraged by these literatures, we have synthesized triazolothiadiazines containing the sydnone moiety. The introduction of sydnone moiety into an heterocyclic compound will increase the biological and pharmacological activities of heterocyclic system (Hedge et al., 2008). Triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).
In the title compound, (I), an intramolecular C10—H10A···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The 3,6-dihydro-1,3,4-thiadiazine ring (C9-C11/N3/N4/S1) adopts twist-boat conformation, with puckering parameters of Q = 0.630 (2) Å, θ = 67.03 (18)° and φ = 323.0 (2)° (Cremer & Pople, 1975). The essentially planar 1,2,3-oxadiazole (C12/C13/O2/N5/N6) and 1,2,4-triazole (C8/N1/N2/C9/N3) rings are inclined to each other at interplanar angle of 44.13 (13)°. The C14-C19 phenyl ring is inclined at interplanar angle of 67.40 (13)° with respect to the attached 1,2,3-oxadiazole ring. The geometric parameters are comparable to those reported in closely related structures (Goh et al., 2010a,b,c).
In the crystal structure, intermolecular C10—H10A···O3, C10—H10B···O3 and C19—H19A···N5 hydrogen bonds (Table 1) link adjacent molecules into two-molecule-thick arrays parallel to (100) plane (Fig. 2). Interestingly, further stabilization of the crystal structure is provided by intermolecular short S1···O3 interaction [2.9512 (18) Å; symmetry code: -x+1/2, -y+1/2, -z] which is significantly shorter than the sum of Van der Waals radii of the relevant atoms.