organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[3,5-Di­chloro-4-(1,1,2,2-tetra­fluoro­eth­­oxy)phen­yl]-2,6-di­fluoro­benzamide

aHubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Science, Wuhan 430064, People's Republic of China
*Correspondence e-mail: ly.liang8@gmail.com

(Received 21 July 2010; accepted 26 July 2010; online 31 July 2010)

In the title compound, C15H7Cl2F6NO2, the conformation of the N—H bond in the amide segment is anti to the C=O bond and the dihedral angle between the two benzene rings is 78.6 (3)°. The terminal –CHF2 group is disordered over two orientations in a 0.67:0.33 ratio. In the crystal, the mol­ecules are linked by N—H⋯O hydrogen bonds, generating C(4) chains propagating in [100].

Related literature

For background to the biological properties of related compounds, see: Liu, Li & Li (2004[Liu, C. L., Li, L. & Li, Z. M. (2004). Bioorg. Med. Chem. 12, 2825-2830.]); Liu, Li & Zhong (2004[Liu, C. L., Li, Z. M. & Zhong, B. (2004). J. Fluorine Chem. 125, 1287-1290.]); Shiga et al. (2003[Shiga, Y., Okada, I. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 310-312.]). For a related structure, see: Gowda et al. (2010[Gowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1529-o1530.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H7Cl2F6NO2

  • Mr = 418.12

  • Orthorhombic, P b c a

  • a = 9.426 (2) Å

  • b = 15.568 (4) Å

  • c = 22.601 (6) Å

  • V = 3316.7 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.955

  • 16415 measured reflections

  • 2916 independent reflections

  • 2111 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.253

  • S = 1.06

  • 2916 reflections

  • 254 parameters

  • 35 restraints

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.00 2.861 (5) 174
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Amide derivatives showed diverse biological properties such as insecticidal (Liu, Li & Li, 2004), fungicidal (Liu, Li & Zhong, 2004) and acaricidal (Shiga et al., 2003) activities. Commercialized compounds include benzamide (flutolanil, fluopicolide), nicotinamide (boscalid) and thiazole carboxamide (thifluzamide, ethaboxam). As a part of our study on the synthesis of new fluorine-containing compounds with possible biological activities, we report here the crystal structure of the title compound, (I)(Fig. 1).

In the molecule, all bond lengths and angles are normal (Allen et al., 1987). The conformation of the N—H and the C=O bonds in the amide segment are anti to each other, which is similar to that observed in other amide compound (Gowda et al., 2010). The dihedral angles between the two phenyl rings is 78.6°. The crystal structure is stabilized by intermolecular N—H···O hydrogen-bonds (Table 1).

Related literature top

For background to the biological properties of related compounds, see: Liu, Li & Li (2004); Liu, Li & Zhong (2004); Shiga et al. (2003). For a related structure, see: Gowda et al. (2010). For reference structural data, see: Allen et al. (1987).

Experimental top

Triethylamine (6 mmol) was added dropwise to a stirred solution of 3,5-dichloro-4-(1,1,2,2-tetrafluoroethoxy) aniline (5 mmol) and 2,6-dichlorobenzoyl chloride (5 mmol) in dry dichloromethane (20 ml) at 275–277 K. The mixture was stirred at 283–288 K for 2 h, then washed with 0.5% hydrochloric acid solution, and a saturated aqueous solution of sodium hydrogen carbonate, dried and evaporated. The residue was recrystallized from dichloromethane, giving colourless blocks of (I) after 3 weeks.

Refinement top

All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH.

Structure description top

Amide derivatives showed diverse biological properties such as insecticidal (Liu, Li & Li, 2004), fungicidal (Liu, Li & Zhong, 2004) and acaricidal (Shiga et al., 2003) activities. Commercialized compounds include benzamide (flutolanil, fluopicolide), nicotinamide (boscalid) and thiazole carboxamide (thifluzamide, ethaboxam). As a part of our study on the synthesis of new fluorine-containing compounds with possible biological activities, we report here the crystal structure of the title compound, (I)(Fig. 1).

In the molecule, all bond lengths and angles are normal (Allen et al., 1987). The conformation of the N—H and the C=O bonds in the amide segment are anti to each other, which is similar to that observed in other amide compound (Gowda et al., 2010). The dihedral angles between the two phenyl rings is 78.6°. The crystal structure is stabilized by intermolecular N—H···O hydrogen-bonds (Table 1).

For background to the biological properties of related compounds, see: Liu, Li & Li (2004); Liu, Li & Zhong (2004); Shiga et al. (2003). For a related structure, see: Gowda et al. (2010). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing diagram of (I). Hydrogen bonds are shown as dashed lines.
N-[3,5-Dichloro-4-(1,1,2,2-tetrafluoroethoxy)phenyl]-2,6- difluorobenzamide top
Crystal data top
C15H7Cl2F6NO2Dx = 1.675 Mg m3
Mr = 418.12Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 3100 reflections
a = 9.426 (2) Åθ = 2.7–20.5°
b = 15.568 (4) ŵ = 0.47 mm1
c = 22.601 (6) ÅT = 298 K
V = 3316.7 (15) Å3Block, colorless
Z = 80.16 × 0.12 × 0.10 mm
F(000) = 1664
Data collection top
Bruker SMART APEX CCD
diffractometer
2916 independent reflections
Radiation source: fine-focus sealed tube2111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
φ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.929, Tmax = 0.955k = 1618
16415 measured reflectionsl = 2624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.253H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1378P)2 + 2.4511P]
where P = (Fo2 + 2Fc2)/3
2916 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.54 e Å3
35 restraintsΔρmin = 0.41 e Å3
Crystal data top
C15H7Cl2F6NO2V = 3316.7 (15) Å3
Mr = 418.12Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.426 (2) ŵ = 0.47 mm1
b = 15.568 (4) ÅT = 298 K
c = 22.601 (6) Å0.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2916 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2111 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.955Rint = 0.075
16415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08435 restraints
wR(F2) = 0.253H-atom parameters constrained
S = 1.06Δρmax = 0.54 e Å3
2916 reflectionsΔρmin = 0.41 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2885 (5)0.6858 (3)0.5451 (2)0.0619 (12)
C20.2068 (8)0.6985 (5)0.5949 (3)0.096 (2)
C30.1779 (10)0.6367 (8)0.6345 (4)0.143 (4)
H30.12500.64810.66840.172*
C40.2302 (11)0.5553 (7)0.6230 (4)0.132 (4)
H40.21020.51100.64930.158*
C50.3106 (8)0.5382 (4)0.5739 (4)0.103 (2)
H50.34450.48310.56650.124*
C60.3391 (6)0.6032 (4)0.5365 (3)0.0741 (15)
C70.3282 (4)0.7581 (3)0.5045 (2)0.0564 (11)
C80.2294 (4)0.8573 (3)0.4316 (2)0.0559 (11)
C90.1389 (5)0.8554 (3)0.3827 (2)0.0613 (12)
H90.07750.80930.37730.074*
C100.1405 (5)0.9217 (3)0.3424 (2)0.0636 (12)
C110.2300 (6)0.9916 (3)0.3497 (2)0.0672 (13)
C120.3205 (5)0.9913 (3)0.3980 (3)0.0701 (14)
C130.3201 (5)0.9259 (3)0.4389 (3)0.0683 (14)
H130.38070.92800.47140.082*
C140.1507 (7)1.1246 (4)0.3126 (3)0.0855 (17)
C150.1869 (11)1.1839 (5)0.2601 (4)0.146 (3)
H150.28931.19450.25850.175*0.67
H15'0.21111.14130.22980.175*0.33
Cl10.43376 (19)1.07768 (10)0.40998 (10)0.1141 (8)
Cl20.0311 (2)0.91643 (11)0.28089 (7)0.1026 (7)
F10.1596 (6)0.7801 (4)0.6046 (2)0.1471 (19)
F20.4199 (4)0.5898 (2)0.48811 (18)0.1020 (12)
F30.0163 (5)1.1038 (3)0.3168 (3)0.1456 (19)
F40.1720 (6)1.1679 (3)0.3624 (2)0.1382 (18)
N10.2209 (4)0.7900 (2)0.47228 (18)0.0605 (10)
H10.13900.76670.47710.073*
O10.4498 (3)0.7837 (2)0.5020 (2)0.0816 (11)
O20.2375 (4)1.0559 (2)0.30668 (17)0.0788 (11)
F60.1153 (11)1.2577 (5)0.2708 (4)0.163 (3)0.67
F50.1452 (10)1.1438 (6)0.2108 (4)0.161 (3)0.67
F5'0.3088 (15)1.2237 (11)0.2688 (8)0.157 (6)0.33
F6'0.0536 (18)1.2059 (19)0.2406 (12)0.219 (10)0.33
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (3)0.069 (3)0.066 (3)0.002 (2)0.004 (2)0.006 (2)
C20.095 (4)0.118 (6)0.073 (4)0.010 (4)0.008 (3)0.010 (4)
C30.139 (7)0.207 (11)0.084 (5)0.018 (8)0.013 (5)0.049 (7)
C40.142 (8)0.139 (7)0.115 (7)0.049 (6)0.032 (6)0.069 (6)
C50.122 (6)0.076 (4)0.112 (6)0.022 (4)0.030 (5)0.038 (4)
C60.075 (3)0.065 (3)0.082 (4)0.007 (3)0.013 (3)0.011 (3)
C70.048 (2)0.048 (2)0.074 (3)0.006 (2)0.002 (2)0.003 (2)
C80.043 (2)0.048 (2)0.076 (3)0.0048 (18)0.007 (2)0.000 (2)
C90.063 (3)0.051 (3)0.069 (3)0.005 (2)0.010 (2)0.008 (2)
C100.072 (3)0.061 (3)0.058 (3)0.003 (2)0.009 (2)0.012 (2)
C110.071 (3)0.053 (3)0.077 (3)0.007 (2)0.015 (3)0.001 (2)
C120.058 (3)0.046 (3)0.105 (4)0.002 (2)0.001 (3)0.008 (2)
C130.059 (3)0.046 (3)0.100 (4)0.006 (2)0.015 (3)0.000 (2)
C140.105 (5)0.058 (3)0.093 (4)0.006 (3)0.008 (3)0.002 (3)
C150.155 (5)0.127 (5)0.154 (5)0.027 (4)0.017 (4)0.016 (4)
Cl10.0934 (12)0.0600 (9)0.189 (2)0.0223 (7)0.0398 (12)0.0268 (10)
Cl20.1460 (16)0.0985 (12)0.0632 (9)0.0185 (10)0.0191 (9)0.0054 (7)
F10.174 (5)0.159 (4)0.109 (3)0.050 (4)0.041 (3)0.021 (3)
F20.123 (3)0.067 (2)0.116 (3)0.0233 (19)0.022 (2)0.0026 (18)
F30.097 (3)0.097 (3)0.243 (6)0.021 (2)0.027 (3)0.002 (3)
F40.186 (5)0.104 (3)0.125 (3)0.062 (3)0.023 (3)0.016 (3)
N10.042 (2)0.055 (2)0.084 (3)0.0037 (16)0.0022 (18)0.0098 (19)
O10.0474 (19)0.064 (2)0.134 (3)0.0028 (16)0.014 (2)0.020 (2)
O20.091 (3)0.059 (2)0.086 (3)0.0114 (18)0.022 (2)0.0166 (18)
F60.179 (5)0.136 (4)0.174 (5)0.032 (4)0.008 (4)0.038 (4)
F50.189 (5)0.165 (5)0.129 (4)0.017 (4)0.020 (4)0.012 (4)
F5'0.157 (7)0.154 (7)0.160 (7)0.004 (5)0.007 (5)0.006 (5)
F6'0.217 (11)0.221 (11)0.218 (11)0.004 (5)0.006 (5)0.005 (5)
Geometric parameters (Å, º) top
C1—C21.377 (8)C10—Cl21.733 (5)
C1—C61.385 (7)C11—C121.385 (7)
C1—C71.500 (7)C11—O21.398 (6)
C2—C31.344 (11)C12—C131.375 (7)
C2—F11.363 (8)C12—Cl11.738 (5)
C3—C41.384 (13)C13—H130.9300
C3—H30.9300C14—F31.311 (8)
C4—C51.370 (13)C14—F41.328 (7)
C4—H40.9300C14—O21.352 (7)
C5—C61.346 (8)C14—C151.540 (8)
C5—H50.9300C15—F5'1.321 (10)
C6—F21.350 (7)C15—F51.335 (8)
C7—O11.215 (5)C15—F61.355 (8)
C7—N11.341 (6)C15—F6'1.375 (10)
C8—C131.379 (6)C15—H150.9800
C8—N11.395 (6)C15—H15'0.9791
C8—C91.398 (7)N1—H10.8600
C9—C101.375 (7)F5—H15'0.7554
C9—H90.9300F5'—H150.5415
C10—C111.388 (7)
C2—C1—C6116.1 (5)C12—C13—C8119.7 (5)
C2—C1—C7122.1 (5)C12—C13—H13120.2
C6—C1—C7121.6 (5)C8—C13—H13120.2
C3—C2—F1119.6 (8)F3—C14—F4102.1 (6)
C3—C2—C1123.7 (8)F3—C14—O2113.3 (5)
F1—C2—C1116.7 (6)F4—C14—O2113.2 (5)
C2—C3—C4117.3 (9)F3—C14—C15114.7 (6)
C2—C3—H3121.4F4—C14—C15108.4 (6)
C4—C3—H3121.4O2—C14—C15105.3 (6)
C5—C4—C3121.8 (7)F5'—C15—F5126.8 (12)
C5—C4—H4119.1F5'—C15—F690.5 (10)
C3—C4—H4119.1F5—C15—F6113.5 (9)
C6—C5—C4118.2 (8)F5'—C15—F6'136.5 (16)
C6—C5—H5120.9F5—C15—F6'65.2 (13)
C4—C5—H5120.9F6—C15—F6'52.4 (12)
C5—C6—F2120.3 (6)F5'—C15—C14111.1 (10)
C5—C6—C1122.8 (7)F5—C15—C14107.3 (8)
F2—C6—C1116.8 (4)F6—C15—C14105.1 (7)
O1—C7—N1124.4 (4)F6'—C15—C14101.2 (13)
O1—C7—C1120.6 (4)F5'—C15—H1521.3
N1—C7—C1115.0 (4)F5—C15—H15109.8
C13—C8—N1122.6 (5)F6—C15—H15110.7
C13—C8—C9119.3 (4)F6'—C15—H15147.7
N1—C8—C9118.1 (4)C14—C15—H15110.3
C10—C9—C8120.1 (4)F5'—C15—H15'102.6
C10—C9—H9120.0F5—C15—H15'33.9
C8—C9—H9120.0F6—C15—H15'144.6
C9—C10—C11121.1 (5)F6'—C15—H15'99.0
C9—C10—Cl2119.3 (4)C14—C15—H15'100.6
C11—C10—Cl2119.6 (4)H15—C15—H15'82.0
C12—C11—C10117.7 (5)C7—N1—C8126.3 (4)
C12—C11—O2121.3 (5)C7—N1—H1116.9
C10—C11—O2120.6 (5)C8—N1—H1116.9
C13—C12—C11122.1 (5)C14—O2—C11117.9 (4)
C13—C12—Cl1118.0 (4)C15—F5—H15'46.3
C11—C12—Cl1119.9 (4)C15—F5'—H1541.2
C6—C1—C2—C31.5 (10)C10—C11—C12—Cl1179.3 (4)
C7—C1—C2—C3174.9 (7)O2—C11—C12—Cl16.7 (7)
C6—C1—C2—F1178.3 (5)C11—C12—C13—C81.4 (8)
C7—C1—C2—F11.9 (9)Cl1—C12—C13—C8178.6 (4)
F1—C2—C3—C4179.0 (8)N1—C8—C13—C12178.3 (5)
C1—C2—C3—C42.3 (13)C9—C8—C13—C120.1 (7)
C2—C3—C4—C51.3 (14)F3—C14—C15—F5'159.9 (10)
C3—C4—C5—C60.4 (13)F4—C14—C15—F5'46.6 (12)
C4—C5—C6—F2178.8 (6)O2—C14—C15—F5'74.8 (11)
C4—C5—C6—C11.2 (10)F3—C14—C15—F557.7 (10)
C2—C1—C6—C50.4 (8)F4—C14—C15—F5171.1 (7)
C7—C1—C6—C5176.8 (5)O2—C14—C15—F567.5 (9)
C2—C1—C6—F2179.7 (5)F3—C14—C15—F663.3 (10)
C7—C1—C6—F23.3 (7)F4—C14—C15—F650.0 (10)
C2—C1—C7—O1109.9 (6)O2—C14—C15—F6171.4 (8)
C6—C1—C7—O166.3 (7)F3—C14—C15—F6'9.5 (16)
C2—C1—C7—N170.5 (7)F4—C14—C15—F6'103.8 (15)
C6—C1—C7—N1113.3 (5)O2—C14—C15—F6'134.8 (15)
C13—C8—C9—C100.2 (7)O1—C7—N1—C80.8 (8)
N1—C8—C9—C10178.0 (4)C1—C7—N1—C8179.6 (4)
C8—C9—C10—C110.6 (7)C13—C8—N1—C733.8 (7)
C8—C9—C10—Cl2178.1 (4)C9—C8—N1—C7148.1 (5)
C9—C10—C11—C121.8 (7)F3—C14—O2—C1155.4 (7)
Cl2—C10—C11—C12177.0 (4)F4—C14—O2—C1160.3 (7)
C9—C10—C11—O2175.9 (4)C15—C14—O2—C11178.5 (6)
Cl2—C10—C11—O22.9 (6)C12—C11—O2—C1494.2 (6)
C10—C11—C12—C132.2 (8)C10—C11—O2—C1492.0 (6)
O2—C11—C12—C13176.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.002.861 (5)174
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H7Cl2F6NO2
Mr418.12
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)9.426 (2), 15.568 (4), 22.601 (6)
V3)3316.7 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.929, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
16415, 2916, 2111
Rint0.075
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.253, 1.06
No. of reflections2916
No. of parameters254
No. of restraints35
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.41

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.002.861 (5)174
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Acknowledgements

We gratefully acknowledge the financial support of this work by the Foundation of Hubei Agricultural Scientific and Technological Innovation.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Tokarčík, M., Shakuntala, K., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1529–o1530.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, C. L., Li, L. & Li, Z. M. (2004). Bioorg. Med. Chem. 12, 2825–2830.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, C. L., Li, Z. M. & Zhong, B. (2004). J. Fluorine Chem. 125, 1287–1290.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiga, Y., Okada, I. & Fukuchi, T. (2003). J. Pestic. Sci. 28, 310–312.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds