organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Phenyl-4-{3-[(p-tol­yl­oxy)meth­yl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl}sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 21 July 2010; accepted 27 July 2010; online 31 July 2010)

In the title compound (systematic name: 3-phenyl-4-{3-[(p-tol­yloxy)meth­yl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl}-1,2,3-oxadiazol-3-ium-5-olate), C20H16N6O3S, an intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The 3,6-dihydro-1,3,4-thia­diazine ring adopts a twist-boat conformation. The 1,2,3-oxadiazole and 1,2,4-triazole rings are inclined to each other at an inter­planar angle of 44.13 (13)°. The phenyl ring makes an inter­planar angle of 67.40 (13)° with the attached 1,2,3-oxadiazole ring. In the crystal structure, adjacent mol­ecules are inter­connected into two-mol­ecule-thick arrays parallel to (100) via C—H⋯O and C—H⋯N hydrogen bonds. A short S⋯O contact [2.9512 (18) Å] is observed.

Related literature

For general background to, and applications of materials related to the title compound, see: Hedge et al. (2008[Hedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem., 43, 2831-2834.]), Kalluraya & Rahiman (1997[Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049-1052.]); Kalluraya et al. (2003[Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355-356.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Goh et al. (2010a[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1225-o1226.],b[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1303.],c[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o1394-o1395.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N6O3S

  • Mr = 420.45

  • Monoclinic, C 2/c

  • a = 42.0781 (12) Å

  • b = 8.2304 (2) Å

  • c = 11.1488 (3) Å

  • β = 101.630 (2)°

  • V = 3781.78 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.29 × 0.13 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.989

  • 11383 measured reflections

  • 3486 independent reflections

  • 2496 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.101

  • S = 1.03

  • 3486 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O3 0.97 2.27 3.041 (3) 135
C10—H10A⋯O3i 0.97 2.54 3.162 (3) 122
C10—H10B⋯O3ii 0.97 2.46 3.292 (3) 144
C19—H19A⋯N5iii 0.93 2.57 3.386 (3) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triazolothiadiazines have shown to possess significant biological and pharmacological activities such as anthelmintic, analgesic and anti-inflammatory (Kalluraya & Rahiman, 1997) properties. Encouraged by these literatures, we have synthesized triazolothiadiazines containing the sydnone moiety. The introduction of sydnone moiety into an heterocyclic compound will increase the biological and pharmacological activities of heterocyclic system (Hedge et al., 2008). Triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

In the title compound, (I), an intramolecular C10—H10A···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The 3,6-dihydro-1,3,4-thiadiazine ring (C9-C11/N3/N4/S1) adopts twist-boat conformation, with puckering parameters of Q = 0.630 (2) Å, θ = 67.03 (18)° and φ = 323.0 (2)° (Cremer & Pople, 1975). The essentially planar 1,2,3-oxadiazole (C12/C13/O2/N5/N6) and 1,2,4-triazole (C8/N1/N2/C9/N3) rings are inclined to each other at interplanar angle of 44.13 (13)°. The C14-C19 phenyl ring is inclined at interplanar angle of 67.40 (13)° with respect to the attached 1,2,3-oxadiazole ring. The geometric parameters are comparable to those reported in closely related structures (Goh et al., 2010a,b,c).

In the crystal structure, intermolecular C10—H10A···O3, C10—H10B···O3 and C19—H19A···N5 hydrogen bonds (Table 1) link adjacent molecules into two-molecule-thick arrays parallel to (100) plane (Fig. 2). Interestingly, further stabilization of the crystal structure is provided by intermolecular short S1···O3 interaction [2.9512 (18) Å; symmetry code: -x+1/2, -y+1/2, -z] which is significantly shorter than the sum of Van der Waals radii of the relevant atoms.

Related literature top

For general background to, and applications of materials related to the title compound, see: Hedge et al. (2008), Kalluraya & Rahiman (1997); Kalluraya et al. (2003). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related structures, see: Goh et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of triazole (0.01 mol) and 4-bromoacetyl-3-phenylsydnone (0.01 mol) in absolute ethanol (20 ml) was heated under reflux for 10–12 h. The solution was concentrated, cooled to room temperature and neutrallized with 10 % sodium bicarbonate solution. The separated solid was filtered, washed with water, dried and recrystallized from ethanol. Colourless blocks of (I) were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement top

All hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was used for the methyl group.

Structure description top

Triazolothiadiazines have shown to possess significant biological and pharmacological activities such as anthelmintic, analgesic and anti-inflammatory (Kalluraya & Rahiman, 1997) properties. Encouraged by these literatures, we have synthesized triazolothiadiazines containing the sydnone moiety. The introduction of sydnone moiety into an heterocyclic compound will increase the biological and pharmacological activities of heterocyclic system (Hedge et al., 2008). Triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

In the title compound, (I), an intramolecular C10—H10A···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The 3,6-dihydro-1,3,4-thiadiazine ring (C9-C11/N3/N4/S1) adopts twist-boat conformation, with puckering parameters of Q = 0.630 (2) Å, θ = 67.03 (18)° and φ = 323.0 (2)° (Cremer & Pople, 1975). The essentially planar 1,2,3-oxadiazole (C12/C13/O2/N5/N6) and 1,2,4-triazole (C8/N1/N2/C9/N3) rings are inclined to each other at interplanar angle of 44.13 (13)°. The C14-C19 phenyl ring is inclined at interplanar angle of 67.40 (13)° with respect to the attached 1,2,3-oxadiazole ring. The geometric parameters are comparable to those reported in closely related structures (Goh et al., 2010a,b,c).

In the crystal structure, intermolecular C10—H10A···O3, C10—H10B···O3 and C19—H19A···N5 hydrogen bonds (Table 1) link adjacent molecules into two-molecule-thick arrays parallel to (100) plane (Fig. 2). Interestingly, further stabilization of the crystal structure is provided by intermolecular short S1···O3 interaction [2.9512 (18) Å; symmetry code: -x+1/2, -y+1/2, -z] which is significantly shorter than the sum of Van der Waals radii of the relevant atoms.

For general background to, and applications of materials related to the title compound, see: Hedge et al. (2008), Kalluraya & Rahiman (1997); Kalluraya et al. (2003). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related structures, see: Goh et al. (2010a,b,c). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. An intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the b axis, showing two-molecule-thick arrays parallel to the (100) plane. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
3-phenyl-4-{3-[(p-tolyloxy)methyl]-7H-1,2,4- triazolo[3,4-b][1,3,4]thiadiazin-6-yl}-1,2,3-oxadiazol-3-ium-5-olate top
Crystal data top
C20H16N6O3SF(000) = 1744
Mr = 420.45Dx = 1.477 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2771 reflections
a = 42.0781 (12) Åθ = 2.5–30.0°
b = 8.2304 (2) ŵ = 0.21 mm1
c = 11.1488 (3) ÅT = 100 K
β = 101.630 (2)°Block, colourless
V = 3781.78 (17) Å30.29 × 0.13 × 0.05 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
3486 independent reflections
Radiation source: fine-focus sealed tube2496 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
φ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 5048
Tmin = 0.942, Tmax = 0.989k = 99
11383 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0388P)2 + 2.5537P]
where P = (Fo2 + 2Fc2)/3
3486 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C20H16N6O3SV = 3781.78 (17) Å3
Mr = 420.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 42.0781 (12) ŵ = 0.21 mm1
b = 8.2304 (2) ÅT = 100 K
c = 11.1488 (3) Å0.29 × 0.13 × 0.05 mm
β = 101.630 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3486 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2496 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.989Rint = 0.059
11383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
3486 reflectionsΔρmin = 0.40 e Å3
272 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.220066 (15)0.57970 (8)0.11452 (6)0.01457 (18)
O10.10960 (4)0.4996 (2)0.35734 (14)0.0177 (4)
O20.19581 (4)0.0842 (2)0.00307 (14)0.0172 (4)
O30.24309 (4)0.0525 (2)0.06238 (15)0.0184 (4)
N10.16869 (5)0.7388 (3)0.34427 (18)0.0153 (5)
N20.19003 (5)0.7681 (3)0.26397 (18)0.0152 (5)
N30.17980 (5)0.5056 (3)0.26683 (17)0.0129 (5)
N40.17428 (5)0.3462 (3)0.22624 (17)0.0129 (5)
N50.16398 (5)0.0737 (3)0.00868 (18)0.0167 (5)
N60.16286 (5)0.0537 (3)0.07725 (18)0.0132 (5)
C10.05562 (6)0.4348 (4)0.3630 (2)0.0206 (7)
H1A0.04950.48270.28620.025*
C20.03244 (6)0.3680 (4)0.4195 (2)0.0245 (7)
H2A0.01080.37110.37960.029*
C30.04051 (6)0.2958 (4)0.5348 (2)0.0204 (7)
C40.07298 (6)0.2943 (3)0.5906 (2)0.0211 (7)
H4A0.07900.24790.66790.025*
C50.09682 (6)0.3592 (3)0.5357 (2)0.0187 (6)
H5A0.11850.35520.57530.022*
C60.08808 (6)0.4304 (3)0.4209 (2)0.0159 (6)
C70.14297 (6)0.4960 (4)0.4192 (2)0.0163 (6)
H7A0.15030.38440.43180.020*
H7B0.14540.54810.49860.020*
C80.16269 (6)0.5830 (3)0.3431 (2)0.0135 (6)
C90.19615 (6)0.6265 (3)0.2203 (2)0.0129 (6)
C100.22834 (6)0.3743 (3)0.1735 (2)0.0139 (6)
H10A0.24050.31530.12230.017*
H10B0.24140.37880.25580.017*
C110.19694 (6)0.2875 (3)0.1751 (2)0.0111 (6)
C120.19158 (6)0.1326 (3)0.1140 (2)0.0117 (6)
C130.21431 (6)0.0430 (3)0.0616 (2)0.0138 (6)
C140.13078 (6)0.0942 (3)0.0973 (2)0.0145 (6)
C150.10783 (6)0.1424 (3)0.0032 (2)0.0178 (6)
H15A0.11310.15110.08020.021*
C160.07679 (6)0.1774 (4)0.0136 (2)0.0230 (7)
H16A0.06080.20940.05260.028*
C170.06952 (6)0.1648 (3)0.1288 (2)0.0225 (7)
H17A0.04870.18960.13990.027*
C180.09303 (6)0.1153 (3)0.2280 (2)0.0210 (7)
H18A0.08790.10660.30500.025*
C190.12400 (6)0.0791 (3)0.2130 (2)0.0173 (6)
H19A0.13990.04530.27890.021*
C200.01502 (7)0.2227 (4)0.5972 (3)0.0314 (8)
H20D0.02520.18200.67640.047*
H20A0.00430.13520.54830.047*
H20B0.00060.30440.60660.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0188 (3)0.0096 (4)0.0166 (3)0.0008 (3)0.0066 (2)0.0007 (3)
O10.0168 (9)0.0222 (12)0.0141 (9)0.0022 (9)0.0028 (7)0.0017 (9)
O20.0226 (10)0.0125 (11)0.0172 (9)0.0016 (9)0.0059 (7)0.0051 (9)
O30.0185 (10)0.0192 (12)0.0184 (9)0.0015 (9)0.0057 (7)0.0013 (9)
N10.0197 (12)0.0147 (14)0.0119 (11)0.0013 (11)0.0039 (9)0.0007 (11)
N20.0194 (12)0.0124 (14)0.0144 (11)0.0007 (10)0.0050 (9)0.0002 (11)
N30.0160 (11)0.0083 (13)0.0140 (11)0.0006 (10)0.0026 (9)0.0036 (11)
N40.0200 (11)0.0073 (13)0.0116 (10)0.0006 (10)0.0033 (9)0.0009 (11)
N50.0208 (12)0.0139 (14)0.0156 (11)0.0019 (11)0.0044 (9)0.0011 (12)
N60.0202 (12)0.0088 (13)0.0101 (10)0.0031 (10)0.0021 (8)0.0001 (11)
C10.0234 (14)0.0203 (18)0.0171 (14)0.0002 (14)0.0020 (11)0.0008 (14)
C20.0171 (14)0.0258 (19)0.0298 (16)0.0009 (14)0.0030 (11)0.0038 (15)
C30.0232 (15)0.0153 (17)0.0245 (15)0.0003 (13)0.0093 (12)0.0029 (14)
C40.0292 (16)0.0193 (18)0.0164 (14)0.0005 (14)0.0086 (12)0.0016 (14)
C50.0179 (14)0.0181 (17)0.0202 (14)0.0017 (13)0.0036 (11)0.0007 (14)
C60.0206 (14)0.0108 (16)0.0179 (13)0.0008 (13)0.0074 (10)0.0028 (13)
C70.0163 (13)0.0182 (17)0.0141 (13)0.0026 (13)0.0024 (10)0.0003 (13)
C80.0142 (13)0.0140 (16)0.0119 (12)0.0023 (13)0.0015 (10)0.0012 (14)
C90.0162 (13)0.0105 (16)0.0112 (13)0.0009 (12)0.0004 (10)0.0014 (13)
C100.0171 (13)0.0079 (16)0.0168 (13)0.0030 (12)0.0035 (10)0.0011 (13)
C110.0171 (13)0.0072 (15)0.0078 (12)0.0042 (12)0.0003 (10)0.0019 (12)
C120.0139 (13)0.0099 (15)0.0110 (12)0.0008 (12)0.0018 (10)0.0013 (12)
C130.0263 (15)0.0057 (16)0.0086 (12)0.0009 (13)0.0016 (10)0.0015 (12)
C140.0152 (13)0.0099 (16)0.0181 (13)0.0043 (12)0.0025 (10)0.0021 (13)
C150.0222 (14)0.0157 (17)0.0149 (13)0.0029 (13)0.0026 (11)0.0012 (13)
C160.0210 (15)0.0209 (19)0.0256 (15)0.0005 (14)0.0009 (11)0.0035 (15)
C170.0207 (14)0.0170 (18)0.0316 (16)0.0002 (13)0.0094 (12)0.0016 (15)
C180.0284 (15)0.0171 (18)0.0198 (14)0.0048 (14)0.0105 (12)0.0033 (13)
C190.0253 (14)0.0123 (16)0.0131 (13)0.0032 (13)0.0010 (10)0.0009 (13)
C200.0276 (16)0.031 (2)0.0377 (18)0.0037 (15)0.0126 (13)0.0001 (17)
Geometric parameters (Å, º) top
S1—C91.741 (2)C4—H4A0.9300
S1—C101.822 (3)C5—C61.387 (3)
O1—C61.381 (3)C5—H5A0.9300
O1—C71.435 (3)C7—C81.485 (3)
O2—N51.375 (2)C7—H7A0.9700
O2—C131.413 (3)C7—H7B0.9700
O3—C131.212 (3)C10—C111.505 (3)
N1—C81.306 (3)C10—H10A0.9700
N1—N21.411 (3)C10—H10B0.9700
N2—C91.309 (3)C11—C121.442 (4)
N3—C91.369 (3)C12—C131.423 (3)
N3—C81.376 (3)C14—C191.382 (3)
N3—N41.392 (3)C14—C151.382 (3)
N4—C111.299 (3)C15—C161.387 (3)
N5—N61.304 (3)C15—H15A0.9300
N6—C121.360 (3)C16—C171.382 (4)
N6—C141.451 (3)C16—H16A0.9300
C1—C21.378 (4)C17—C181.388 (4)
C1—C61.389 (3)C17—H17A0.9300
C1—H1A0.9300C18—C191.380 (3)
C2—C31.395 (4)C18—H18A0.9300
C2—H2A0.9300C19—H19A0.9300
C3—C41.382 (3)C20—H20D0.9600
C3—C201.516 (4)C20—H20A0.9600
C4—C51.384 (3)C20—H20B0.9600
C9—S1—C1093.16 (12)N2—C9—S1129.3 (2)
C6—O1—C7115.08 (18)N3—C9—S1119.9 (2)
N5—O2—C13110.62 (18)C11—C10—S1109.88 (17)
C8—N1—N2107.9 (2)C11—C10—H10A109.7
C9—N2—N1106.4 (2)S1—C10—H10A109.7
C9—N3—C8105.3 (2)C11—C10—H10B109.7
C9—N3—N4128.70 (19)S1—C10—H10B109.7
C8—N3—N4124.3 (2)H10A—C10—H10B108.2
C11—N4—N3113.8 (2)N4—C11—C12118.5 (2)
N6—N5—O2104.90 (18)N4—C11—C10123.5 (2)
N5—N6—C12115.2 (2)C12—C11—C10117.9 (2)
N5—N6—C14114.8 (2)N6—C12—C13105.0 (2)
C12—N6—C14129.9 (2)N6—C12—C11127.6 (2)
C2—C1—C6119.8 (2)C13—C12—C11126.7 (2)
C2—C1—H1A120.1O3—C13—O2119.9 (2)
C6—C1—H1A120.1O3—C13—C12135.8 (2)
C1—C2—C3121.9 (2)O2—C13—C12104.3 (2)
C1—C2—H2A119.1C19—C14—C15122.7 (2)
C3—C2—H2A119.1C19—C14—N6119.8 (2)
C4—C3—C2117.0 (2)C15—C14—N6117.5 (2)
C4—C3—C20121.1 (2)C14—C15—C16118.2 (2)
C2—C3—C20121.9 (2)C14—C15—H15A120.9
C3—C4—C5122.4 (3)C16—C15—H15A120.9
C3—C4—H4A118.8C17—C16—C15120.1 (2)
C5—C4—H4A118.8C17—C16—H16A120.0
C4—C5—C6119.3 (2)C15—C16—H16A120.0
C4—C5—H5A120.3C16—C17—C18120.4 (2)
C6—C5—H5A120.3C16—C17—H17A119.8
O1—C6—C5124.7 (2)C18—C17—H17A119.8
O1—C6—C1115.8 (2)C19—C18—C17120.4 (2)
C5—C6—C1119.5 (2)C19—C18—H18A119.8
O1—C7—C8108.69 (19)C17—C18—H18A119.8
O1—C7—H7A110.0C18—C19—C14118.1 (2)
C8—C7—H7A110.0C18—C19—H19A120.9
O1—C7—H7B110.0C14—C19—H19A120.9
C8—C7—H7B110.0C3—C20—H20D109.5
H7A—C7—H7B108.3C3—C20—H20A109.5
N1—C8—N3109.7 (2)H20D—C20—H20A109.5
N1—C8—C7126.6 (2)C3—C20—H20B109.5
N3—C8—C7123.5 (2)H20D—C20—H20B109.5
N2—C9—N3110.8 (2)H20A—C20—H20B109.5
C8—N1—N2—C91.1 (3)C10—S1—C9—N2154.0 (2)
C9—N3—N4—C1130.0 (3)C10—S1—C9—N328.0 (2)
C8—N3—N4—C11167.4 (2)C9—S1—C10—C1154.13 (18)
C13—O2—N5—N60.0 (2)N3—N4—C11—C12171.17 (19)
O2—N5—N6—C120.0 (3)N3—N4—C11—C107.4 (3)
O2—N5—N6—C14176.97 (18)S1—C10—C11—N452.4 (3)
C6—C1—C2—C30.4 (4)S1—C10—C11—C12126.2 (2)
C1—C2—C3—C40.1 (4)N5—N6—C12—C130.0 (3)
C1—C2—C3—C20179.9 (3)C14—N6—C12—C13176.4 (2)
C2—C3—C4—C50.6 (4)N5—N6—C12—C11170.7 (2)
C20—C3—C4—C5179.6 (3)C14—N6—C12—C115.7 (4)
C3—C4—C5—C60.7 (4)N4—C11—C12—N616.6 (4)
C7—O1—C6—C50.8 (4)C10—C11—C12—N6162.0 (2)
C7—O1—C6—C1179.2 (2)N4—C11—C12—C13174.6 (2)
C4—C5—C6—O1179.7 (3)C10—C11—C12—C136.8 (4)
C4—C5—C6—C10.2 (4)N5—O2—C13—O3179.4 (2)
C2—C1—C6—O1179.8 (2)N5—O2—C13—C120.0 (2)
C2—C1—C6—C50.3 (4)N6—C12—C13—O3179.3 (3)
C6—O1—C7—C8176.7 (2)C11—C12—C13—O39.9 (5)
N2—N1—C8—N31.3 (3)N6—C12—C13—O20.0 (2)
N2—N1—C8—C7176.2 (2)C11—C12—C13—O2170.8 (2)
C9—N3—C8—N11.1 (3)N5—N6—C14—C19112.8 (3)
N4—N3—C8—N1167.0 (2)C12—N6—C14—C1970.9 (4)
C9—N3—C8—C7176.1 (2)N5—N6—C14—C1565.3 (3)
N4—N3—C8—C718.0 (3)C12—N6—C14—C15111.1 (3)
O1—C7—C8—N187.1 (3)C19—C14—C15—C160.3 (4)
O1—C7—C8—N398.7 (3)N6—C14—C15—C16178.3 (2)
N1—N2—C9—N30.5 (3)C14—C15—C16—C170.4 (4)
N1—N2—C9—S1178.59 (18)C15—C16—C17—C180.7 (4)
C8—N3—C9—N20.3 (3)C16—C17—C18—C190.4 (4)
N4—N3—C9—N2165.4 (2)C17—C18—C19—C140.3 (4)
C8—N3—C9—S1178.00 (17)C15—C14—C19—C180.7 (4)
N4—N3—C9—S112.9 (3)N6—C14—C19—C18178.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O30.972.273.041 (3)135
C10—H10A···O3i0.972.543.162 (3)122
C10—H10B···O3ii0.972.463.292 (3)144
C19—H19A···N5iii0.932.573.386 (3)147
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16N6O3S
Mr420.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)42.0781 (12), 8.2304 (2), 11.1488 (3)
β (°) 101.630 (2)
V3)3781.78 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.29 × 0.13 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.942, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11383, 3486, 2496
Rint0.059
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.101, 1.03
No. of reflections3486
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O30.972.273.041 (3)135
C10—H10A···O3i0.972.543.162 (3)122
C10—H10B···O3ii0.972.463.292 (3)144
C19—H19A···N5iii0.932.573.386 (3)147
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1225–o1226.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1303.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010c). Acta Cryst. E66, o1394–o1395.  Google Scholar
First citationHedge, J. C., Girisha, K. S., Adhikari, A. & Kalluraya, B. (2008). Eur. J. Med. Chem., 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationKalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052.  CAS Google Scholar
First citationKalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds