metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N′-Bis[1-(2-pyrid­yl)ethyl­­idene]propane-1,2-di­amine}­bis­(thio­cyanato-κN)­nickel(II)

aDepartment of Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China
*Correspondence e-mail: wangning7903@yahoo.com.cn

(Received 21 July 2010; accepted 23 July 2010; online 31 July 2010)

In the title complex, [Ni(NCS)2(C17H20N4)], the Ni2+ ion (site symmetry 2) is coordinated by the N,N,N,N-tetra­dentate Schiff base ligand and two thio­cyanate ligands, forming a distorted NiN6 octa­hedral geometry, with the thio­cyanate N atoms in a trans orientation. The pendant methyl group of the central propane-1,2-diamine fragment of the ligand is statistically disordered over two sets of positions. In the crystal, weak aromatic ππ stacking between pyridine rings [centroid–centroid separation = 3.7081 (17) Å] may help to establish the packing.

Related literature

For background to bis-Schiff bases in coordination chemistry, see: Yin et al. (1999[Yin, Y., Chen, W., Xu, D., Niu, W. & Xu, Y. (1999). J. Coord. Chem. 47, 99-105.]); Costes et al. (2002[Costes, J.-P., Clemente-Juan, J. M., Dahan, F., Dumestre, F. & Tuchagues, J.-P. (2002). Inorg. Chem. 41, 2886-2891.]); Haikarainen et al. (2001[Haikarainen, A., Sipila, J., Pietikainen, P., Pajunen, A. & Mutikainen, I. (2001). Bioorg. Med. Chem. 9, 1633-1638.]); Miyasaka et al. (2002[Miyasaka, H., Clerac, R., Ishii, T., Chang, H.-C., Kitagawa, S. & Yamashita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1528-1534.]); Ryaza­nov et al. (2002[Ryazanov, M., Nikiforov, V., Lloret, F., Julve, M., Kuzmina, N. & Gleizes, A. (2002). Inorg. Chem. 41, 1816-1823.]). For nickel complexes with Schiff bases, see: Liu et al. (2006[Liu, X.-H., Cai, J.-H., Jiang, Y.-M., Huang, Y.-H. & Yin, X.-J. (2006). Acta Cryst. E62, m2119-m2121.]); Li & Wang (2007[Li, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m749-m750.]); Liu et al. (2007[Liu, M., Yuan, W.-B., Xu, H.-W., Zhang, Q. & Li, J.-X. (2007). Acta Cryst. E63, m2376.]); Ali et al. (2006[Ali, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2739-m2740.]); Knight et al. (2007[Knight, J. C., Amoroso, A. J., Prabaharan, R. & Edwards, P. G. (2007). Acta Cryst. E63, m1046-m1047.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C17H20N4)]

  • Mr = 455.24

  • Monoclinic, C 2/c

  • a = 12.431 (2) Å

  • b = 12.805 (2) Å

  • c = 13.613 (3) Å

  • β = 102.741 (2)°

  • V = 2113.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 298 K

  • 0.27 × 0.25 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.750, Tmax = 0.781

  • 8183 measured reflections

  • 2311 independent reflections

  • 1982 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 1.09

  • 2311 reflections

  • 140 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N2 2.0157 (19)
Ni1—N3 2.060 (2)
Ni1—N1 2.111 (2)
N2—Ni1—N2i 81.62 (11)
N2—Ni1—N3i 89.07 (9)
N2—Ni1—N3 95.39 (9)
N2—Ni1—N1i 158.89 (8)
N3—Ni1—N1i 91.23 (8)
N2—Ni1—N1 78.45 (8)
N3—Ni1—N1 85.93 (8)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The bis-Schiff bases formed from aldehydes with diamines have been widely investigated in coordination chemistry (Yin et al., 1999; Costes et al., 2002; Haikarainen et al., 2001; Miyasaka et al., 2002; Ryazanov et al., 2002). The complexes with such Schiff bases have proved to be of significant interest in the areas of catalysis, magnetism, medicinal and material chemistry. Although there have been numerous studies on the preparation and crystal structures of such complexes, the complexes with the Schiff base ligand N',N''-Bis(1-pyridin-2- ylethylidene)propane-1,2-diamine have never been reported. In the present paper, the title nickel(II) complex with the Schiff base ligand and thiocyanate is reported.

The molecule of the title complex, Fig. 1, possesses a crystallographic twofold rotation axis symmetry. The Ni atom is coordinated by four N atoms of a Schiff base ligand and two N atoms from two thiocyanate ligands, forming an octahedral geometry. The bond lengths (Table 1) related to the central Ni atom are comparable to those observed in other nickel(II) complexes with Schiff bases (Liu et al., 2006; Li & Wang, 2007; Liu et al., 2007; Ali et al., 2006; Knight et al., 2007).

Related literature top

For background to bis-Schiff bases in coordination chemistry, see: Yin et al. (1999); Costes et al. (2002); Haikarainen et al. (2001); Miyasaka et al. (2002); Ryazanov et al. (2002). For nickel complexes with Schiff bases, see: Liu et al. (2006); Li & Wang (2007); Liu et al. (2007); Ali et al. (2006); Knight et al. (2007).

Experimental top

To an ethanolic solution (30 ml) of 1,2-diaminopropane (0.074 g, 1 mmol) was added an ethanolic solution (30 ml) of 2-acetylpyridine (0.242 g, 2 mmol). The mixture was stirred at room temperature for 30 minutes. Then a solution of ammonium thiocyanate (0.152 g, 2 mmol) and nickel(II) nitrate hexahydrate (0.291 g, 1 mmol) in a minimum amount of ethanol was added, and the final mixture was further stirred at room temperature for 1 h. The clear solution was set aside for a week, yielding green blocks of (I).

Refinement top

The H8A and H8B atoms attached to C8 in the complex were located in a difference Fourier map and were refined with distance restraints of C–H = 0.97 (1) Å, and H···H = 1.55 (2) Å. All other H atoms were positioned geometrically and were constrained as riding atoms, with C–H distances of 0.93–0.96 Å, and Uiso(H) set to 1.2 or 1.5Ueq(C) of the parent atom. Rotating group models were used for the methyl groups.

Structure description top

The bis-Schiff bases formed from aldehydes with diamines have been widely investigated in coordination chemistry (Yin et al., 1999; Costes et al., 2002; Haikarainen et al., 2001; Miyasaka et al., 2002; Ryazanov et al., 2002). The complexes with such Schiff bases have proved to be of significant interest in the areas of catalysis, magnetism, medicinal and material chemistry. Although there have been numerous studies on the preparation and crystal structures of such complexes, the complexes with the Schiff base ligand N',N''-Bis(1-pyridin-2- ylethylidene)propane-1,2-diamine have never been reported. In the present paper, the title nickel(II) complex with the Schiff base ligand and thiocyanate is reported.

The molecule of the title complex, Fig. 1, possesses a crystallographic twofold rotation axis symmetry. The Ni atom is coordinated by four N atoms of a Schiff base ligand and two N atoms from two thiocyanate ligands, forming an octahedral geometry. The bond lengths (Table 1) related to the central Ni atom are comparable to those observed in other nickel(II) complexes with Schiff bases (Liu et al., 2006; Li & Wang, 2007; Liu et al., 2007; Ali et al., 2006; Knight et al., 2007).

For background to bis-Schiff bases in coordination chemistry, see: Yin et al. (1999); Costes et al. (2002); Haikarainen et al. (2001); Miyasaka et al. (2002); Ryazanov et al. (2002). For nickel complexes with Schiff bases, see: Liu et al. (2006); Li & Wang (2007); Liu et al. (2007); Ali et al. (2006); Knight et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related to labeled atoms by the symmetry operation - x, y, 1/2 - z. Only one orientation of C9 and its attached H atoms is shown.
{N,N'-Bis[1-(2-pyridyl)ethylidene]propane-1,2- diamine}bis(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C17H20N4)]F(000) = 944
Mr = 455.24Dx = 1.431 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.431 (2) ÅCell parameters from 2917 reflections
b = 12.805 (2) Åθ = 2.3–25.0°
c = 13.613 (3) ŵ = 1.13 mm1
β = 102.741 (2)°T = 298 K
V = 2113.5 (7) Å3Block, green
Z = 40.27 × 0.25 × 0.23 mm
Data collection top
Bruker APEXII CCD
diffractometer
2311 independent reflections
Radiation source: fine-focus sealed tube1982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1515
Tmin = 0.750, Tmax = 0.781k = 1616
8183 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0271P)2 + 3.1898P]
where P = (Fo2 + 2Fc2)/3
2311 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.46 e Å3
3 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ni(NCS)2(C17H20N4)]V = 2113.5 (7) Å3
Mr = 455.24Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.431 (2) ŵ = 1.13 mm1
b = 12.805 (2) ÅT = 298 K
c = 13.613 (3) Å0.27 × 0.25 × 0.23 mm
β = 102.741 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2311 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1982 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.781Rint = 0.023
8183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.46 e Å3
2311 reflectionsΔρmin = 0.42 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.00000.18939 (3)0.25000.03735 (14)
S10.36209 (7)0.21125 (8)0.18060 (8)0.0830 (3)
N10.06978 (16)0.10959 (15)0.38468 (15)0.0409 (5)
N20.03606 (17)0.30853 (15)0.34856 (15)0.0428 (5)
N30.15474 (19)0.18115 (19)0.21915 (17)0.0552 (6)
C10.0951 (2)0.0091 (2)0.3988 (2)0.0497 (6)
H10.07660.03610.34420.060*
C20.1477 (2)0.0311 (2)0.4910 (2)0.0593 (7)
H20.16570.10160.49800.071*
C30.1726 (3)0.0348 (2)0.5717 (2)0.0652 (8)
H30.20660.00940.63490.078*
C40.1469 (2)0.1393 (2)0.5586 (2)0.0568 (7)
H40.16310.18510.61290.068*
C50.0970 (2)0.17503 (19)0.46397 (18)0.0419 (5)
C60.0706 (2)0.28796 (19)0.44138 (18)0.0432 (6)
C70.0860 (3)0.3646 (2)0.5261 (2)0.0633 (8)
H7A0.07740.43430.49950.095*
H7B0.15850.35680.56810.095*
H7C0.03180.35210.56530.095*
C80.0029 (3)0.41034 (19)0.3058 (2)0.0511 (6)
C90.1228 (5)0.4304 (5)0.3185 (5)0.0575 (15)0.50
H9A0.17180.38030.27940.086*0.50
H9B0.14530.49950.29570.086*0.50
H9C0.12520.42360.38820.086*0.50
C100.2400 (2)0.1951 (2)0.20181 (18)0.0475 (6)
H8A0.0431 (18)0.4673 (15)0.3394 (18)0.057*
H8B0.0770 (17)0.425 (4)0.313 (6)0.057*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0420 (3)0.0318 (2)0.0380 (2)0.0000.00829 (18)0.000
S10.0502 (5)0.1068 (8)0.0979 (7)0.0146 (4)0.0290 (5)0.0109 (5)
N10.0403 (11)0.0382 (11)0.0443 (11)0.0025 (8)0.0097 (9)0.0035 (9)
N20.0512 (12)0.0345 (10)0.0419 (11)0.0027 (9)0.0086 (9)0.0015 (9)
N30.0495 (13)0.0646 (15)0.0532 (13)0.0075 (11)0.0152 (11)0.0068 (11)
C10.0534 (15)0.0383 (13)0.0572 (16)0.0031 (11)0.0120 (12)0.0031 (11)
C20.0607 (18)0.0464 (15)0.0686 (19)0.0037 (13)0.0094 (15)0.0175 (14)
C30.070 (2)0.0642 (19)0.0554 (17)0.0016 (15)0.0001 (15)0.0204 (15)
C40.0646 (18)0.0579 (17)0.0450 (15)0.0044 (14)0.0060 (13)0.0068 (13)
C50.0413 (13)0.0437 (13)0.0412 (13)0.0012 (10)0.0104 (10)0.0029 (10)
C60.0464 (14)0.0425 (13)0.0418 (13)0.0003 (10)0.0121 (11)0.0029 (10)
C70.091 (2)0.0538 (17)0.0455 (15)0.0042 (16)0.0152 (15)0.0087 (13)
C80.0694 (18)0.0326 (12)0.0490 (15)0.0042 (12)0.0083 (14)0.0008 (11)
C90.069 (4)0.038 (3)0.059 (3)0.007 (3)0.001 (3)0.008 (2)
C100.0474 (15)0.0542 (15)0.0393 (13)0.0041 (12)0.0063 (11)0.0061 (11)
Geometric parameters (Å, º) top
Ni1—N22.0157 (19)C3—H30.9300
Ni1—N2i2.0157 (19)C4—C51.379 (3)
Ni1—N3i2.060 (2)C4—H40.9300
Ni1—N32.060 (2)C5—C61.499 (3)
Ni1—N1i2.111 (2)C6—C71.495 (3)
Ni1—N12.111 (2)C7—H7A0.9600
S1—C101.620 (3)C7—H7B0.9600
N1—C11.329 (3)C7—H7C0.9600
N1—C51.349 (3)C8—C8i1.536 (5)
N2—C61.269 (3)C8—C91.560 (6)
N2—C81.466 (3)C8—H8A0.976 (10)
N3—C101.149 (3)C8—H8B0.967 (10)
C1—C21.380 (4)C9—H9A0.9600
C1—H10.9300C9—H9B0.9600
C2—C31.365 (4)C9—H9C0.9600
C2—H20.9300C9—H8B0.594 (13)
C3—C41.378 (4)
N2—Ni1—N2i81.62 (11)N1—C5—C4121.5 (2)
N2—Ni1—N3i89.07 (9)N1—C5—C6115.5 (2)
N2i—Ni1—N3i95.39 (9)C4—C5—C6123.0 (2)
N2—Ni1—N395.39 (9)N2—C6—C7126.1 (2)
N2i—Ni1—N389.07 (9)N2—C6—C5114.5 (2)
N3i—Ni1—N3174.13 (14)C7—C6—C5119.4 (2)
N2—Ni1—N1i158.89 (8)C6—C7—H7A109.5
N2i—Ni1—N1i78.45 (8)C6—C7—H7B109.5
N3i—Ni1—N1i85.93 (9)H7A—C7—H7B109.5
N3—Ni1—N1i91.23 (8)C6—C7—H7C109.5
N2—Ni1—N178.45 (8)H7A—C7—H7C109.5
N2i—Ni1—N1158.89 (8)H7B—C7—H7C109.5
N3i—Ni1—N191.23 (8)N2—C8—C8i108.03 (17)
N3—Ni1—N185.93 (8)N2—C8—C9110.0 (3)
N1i—Ni1—N1122.10 (11)C8i—C8—C9111.3 (4)
C1—N1—C5118.5 (2)N2—C8—H8A111.8 (16)
C1—N1—Ni1129.29 (18)C8i—C8—H8A108.2 (16)
C5—N1—Ni1112.12 (15)C9—C8—H8A107.5 (16)
C6—N2—C8126.1 (2)N2—C8—H8B112 (4)
C6—N2—Ni1118.83 (17)C8i—C8—H8B111 (5)
C8—N2—Ni1113.78 (15)C9—C8—H8B2 (4)
C10—N3—Ni1168.1 (2)H8A—C8—H8B106 (2)
N1—C1—C2122.8 (3)C8—C9—H9A109.5
N1—C1—H1118.6C8—C9—H9B109.5
C2—C1—H1118.6H9A—C9—H9B109.5
C3—C2—C1118.6 (3)C8—C9—H9C109.5
C3—C2—H2120.7H9A—C9—H9C109.5
C1—C2—H2120.7H9B—C9—H9C109.5
C2—C3—C4119.4 (3)C8—C9—H8B3 (7)
C2—C3—H3120.3H9A—C9—H8B111.4
C4—C3—H3120.3H9B—C9—H8B106.2
C3—C4—C5119.2 (3)H9C—C9—H8B110.7
C3—C4—H4120.4N3—C10—S1177.8 (3)
C5—C4—H4120.4
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C17H20N4)]
Mr455.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)12.431 (2), 12.805 (2), 13.613 (3)
β (°) 102.741 (2)
V3)2113.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.27 × 0.25 × 0.23
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.750, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
8183, 2311, 1982
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.09
No. of reflections2311
No. of parameters140
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.42

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N22.0157 (19)Ni1—N12.111 (2)
Ni1—N32.060 (2)
N2—Ni1—N2i81.62 (11)N3—Ni1—N1i91.23 (8)
N2—Ni1—N3i89.07 (9)N2—Ni1—N178.45 (8)
N2—Ni1—N395.39 (9)N3—Ni1—N185.93 (8)
N2—Ni1—N1i158.89 (8)
Symmetry code: (i) x, y, z+1/2.
 

References

First citationAli, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2739–m2740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostes, J.-P., Clemente-Juan, J. M., Dahan, F., Dumestre, F. & Tuchagues, J.-P. (2002). Inorg. Chem. 41, 2886–2891.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHaikarainen, A., Sipila, J., Pietikainen, P., Pajunen, A. & Mutikainen, I. (2001). Bioorg. Med. Chem. 9, 1633–1638.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKnight, J. C., Amoroso, A. J., Prabaharan, R. & Edwards, P. G. (2007). Acta Cryst. E63, m1046–m1047.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, L.-Z. & Wang, L.-H. (2007). Acta Cryst. E63, m749–m750.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-H., Cai, J.-H., Jiang, Y.-M., Huang, Y.-H. & Yin, X.-J. (2006). Acta Cryst. E62, m2119–m2121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M., Yuan, W.-B., Xu, H.-W., Zhang, Q. & Li, J.-X. (2007). Acta Cryst. E63, m2376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiyasaka, H., Clerac, R., Ishii, T., Chang, H.-C., Kitagawa, S. & Yamashita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 1528–1534.  Web of Science CSD CrossRef Google Scholar
First citationRyazanov, M., Nikiforov, V., Lloret, F., Julve, M., Kuzmina, N. & Gleizes, A. (2002). Inorg. Chem. 41, 1816–1823.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, Y., Chen, W., Xu, D., Niu, W. & Xu, Y. (1999). J. Coord. Chem. 47, 99–105.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds