organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{4-[(3,4-Di­methyl­phen­yl)sulfamo­yl]phen­yl}acetamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 22 July 2010; accepted 23 July 2010; online 31 July 2010)

Two independent mol­ecules comprise the asymmetric unit of the title compound, C16H18N2O3S. Small but significant twists about the (S)N—C and S—C bonds differentiate the mol­ecules but the most obvious difference is found in the relative orientation of the meta-methyl groups, which lie on opposite sides of the mol­ecules. Overall, both mol­ecules adopt a U shape but with significant twisting evident, particularly in the second independent mol­ecule [dihedral angles between benzene rings = 63.90 (13) and 35.78 (11)°]. In the crystal, N—H⋯O hydrogen bonds lead to supra­molecular chains with a tubular topology propagating in [100] and C—H⋯O contacts cross-link the chains.

Related literature

For background to the anti­microbial activity of sulfonamides, see: Korolkovas, (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]). For related structures, see: John et al. (2010a[John, P., Khan, I. U., Sajjad, M. A., Sharif, S. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2031.],b[John, P., Ahmad, W., Khan, I. U., Sharif, S. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2048.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N2O3S

  • Mr = 318.40

  • Triclinic, [P \overline 1]

  • a = 8.4317 (3) Å

  • b = 13.6142 (5) Å

  • c = 15.1796 (5) Å

  • α = 71.340 (1)°

  • β = 77.136 (1)°

  • γ = 81.089 (1)°

  • V = 1602.83 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.27 × 0.11 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.817, Tmax = 0.940

  • 27476 measured reflections

  • 7319 independent reflections

  • 5632 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.152

  • S = 1.06

  • 7319 reflections

  • 415 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O3i 0.86 (2) 2.07 (2) 2.909 (3) 164 (2)
N2—H2n⋯O4ii 0.88 (2) 2.08 (2) 2.931 (3) 163 (2)
N3—H3n⋯O1iii 0.87 (2) 2.11 (2) 2.960 (3) 166 (2)
N4—H4n⋯O5iii 0.87 (2) 2.18 (2) 3.036 (2) 170 (2)
C8—H8b⋯O6iv 0.96 2.71 3.640 (3) 163
C6—H6⋯O6iv 0.93 2.67 3.541 (3) 156
C16—H16c⋯O6v 0.96 2.65 3.477 (3) 145
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamides related to the title compound exhibit anti-microbial activity (Korolkovas, 1988; Mandell & Sande, 1992). In connection with on-going structural studies of sulfonamides containing acetamide residues (John et al., 2010a; John et al., 2010b), the crystal and molecular structure of the title compound, (I), was investigated.

Two independent molecules comprise the crystallographic asymmetric unit of (I). There are non-chemically significant differences between the two molecules with the first, Fig. 1, being almost super-imposable upon the second, Fig. 2, but with twists evident about the (S)N–C and S–C bonds, Fig. 3. About the former, the differences are quantified in the S1–N1–C1–C2 and S2–N3–C17–C22 torsion angles of -107.5 (2) and -93.8 (2) °, respectively. About the S–C bond, the twists are evident in the O1–S1–C9–C10 and O4–S2–C25–C26 torsion angles of -44.3 (2) and -25.36 (19) °, respectively. In each case, the acetamide group is co-planar with the benzene ring to which it is bonded [C12–N2–C15–O3 = 0.5 (4) ° and C28–N4–C31–O6 = -3.2 (4) °]. The major difference relates to the relative disposition of the meta-methyl group which effectively resides on opposite sides in the two molecules, Fig. 3. Within each molecule, the benzene molecules are orientated in the same direction and form dihedral angles of 63.90 (13) ° (first molecule) and 35.78 (11) ° so that overall the molecules have a U-shaped but with significant twisting, in particular for the second independent molecule.

The crystal packing is dominated by N–H···O hydrogen bonds whereby each of the amide-N atoms forms an interaction with a sulfamoyl-O atom, Table 1. The sulfamoyl-N–H forms an interaction with an amide-O in the case of N1 but with a sulfamoyl-O atom in the case of N4, Table 1. The result of the hydrogen bonding is the formation of a supramolecular chain along the a axis with a tubular topology, Fig. 4. Perhaps surprisingly, the hydrogen bonding scheme does not involve the amide-O6 atom, which lies to the periphery of the chain, Fig. 4. However, the O6 atom forms a very short intramolecular C–H···O contact [H···O = 2.22 Å] and forms three further C–H···O contacts less than 2.72 Å [shortest = 2.65 Å with H16ci where i: x, -1 + y, z], thereby providing links between the supramolecular chains.

Related literature top

For background to the antimicrobial activity of sulfonamides, see: Korolkovas, (1988); Mandell & Sande (1992). For related structures, see: John et al. (2010a,b).

Experimental top

To 3,4-dimethyl aniline (242 mg, 2 mmol) in distilled water (10 ml) was added 4-acetamido benzene sulfonyl chloride (467 mg, 2 mmol) with stirring at room temperature while maintaining the pH of the reaction mixture at pH 8 using 3% sodium carbonate. The progress of the reaction was monitored by TLC. The precipitate formed was washed with water, dried and crystallized from a methanol/ethyl acetate mixture (50:50 V/V) to yield light-orange blocks of (I).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atoms were refined with the distance restraint N–H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N). In the final refinement, six low angle reflections evidently affected by the beam stop were omitted, i.e. 0 1 1; 1 1 1; 0 0 1; 0 1 0; 0 1 1; and 1 1 0.

Structure description top

Sulfonamides related to the title compound exhibit anti-microbial activity (Korolkovas, 1988; Mandell & Sande, 1992). In connection with on-going structural studies of sulfonamides containing acetamide residues (John et al., 2010a; John et al., 2010b), the crystal and molecular structure of the title compound, (I), was investigated.

Two independent molecules comprise the crystallographic asymmetric unit of (I). There are non-chemically significant differences between the two molecules with the first, Fig. 1, being almost super-imposable upon the second, Fig. 2, but with twists evident about the (S)N–C and S–C bonds, Fig. 3. About the former, the differences are quantified in the S1–N1–C1–C2 and S2–N3–C17–C22 torsion angles of -107.5 (2) and -93.8 (2) °, respectively. About the S–C bond, the twists are evident in the O1–S1–C9–C10 and O4–S2–C25–C26 torsion angles of -44.3 (2) and -25.36 (19) °, respectively. In each case, the acetamide group is co-planar with the benzene ring to which it is bonded [C12–N2–C15–O3 = 0.5 (4) ° and C28–N4–C31–O6 = -3.2 (4) °]. The major difference relates to the relative disposition of the meta-methyl group which effectively resides on opposite sides in the two molecules, Fig. 3. Within each molecule, the benzene molecules are orientated in the same direction and form dihedral angles of 63.90 (13) ° (first molecule) and 35.78 (11) ° so that overall the molecules have a U-shaped but with significant twisting, in particular for the second independent molecule.

The crystal packing is dominated by N–H···O hydrogen bonds whereby each of the amide-N atoms forms an interaction with a sulfamoyl-O atom, Table 1. The sulfamoyl-N–H forms an interaction with an amide-O in the case of N1 but with a sulfamoyl-O atom in the case of N4, Table 1. The result of the hydrogen bonding is the formation of a supramolecular chain along the a axis with a tubular topology, Fig. 4. Perhaps surprisingly, the hydrogen bonding scheme does not involve the amide-O6 atom, which lies to the periphery of the chain, Fig. 4. However, the O6 atom forms a very short intramolecular C–H···O contact [H···O = 2.22 Å] and forms three further C–H···O contacts less than 2.72 Å [shortest = 2.65 Å with H16ci where i: x, -1 + y, z], thereby providing links between the supramolecular chains.

For background to the antimicrobial activity of sulfonamides, see: Korolkovas, (1988); Mandell & Sande (1992). For related structures, see: John et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the first independent molecule in (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. The molecular structure of the second independent molecule in (I) showing displacement ellipsoids at the 35% probability level.
[Figure 3] Fig. 3. Overlay diagram of the first independent molecule (shown in red) and the second independent molecule (shown in blue).
[Figure 4] Fig. 4. Linear supramolecular chain along [100] in (I) mediated by N–H···O hydrogen bonding, shown as orange dashed lines.
N-{4-[(3,4-Dimethylphenyl)sulfamoyl]phenyl}acetamide top
Crystal data top
C16H18N2O3SZ = 4
Mr = 318.40F(000) = 672
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4317 (3) ÅCell parameters from 9916 reflections
b = 13.6142 (5) Åθ = 2.5–28.2°
c = 15.1796 (5) ŵ = 0.22 mm1
α = 71.340 (1)°T = 293 K
β = 77.136 (1)°Prism, light-orange
γ = 81.089 (1)°0.27 × 0.11 × 0.08 mm
V = 1602.83 (10) Å3
Data collection top
Bruker APEXII CCD
diffractometer
7319 independent reflections
Radiation source: fine-focus sealed tube5632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.817, Tmax = 0.940k = 1717
27476 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.079P)2 + 0.545P]
where P = (Fo2 + 2Fc2)/3
7319 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.34 e Å3
4 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H18N2O3Sγ = 81.089 (1)°
Mr = 318.40V = 1602.83 (10) Å3
Triclinic, P1Z = 4
a = 8.4317 (3) ÅMo Kα radiation
b = 13.6142 (5) ŵ = 0.22 mm1
c = 15.1796 (5) ÅT = 293 K
α = 71.340 (1)°0.27 × 0.11 × 0.08 mm
β = 77.136 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7319 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5632 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.940Rint = 0.030
27476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.34 e Å3
7319 reflectionsΔρmin = 0.39 e Å3
415 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.98322 (6)0.29377 (4)0.73537 (4)0.04718 (16)
O11.1132 (2)0.28964 (14)0.65701 (12)0.0646 (5)
O20.9185 (2)0.20011 (12)0.79683 (13)0.0621 (4)
O30.2213 (2)0.51502 (15)0.64850 (14)0.0716 (5)
N11.0577 (2)0.34788 (15)0.79690 (13)0.0490 (4)
H1N1.105 (3)0.4029 (13)0.7617 (15)0.059*
N20.4537 (2)0.59093 (14)0.57736 (14)0.0516 (5)
H2N0.488 (3)0.6506 (12)0.5403 (15)0.062*
C10.9606 (3)0.36318 (18)0.88249 (15)0.0479 (5)
C20.9398 (4)0.2785 (2)0.96293 (18)0.0641 (6)
H20.98350.21220.96030.077*
C30.8541 (4)0.2932 (2)1.04648 (19)0.0732 (8)
H30.83990.23611.10030.088*
C40.7889 (3)0.3900 (2)1.05273 (18)0.0638 (6)
C50.8081 (3)0.4762 (2)0.97240 (19)0.0595 (6)
C60.8955 (3)0.46140 (19)0.88680 (17)0.0540 (5)
H60.90970.51810.83260.065*
C70.6971 (5)0.4053 (3)1.1468 (2)0.0939 (10)
H7A0.67510.33871.19170.141*
H7B0.59590.44701.13760.141*
H7C0.76250.43971.17000.141*
C80.7413 (4)0.5840 (2)0.9746 (2)0.0844 (9)
H8A0.62410.58810.98810.127*
H8B0.77730.63280.91430.127*
H8C0.77960.60031.02280.127*
C90.8222 (2)0.37923 (16)0.69024 (14)0.0417 (4)
C100.8574 (3)0.47298 (17)0.62245 (17)0.0524 (5)
H100.96490.48990.60150.063*
C110.7335 (3)0.54057 (17)0.58647 (17)0.0522 (5)
H110.75740.60330.54070.063*
C120.5724 (2)0.51646 (16)0.61760 (15)0.0433 (4)
C130.5385 (3)0.42172 (19)0.68438 (18)0.0591 (6)
H130.43140.40400.70480.071*
C140.6637 (3)0.35388 (18)0.72046 (17)0.0546 (6)
H140.64070.29050.76560.065*
C150.2910 (2)0.58790 (17)0.59298 (15)0.0462 (5)
C160.2010 (3)0.6818 (2)0.53545 (18)0.0591 (6)
H16A0.19010.67020.47800.089*
H16B0.26070.74150.52040.089*
H16C0.09450.69390.57120.089*
S20.43431 (5)0.11151 (4)0.58705 (3)0.03881 (14)
O40.42248 (18)0.20348 (12)0.50888 (10)0.0522 (4)
O50.57822 (16)0.04038 (12)0.58419 (10)0.0478 (3)
O60.0669 (2)0.28130 (14)0.73484 (17)0.0821 (6)
N30.4199 (2)0.15276 (13)0.67873 (12)0.0430 (4)
H3N0.3329 (19)0.1964 (15)0.6800 (16)0.052*
N40.1488 (2)0.11535 (14)0.65969 (13)0.0449 (4)
H4N0.2356 (19)0.0768 (16)0.6428 (16)0.054*
C170.4346 (2)0.07454 (16)0.76766 (14)0.0419 (4)
C180.5893 (3)0.03908 (17)0.78749 (14)0.0467 (5)
H180.67960.06850.74520.056*
C190.6119 (3)0.03979 (19)0.86957 (16)0.0563 (6)
C200.4745 (4)0.08221 (18)0.93320 (16)0.0610 (6)
C210.3204 (4)0.0419 (2)0.91310 (17)0.0626 (6)
H210.22880.06780.95660.075*
C220.2991 (3)0.03525 (19)0.83092 (16)0.0540 (5)
H220.19480.06030.81850.065*
C230.7826 (4)0.0759 (3)0.8881 (2)0.0831 (10)
H23A0.79000.07000.94840.125*
H23B0.85860.03340.83930.125*
H23C0.80810.14720.88830.125*
C240.4914 (5)0.1688 (2)1.02311 (19)0.0908 (11)
H24A0.38480.18601.05870.136*
H24B0.54910.14661.06020.136*
H24C0.55090.22901.00760.136*
C250.2646 (2)0.04302 (15)0.60532 (13)0.0374 (4)
C260.1210 (2)0.09493 (15)0.57695 (14)0.0401 (4)
H260.11550.16600.54560.048*
C270.0130 (2)0.04060 (15)0.59549 (14)0.0414 (4)
H270.10930.07520.57630.050*
C280.0064 (2)0.06551 (15)0.64266 (13)0.0375 (4)
C290.1378 (3)0.11701 (17)0.67113 (16)0.0481 (5)
H290.14360.18800.70270.058*
C300.2719 (2)0.06227 (16)0.65223 (16)0.0479 (5)
H300.36840.09660.67130.058*
C310.1732 (3)0.21692 (17)0.70512 (16)0.0500 (5)
C320.3442 (3)0.2432 (2)0.7171 (2)0.0676 (7)
H32A0.34710.31740.73900.101*
H32B0.38020.21600.65750.101*
H32C0.41500.21300.76240.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0455 (3)0.0374 (3)0.0539 (3)0.0065 (2)0.0116 (2)0.0101 (2)
O10.0577 (9)0.0618 (11)0.0668 (11)0.0172 (8)0.0044 (8)0.0239 (9)
O20.0679 (10)0.0357 (8)0.0770 (11)0.0009 (7)0.0216 (9)0.0051 (8)
O30.0444 (8)0.0658 (11)0.0858 (13)0.0150 (8)0.0131 (8)0.0089 (10)
N10.0439 (9)0.0468 (10)0.0514 (10)0.0044 (7)0.0128 (8)0.0049 (8)
N20.0404 (9)0.0415 (10)0.0610 (11)0.0075 (7)0.0141 (8)0.0059 (8)
C10.0462 (11)0.0495 (12)0.0479 (11)0.0076 (9)0.0156 (9)0.0079 (9)
C20.0833 (18)0.0505 (14)0.0547 (14)0.0087 (12)0.0202 (12)0.0041 (11)
C30.102 (2)0.0596 (17)0.0513 (14)0.0204 (15)0.0161 (14)0.0007 (12)
C40.0640 (15)0.0708 (17)0.0557 (14)0.0198 (12)0.0127 (11)0.0101 (12)
C50.0582 (13)0.0540 (14)0.0721 (16)0.0057 (11)0.0218 (12)0.0196 (12)
C60.0547 (12)0.0493 (13)0.0562 (13)0.0065 (10)0.0187 (10)0.0065 (10)
C70.104 (3)0.111 (3)0.0642 (18)0.030 (2)0.0025 (17)0.0253 (18)
C80.101 (2)0.0665 (19)0.088 (2)0.0055 (16)0.0203 (18)0.0299 (16)
C90.0418 (10)0.0380 (10)0.0428 (10)0.0009 (8)0.0108 (8)0.0085 (8)
C100.0392 (10)0.0464 (12)0.0626 (14)0.0084 (9)0.0101 (9)0.0015 (10)
C110.0431 (11)0.0416 (12)0.0596 (13)0.0102 (9)0.0114 (9)0.0061 (10)
C120.0384 (9)0.0402 (11)0.0469 (11)0.0039 (8)0.0107 (8)0.0047 (9)
C130.0392 (10)0.0521 (13)0.0684 (15)0.0094 (9)0.0076 (10)0.0073 (11)
C140.0486 (11)0.0432 (12)0.0557 (13)0.0061 (9)0.0064 (10)0.0063 (10)
C150.0397 (10)0.0475 (12)0.0509 (12)0.0060 (8)0.0108 (8)0.0111 (10)
C160.0473 (12)0.0582 (14)0.0693 (15)0.0021 (10)0.0215 (11)0.0114 (12)
S20.0337 (2)0.0399 (3)0.0370 (3)0.00307 (18)0.00693 (17)0.0032 (2)
O40.0509 (8)0.0477 (9)0.0472 (8)0.0108 (6)0.0123 (6)0.0059 (7)
O50.0347 (7)0.0563 (9)0.0480 (8)0.0032 (6)0.0056 (6)0.0141 (7)
O60.0568 (10)0.0438 (10)0.1222 (17)0.0065 (8)0.0184 (10)0.0100 (10)
N30.0425 (9)0.0375 (9)0.0483 (9)0.0003 (7)0.0121 (7)0.0109 (7)
N40.0395 (8)0.0405 (10)0.0530 (10)0.0030 (7)0.0140 (7)0.0083 (8)
C170.0471 (10)0.0400 (11)0.0396 (10)0.0025 (8)0.0088 (8)0.0134 (8)
C180.0494 (11)0.0511 (12)0.0402 (10)0.0029 (9)0.0105 (8)0.0165 (9)
C190.0755 (15)0.0512 (13)0.0453 (12)0.0171 (11)0.0212 (11)0.0224 (10)
C200.102 (2)0.0404 (12)0.0401 (11)0.0001 (12)0.0145 (12)0.0133 (10)
C210.0804 (17)0.0556 (14)0.0489 (13)0.0188 (13)0.0002 (12)0.0134 (11)
C220.0533 (12)0.0550 (13)0.0534 (13)0.0089 (10)0.0069 (10)0.0157 (11)
C230.089 (2)0.100 (2)0.0619 (16)0.0414 (18)0.0383 (15)0.0322 (16)
C240.160 (3)0.0508 (16)0.0530 (15)0.0002 (18)0.0255 (18)0.0038 (13)
C250.0364 (9)0.0375 (10)0.0358 (9)0.0003 (7)0.0069 (7)0.0085 (8)
C260.0414 (9)0.0333 (10)0.0414 (10)0.0004 (7)0.0111 (8)0.0048 (8)
C270.0369 (9)0.0387 (10)0.0462 (11)0.0024 (7)0.0134 (8)0.0081 (8)
C280.0389 (9)0.0382 (10)0.0348 (9)0.0016 (7)0.0074 (7)0.0103 (8)
C290.0466 (11)0.0351 (10)0.0569 (12)0.0011 (8)0.0154 (9)0.0032 (9)
C300.0388 (10)0.0400 (11)0.0587 (13)0.0042 (8)0.0162 (9)0.0048 (9)
C310.0481 (11)0.0446 (12)0.0527 (12)0.0085 (9)0.0062 (9)0.0081 (10)
C320.0576 (14)0.0593 (15)0.0813 (18)0.0187 (12)0.0171 (12)0.0057 (13)
Geometric parameters (Å, º) top
S1—O21.4219 (17)S2—O41.4315 (14)
S1—O11.4363 (17)S2—O51.4322 (14)
S1—N11.629 (2)S2—N31.6342 (18)
S1—C91.755 (2)S2—C251.7510 (19)
O3—C151.210 (3)O6—C311.208 (3)
N1—C11.431 (3)N3—C171.444 (3)
N1—H1N0.866 (10)N3—H3N0.870 (10)
N2—C151.344 (3)N4—C311.358 (3)
N2—C121.402 (3)N4—C281.404 (2)
N2—H2N0.876 (10)N4—H4N0.870 (10)
C1—C61.381 (3)C17—C221.374 (3)
C1—C21.385 (3)C17—C181.382 (3)
C2—C31.371 (4)C18—C191.388 (3)
C2—H20.9300C18—H180.9300
C3—C41.371 (4)C19—C201.400 (4)
C3—H30.9300C19—C231.505 (4)
C4—C51.394 (4)C20—C211.390 (4)
C4—C71.525 (4)C20—C241.509 (3)
C5—C61.402 (4)C21—C221.376 (3)
C5—C81.497 (4)C21—H210.9300
C6—H60.9300C22—H220.9300
C7—H7A0.9600C23—H23A0.9600
C7—H7B0.9600C23—H23B0.9600
C7—H7C0.9600C23—H23C0.9600
C8—H8A0.9600C24—H24A0.9600
C8—H8B0.9600C24—H24B0.9600
C8—H8C0.9600C24—H24C0.9600
C9—C141.372 (3)C25—C301.380 (3)
C9—C101.385 (3)C25—C261.386 (3)
C10—C111.368 (3)C26—C271.374 (3)
C10—H100.9300C26—H260.9300
C11—C121.389 (3)C27—C281.391 (3)
C11—H110.9300C27—H270.9300
C12—C131.386 (3)C28—C291.390 (3)
C13—C141.378 (3)C29—C301.377 (3)
C13—H130.9300C29—H290.9300
C14—H140.9300C30—H300.9300
C15—C161.501 (3)C31—C321.497 (3)
C16—H16A0.9600C32—H32A0.9600
C16—H16B0.9600C32—H32B0.9600
C16—H16C0.9600C32—H32C0.9600
O2—S1—O1119.55 (11)O4—S2—O5119.22 (9)
O2—S1—N1108.66 (10)O4—S2—N3105.44 (10)
O1—S1—N1104.34 (11)O5—S2—N3107.14 (9)
O2—S1—C9108.30 (10)O4—S2—C25108.13 (9)
O1—S1—C9107.73 (10)O5—S2—C25108.38 (9)
N1—S1—C9107.70 (10)N3—S2—C25108.06 (9)
C1—N1—S1119.80 (14)C17—N3—S2116.87 (13)
C1—N1—H1N111.8 (17)C17—N3—H3N115.2 (15)
S1—N1—H1N112.1 (17)S2—N3—H3N107.0 (16)
C15—N2—C12129.42 (18)C31—N4—C28128.34 (17)
C15—N2—H2N114.2 (18)C31—N4—H4N114.1 (16)
C12—N2—H2N116.2 (18)C28—N4—H4N117.4 (16)
C6—C1—C2120.1 (2)C22—C17—C18120.5 (2)
C6—C1—N1120.9 (2)C22—C17—N3121.19 (19)
C2—C1—N1118.9 (2)C18—C17—N3118.32 (18)
C3—C2—C1119.4 (3)C17—C18—C19121.0 (2)
C3—C2—H2120.3C17—C18—H18119.5
C1—C2—H2120.3C19—C18—H18119.5
C4—C3—C2121.7 (2)C18—C19—C20118.8 (2)
C4—C3—H3119.2C18—C19—C23119.1 (2)
C2—C3—H3119.2C20—C19—C23122.1 (2)
C3—C4—C5119.7 (2)C21—C20—C19118.8 (2)
C3—C4—C7120.9 (3)C21—C20—C24120.0 (3)
C5—C4—C7119.3 (3)C19—C20—C24121.2 (3)
C4—C5—C6118.7 (2)C22—C21—C20122.1 (2)
C4—C5—C8122.4 (3)C22—C21—H21119.0
C6—C5—C8118.8 (2)C20—C21—H21119.0
C1—C6—C5120.4 (2)C17—C22—C21118.8 (2)
C1—C6—H6119.8C17—C22—H22120.6
C5—C6—H6119.8C21—C22—H22120.6
C4—C7—H7A109.5C19—C23—H23A109.5
C4—C7—H7B109.5C19—C23—H23B109.5
H7A—C7—H7B109.5H23A—C23—H23B109.5
C4—C7—H7C109.5C19—C23—H23C109.5
H7A—C7—H7C109.5H23A—C23—H23C109.5
H7B—C7—H7C109.5H23B—C23—H23C109.5
C5—C8—H8A109.5C20—C24—H24A109.5
C5—C8—H8B109.5C20—C24—H24B109.5
H8A—C8—H8B109.5H24A—C24—H24B109.5
C5—C8—H8C109.5C20—C24—H24C109.5
H8A—C8—H8C109.5H24A—C24—H24C109.5
H8B—C8—H8C109.5H24B—C24—H24C109.5
C14—C9—C10120.07 (18)C30—C25—C26120.04 (18)
C14—C9—S1121.03 (16)C30—C25—S2119.56 (14)
C10—C9—S1118.90 (15)C26—C25—S2120.33 (15)
C11—C10—C9119.73 (19)C27—C26—C25119.47 (18)
C11—C10—H10120.1C27—C26—H26120.3
C9—C10—H10120.1C25—C26—H26120.3
C10—C11—C12120.71 (19)C26—C27—C28120.75 (17)
C10—C11—H11119.6C26—C27—H27119.6
C12—C11—H11119.6C28—C27—H27119.6
C13—C12—C11119.18 (19)C29—C28—C27119.49 (18)
C13—C12—N2124.18 (18)C29—C28—N4123.14 (18)
C11—C12—N2116.63 (18)C27—C28—N4117.37 (16)
C14—C13—C12119.9 (2)C30—C29—C28119.55 (19)
C14—C13—H13120.1C30—C29—H29120.2
C12—C13—H13120.1C28—C29—H29120.2
C9—C14—C13120.4 (2)C29—C30—C25120.70 (18)
C9—C14—H14119.8C29—C30—H30119.6
C13—C14—H14119.8C25—C30—H30119.6
O3—C15—N2123.0 (2)O6—C31—N4123.2 (2)
O3—C15—C16122.0 (2)O6—C31—C32122.2 (2)
N2—C15—C16114.91 (19)N4—C31—C32114.7 (2)
C15—C16—H16A109.5C31—C32—H32A109.5
C15—C16—H16B109.5C31—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C15—C16—H16C109.5C31—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
O2—S1—N1—C150.44 (18)O4—S2—N3—C17177.69 (14)
O1—S1—N1—C1179.04 (16)O5—S2—N3—C1749.72 (16)
C9—S1—N1—C166.66 (18)C25—S2—N3—C1766.87 (16)
S1—N1—C1—C6107.5 (2)S2—N3—C17—C2293.8 (2)
S1—N1—C1—C275.9 (2)S2—N3—C17—C1885.6 (2)
C6—C1—C2—C30.1 (4)C22—C17—C18—C192.7 (3)
N1—C1—C2—C3176.6 (2)N3—C17—C18—C19176.69 (19)
C1—C2—C3—C40.4 (4)C17—C18—C19—C200.9 (3)
C2—C3—C4—C50.6 (4)C17—C18—C19—C23180.0 (2)
C2—C3—C4—C7178.7 (3)C18—C19—C20—C211.7 (3)
C3—C4—C5—C60.5 (4)C23—C19—C20—C21177.3 (2)
C7—C4—C5—C6178.8 (3)C18—C19—C20—C24179.4 (2)
C3—C4—C5—C8179.4 (3)C23—C19—C20—C241.6 (4)
C7—C4—C5—C80.2 (4)C19—C20—C21—C222.8 (4)
C2—C1—C6—C50.0 (3)C24—C20—C21—C22178.3 (2)
N1—C1—C6—C5176.5 (2)C18—C17—C22—C211.7 (3)
C4—C5—C6—C10.2 (3)N3—C17—C22—C21177.7 (2)
C8—C5—C6—C1179.2 (2)C20—C21—C22—C171.1 (4)
O2—S1—C9—C144.5 (2)O4—S2—C25—C30157.72 (17)
O1—S1—C9—C14135.1 (2)O5—S2—C25—C3027.17 (19)
N1—S1—C9—C14112.9 (2)N3—S2—C25—C3088.61 (18)
O2—S1—C9—C10174.89 (18)O4—S2—C25—C2625.36 (19)
O1—S1—C9—C1044.3 (2)O5—S2—C25—C26155.90 (16)
N1—S1—C9—C1067.8 (2)N3—S2—C25—C2688.32 (17)
C14—C9—C10—C110.6 (4)C30—C25—C26—C270.3 (3)
S1—C9—C10—C11179.98 (19)S2—C25—C26—C27177.26 (15)
C9—C10—C11—C120.4 (4)C25—C26—C27—C280.3 (3)
C10—C11—C12—C131.4 (4)C26—C27—C28—C290.1 (3)
C10—C11—C12—N2179.4 (2)C26—C27—C28—N4179.47 (18)
C15—N2—C12—C130.1 (4)C31—N4—C28—C290.6 (3)
C15—N2—C12—C11179.1 (2)C31—N4—C28—C27178.9 (2)
C11—C12—C13—C141.4 (4)C27—C28—C29—C300.0 (3)
N2—C12—C13—C14179.4 (2)N4—C28—C29—C30179.6 (2)
C10—C9—C14—C130.6 (4)C28—C29—C30—C250.0 (3)
S1—C9—C14—C13180.0 (2)C26—C25—C30—C290.2 (3)
C12—C13—C14—C90.4 (4)S2—C25—C30—C29177.16 (17)
C12—N2—C15—O30.5 (4)C28—N4—C31—O63.2 (4)
C12—N2—C15—C16179.0 (2)C28—N4—C31—C32175.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O3i0.86 (2)2.07 (2)2.909 (3)164 (2)
N2—H2n···O4ii0.88 (2)2.08 (2)2.931 (3)163 (2)
N3—H3n···O1iii0.87 (2)2.11 (2)2.960 (3)166 (2)
N4—H4n···O5iii0.87 (2)2.18 (2)3.036 (2)170 (2)
C8—H8b···O6iv0.962.713.640 (3)163
C6—H6···O6iv0.932.673.541 (3)156
C16—H16c···O6v0.962.653.477 (3)145
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H18N2O3S
Mr318.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4317 (3), 13.6142 (5), 15.1796 (5)
α, β, γ (°)71.340 (1), 77.136 (1), 81.089 (1)
V3)1602.83 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.27 × 0.11 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.817, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
27476, 7319, 5632
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.152, 1.06
No. of reflections7319
No. of parameters415
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O3i0.86 (2)2.07 (2)2.909 (3)164 (2)
N2—H2n···O4ii0.88 (2)2.08 (2)2.931 (3)162.6 (19)
N3—H3n···O1iii0.870 (19)2.107 (19)2.960 (3)166 (2)
N4—H4n···O5iii0.869 (19)2.18 (2)3.036 (2)169.5 (19)
C8—H8b···O6iv0.962.713.640 (3)163
C6—H6···O6iv0.932.673.541 (3)156
C16—H16c···O6v0.962.653.477 (3)145
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

We are grateful to Mr Munawar Hussain, Engineering Cell GC University, Lahore, for providing support services to the Materials Chemistry Laboratory.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohn, P., Ahmad, W., Khan, I. U., Sharif, S. & Tiekink, E. R. T. (2010b). Acta Cryst. E66, o2048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJohn, P., Khan, I. U., Sajjad, M. A., Sharif, S. & Tiekink, E. R. T. (2010a). Acta Cryst. E66, o2031.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw–Hill.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds