organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzene-1,3-diol–1,4-di­aza­bi­cyclo­[2.2.2]octane (1/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 29 July 2010; accepted 29 July 2010; online 31 July 2010)

There are two independent but virtually identical mol­ecules of each component in the asymmetric unit of the title 1:1 adduct, C6H12N2·C6H6O2. In the crystal, the constituents are connected into a supra­molecular chain along the b axis by O—H⋯N hydrogen bonds. Weak C—H⋯O bonds cross-link the chains.

Related literature

For related studies on co-crystal/adduct formation, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]); Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.]).

[Scheme 1]

Experimental

Crystal data
  • C6H12N2·C6H6O2

  • Mr = 222.28

  • Monoclinic, P 21 /c

  • a = 9.3620 (19) Å

  • b = 23.645 (5) Å

  • c = 11.072 (2) Å

  • β = 112.64 (3)°

  • V = 2262.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 K

  • 0.40 × 0.25 × 0.07 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.423, Tmax = 1.000

  • 11918 measured reflections

  • 3973 independent reflections

  • 3355 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.157

  • S = 1.00

  • 3973 reflections

  • 301 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1i 0.85 (2) 1.81 (2) 2.639 (3) 167 (3)
O2—H2O⋯N2 0.85 (3) 1.84 (2) 2.670 (3) 169 (3)
O3—H3O⋯N3ii 0.85 (2) 1.88 (2) 2.718 (3) 171 (2)
O4—H4O⋯N4 0.85 (2) 1.93 (2) 2.763 (3) 169 (3)
C23—H23⋯O1iii 0.95 2.55 3.330 (3) 139
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As a part of on-going studies into co-crystallization experiments with N-containing molecules (Broker & Tiekink, 2007; Broker et al., 2008; Arman et al. 2010), the co-crystallization of benzene-1,3-diol and 1,4-diazabicyclo[2.2.2]octane (dabco) was investigated, leading to the isolation of the 1:1 co-crystal, (I).

The crystallographic asymmetric unit of (I) comprises two independent benzene-1,3-diol molecules, Figs 1 and 2, and two independent dabco molecules, Figs 3 and 4. The molecules associate via O–H···N hydrogen bonds with each benzene-1,3-diol molecule bridging two independent dabco molecules. This results in the formation of a supramolecular chain along the b axis, Fig. 5 and Table 1. Chains are consolidated in the crystal structure by C–H···O contacts, Fig. 6 and Table 1.

Related literature top

For related studies on co-crystal/adduct formation, see: Broker & Tiekink (2007); Broker et al. (2008); Arman et al. (2010).

Experimental top

Colourless prisms of (I) were isolated from the 1/1 co-crystallization of 1,4-diazabicyclo[2.2.2]octane (Sigma-Aldrich, 0.18 mmol) and benzene-1,3-diol (ACROS, 0.18 mmol) in acetone/ethanol solution, m. pt. 513–517 K

Refinement top

The C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-bound H-atoms were located in a difference Fourier map and were refined with a distance restraint of O–H 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O).

Structure description top

As a part of on-going studies into co-crystallization experiments with N-containing molecules (Broker & Tiekink, 2007; Broker et al., 2008; Arman et al. 2010), the co-crystallization of benzene-1,3-diol and 1,4-diazabicyclo[2.2.2]octane (dabco) was investigated, leading to the isolation of the 1:1 co-crystal, (I).

The crystallographic asymmetric unit of (I) comprises two independent benzene-1,3-diol molecules, Figs 1 and 2, and two independent dabco molecules, Figs 3 and 4. The molecules associate via O–H···N hydrogen bonds with each benzene-1,3-diol molecule bridging two independent dabco molecules. This results in the formation of a supramolecular chain along the b axis, Fig. 5 and Table 1. Chains are consolidated in the crystal structure by C–H···O contacts, Fig. 6 and Table 1.

For related studies on co-crystal/adduct formation, see: Broker & Tiekink (2007); Broker et al. (2008); Arman et al. (2010).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the first independent benzene-1,3-diol molecule in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Molecular structure of the second independent benzene-1,3-diol molecule in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Molecular structure of the first independent 1,4-diazabicyclo[2.2.2]octane molecule in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 4] Fig. 4. Molecular structure of the second independent 1,4-diazabicyclo[2.2.2]octane molecule in (I) showing displacement ellipsoids at the 50% probability level.
[Figure 5] Fig. 5. Supramolecular chain along the b axis in (I) mediated by O–H···N hydrogen bonding (orange dashed lines).
[Figure 6] Fig. 6. View in projection down the a axis of the unit-cell contents of (I). The O–H···N hydrogen bonding and C–H···O contacts are shown as orange and blue dashed lines, respectively.
Benzene-1,3-diol–1,4-diazabicyclo[2.2.2]octane (1/1) top
Crystal data top
C6H12N2·C6H6O2F(000) = 960
Mr = 222.28Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10564 reflections
a = 9.3620 (19) Åθ = 2.0–40.2°
b = 23.645 (5) ŵ = 0.09 mm1
c = 11.072 (2) ÅT = 98 K
β = 112.64 (3)°Prism, colourless
V = 2262.1 (8) Å30.40 × 0.25 × 0.07 mm
Z = 8
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3973 independent reflections
Radiation source: fine-focus sealed tube3355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 811
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2528
Tmin = 0.423, Tmax = 1.000l = 1313
11918 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0661P)2 + 2.685P]
where P = (Fo2 + 2Fc2)/3
3973 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.27 e Å3
4 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H12N2·C6H6O2V = 2262.1 (8) Å3
Mr = 222.28Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.3620 (19) ŵ = 0.09 mm1
b = 23.645 (5) ÅT = 98 K
c = 11.072 (2) Å0.40 × 0.25 × 0.07 mm
β = 112.64 (3)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3973 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3355 reflections with I > 2σ(I)
Tmin = 0.423, Tmax = 1.000Rint = 0.049
11918 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0644 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.27 e Å3
3973 reflectionsΔρmin = 0.24 e Å3
301 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6822 (2)1.16554 (7)0.36932 (18)0.0301 (5)
H1O0.648 (4)1.1955 (8)0.326 (3)0.045*
O20.6063 (2)0.97031 (7)0.37749 (18)0.0314 (5)
H2O0.562 (4)0.9413 (9)0.335 (3)0.047*
O30.0808 (2)0.41271 (7)0.41406 (17)0.0263 (4)
H3O0.051 (4)0.4413 (9)0.364 (2)0.039*
O40.1800 (2)0.21654 (7)0.42386 (17)0.0266 (4)
H4O0.149 (4)0.1873 (8)0.377 (3)0.040*
N10.4071 (3)0.76680 (8)0.2317 (2)0.0228 (5)
N20.4791 (3)0.87151 (8)0.2746 (2)0.0219 (5)
N30.0069 (3)0.01097 (8)0.22198 (19)0.0205 (5)
N40.0848 (3)0.11358 (8)0.30117 (19)0.0202 (5)
C10.2920 (3)0.80228 (10)0.1308 (3)0.0269 (6)
H1A0.18920.79760.13560.032*
H1B0.28380.79010.04280.032*
C20.3406 (3)0.86513 (10)0.1519 (2)0.0245 (6)
H2A0.36390.87890.07700.029*
H2B0.25460.88810.15680.029*
C30.5626 (3)0.77703 (10)0.2309 (3)0.0262 (6)
H3A0.56220.76780.14350.031*
H3B0.63910.75220.29610.031*
C40.6094 (3)0.83966 (10)0.2637 (3)0.0269 (6)
H4A0.70050.84200.34730.032*
H4B0.63780.85640.19410.032*
C50.4101 (4)0.78343 (10)0.3614 (3)0.0275 (6)
H5A0.49110.76170.43070.033*
H5B0.30900.77470.36630.033*
C60.4438 (4)0.84720 (10)0.3833 (2)0.0274 (6)
H6A0.35280.86670.38870.033*
H6B0.53290.85320.46710.033*
C70.1050 (3)0.05173 (10)0.1344 (2)0.0240 (6)
H7A0.20730.04640.13960.029*
H7B0.11660.04480.04290.029*
C80.0488 (3)0.11313 (10)0.1737 (2)0.0240 (6)
H8A0.01810.13030.10570.029*
H8B0.13420.13600.18030.029*
C90.1632 (3)0.02439 (10)0.2251 (3)0.0241 (6)
H9A0.16090.02370.13500.029*
H9B0.23780.00460.27700.029*
C100.2163 (3)0.08326 (10)0.2863 (3)0.0249 (6)
H10A0.30180.07900.37290.030*
H10B0.25520.10550.22960.030*
C110.0090 (3)0.01896 (10)0.3555 (2)0.0239 (6)
H11A0.09080.00500.41820.029*
H11B0.09170.00720.35720.029*
C120.0401 (3)0.08194 (10)0.3972 (2)0.0227 (6)
H12A0.05430.09890.40190.027*
H12B0.12410.08440.48500.027*
C130.6158 (3)1.11889 (10)0.2989 (3)0.0227 (6)
C140.6381 (3)1.06812 (10)0.3673 (2)0.0237 (6)
H140.69571.06780.45910.028*
C150.5772 (3)1.01792 (10)0.3030 (2)0.0221 (5)
C160.4901 (3)1.01835 (10)0.1682 (2)0.0234 (6)
H160.44800.98430.12310.028*
C170.4663 (3)1.06950 (10)0.1012 (2)0.0245 (6)
H170.40671.07000.00970.029*
C180.5274 (3)1.11975 (10)0.1644 (2)0.0238 (6)
H180.50951.15430.11710.029*
C190.0690 (3)0.36384 (10)0.3458 (2)0.0207 (5)
C200.1297 (3)0.31467 (10)0.4162 (2)0.0219 (5)
H200.17910.31610.50890.026*
C210.1181 (3)0.26331 (10)0.3511 (2)0.0205 (5)
C220.0461 (3)0.26154 (10)0.2147 (2)0.0234 (6)
H220.03770.22670.16960.028*
C230.0129 (3)0.31076 (10)0.1454 (2)0.0246 (6)
H230.06010.30940.05260.030*
C240.0042 (3)0.36198 (10)0.2093 (2)0.0235 (6)
H240.04730.39530.16110.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0397 (12)0.0137 (9)0.0289 (10)0.0014 (8)0.0046 (9)0.0009 (7)
O20.0439 (13)0.0143 (9)0.0301 (10)0.0031 (8)0.0077 (10)0.0008 (7)
O30.0398 (12)0.0156 (8)0.0241 (9)0.0037 (8)0.0132 (9)0.0001 (7)
O40.0385 (12)0.0141 (8)0.0251 (9)0.0026 (8)0.0098 (9)0.0011 (7)
N10.0286 (13)0.0180 (10)0.0238 (11)0.0002 (9)0.0124 (10)0.0012 (8)
N20.0272 (13)0.0181 (10)0.0226 (11)0.0002 (9)0.0121 (10)0.0000 (8)
N30.0256 (12)0.0182 (10)0.0204 (10)0.0006 (8)0.0118 (9)0.0003 (8)
N40.0245 (12)0.0172 (10)0.0211 (10)0.0004 (8)0.0114 (9)0.0006 (8)
C10.0279 (15)0.0211 (13)0.0276 (13)0.0016 (11)0.0062 (12)0.0009 (10)
C20.0265 (15)0.0200 (12)0.0261 (13)0.0020 (10)0.0092 (12)0.0016 (10)
C30.0283 (15)0.0238 (13)0.0289 (13)0.0026 (11)0.0137 (12)0.0024 (10)
C40.0273 (15)0.0246 (13)0.0326 (14)0.0010 (11)0.0158 (12)0.0009 (11)
C50.0372 (17)0.0230 (13)0.0262 (13)0.0039 (11)0.0164 (13)0.0014 (10)
C60.0378 (17)0.0245 (13)0.0239 (13)0.0037 (11)0.0162 (13)0.0026 (10)
C70.0278 (15)0.0211 (12)0.0225 (12)0.0004 (10)0.0090 (12)0.0010 (10)
C80.0309 (16)0.0184 (12)0.0218 (12)0.0016 (11)0.0091 (12)0.0018 (10)
C90.0290 (15)0.0199 (12)0.0274 (13)0.0017 (11)0.0152 (12)0.0017 (10)
C100.0248 (15)0.0229 (12)0.0304 (13)0.0024 (11)0.0145 (12)0.0044 (10)
C110.0333 (16)0.0190 (12)0.0225 (12)0.0013 (11)0.0142 (12)0.0026 (10)
C120.0281 (15)0.0237 (12)0.0205 (12)0.0008 (10)0.0138 (12)0.0004 (10)
C130.0221 (14)0.0177 (12)0.0302 (13)0.0000 (10)0.0121 (12)0.0013 (10)
C140.0249 (14)0.0218 (12)0.0223 (12)0.0035 (10)0.0069 (11)0.0006 (10)
C150.0231 (14)0.0174 (12)0.0288 (13)0.0009 (10)0.0134 (12)0.0005 (10)
C160.0263 (15)0.0199 (12)0.0262 (13)0.0015 (10)0.0126 (12)0.0040 (10)
C170.0246 (15)0.0294 (13)0.0221 (12)0.0010 (11)0.0120 (11)0.0021 (10)
C180.0286 (15)0.0193 (12)0.0258 (13)0.0026 (10)0.0127 (12)0.0037 (10)
C190.0199 (14)0.0183 (12)0.0265 (13)0.0023 (10)0.0118 (11)0.0011 (10)
C200.0249 (14)0.0228 (12)0.0205 (12)0.0013 (10)0.0116 (11)0.0001 (10)
C210.0231 (14)0.0183 (12)0.0239 (12)0.0002 (10)0.0132 (11)0.0016 (9)
C220.0285 (15)0.0167 (12)0.0265 (13)0.0028 (10)0.0123 (12)0.0037 (10)
C230.0287 (15)0.0252 (13)0.0217 (12)0.0024 (11)0.0117 (11)0.0003 (10)
C240.0253 (15)0.0210 (12)0.0253 (13)0.0015 (10)0.0110 (12)0.0032 (10)
Geometric parameters (Å, º) top
O1—C131.356 (3)C7—C81.548 (3)
O1—H1O0.85 (2)C7—H7A0.9900
O2—C151.360 (3)C7—H7B0.9900
O2—H2O0.85 (3)C8—H8A0.9900
O3—C191.362 (3)C8—H8B0.9900
O3—H3O0.85 (2)C9—C101.544 (3)
O4—C211.360 (3)C9—H9A0.9900
O4—H4O0.85 (2)C9—H9B0.9900
N1—C11.479 (3)C10—H10A0.9900
N1—C31.479 (4)C10—H10B0.9900
N1—C51.479 (3)C11—C121.553 (3)
N2—C41.477 (3)C11—H11A0.9900
N2—C61.482 (3)C11—H11B0.9900
N2—C21.481 (3)C12—H12A0.9900
N3—C71.478 (3)C12—H12B0.9900
N3—C111.483 (3)C13—C141.392 (3)
N3—C91.484 (3)C13—C181.397 (4)
N4—C81.482 (3)C14—C151.389 (3)
N4—C121.486 (3)C14—H140.9500
N4—C101.488 (3)C15—C161.398 (4)
C1—C21.545 (3)C16—C171.391 (3)
C1—H1A0.9900C16—H160.9500
C1—H1B0.9900C17—C181.386 (3)
C2—H2A0.9900C17—H170.9500
C2—H2B0.9900C18—H180.9500
C3—C41.547 (3)C19—C201.393 (3)
C3—H3A0.9900C19—C241.399 (3)
C3—H3B0.9900C20—C211.395 (3)
C4—H4A0.9900C20—H200.9500
C4—H4B0.9900C21—C221.397 (3)
C5—C61.541 (3)C22—C231.387 (3)
C5—H5A0.9900C22—H220.9500
C5—H5B0.9900C23—C241.389 (3)
C6—H6A0.9900C23—H230.9500
C6—H6B0.9900C24—H240.9500
C13—O1—H1O111 (2)C7—C8—H8B109.6
C15—O2—H2O113 (2)H8A—C8—H8B108.1
C19—O3—H3O112 (2)N3—C9—C10110.6 (2)
C21—O4—H4O110 (2)N3—C9—H9A109.5
C1—N1—C3109.6 (2)C10—C9—H9A109.5
C1—N1—C5108.6 (2)N3—C9—H9B109.5
C3—N1—C5108.2 (2)C10—C9—H9B109.5
C4—N2—C6108.5 (2)H9A—C9—H9B108.1
C4—N2—C2109.38 (19)N4—C10—C9110.0 (2)
C6—N2—C2108.4 (2)N4—C10—H10A109.7
C7—N3—C11107.77 (19)C9—C10—H10A109.7
C7—N3—C9108.61 (19)N4—C10—H10B109.7
C11—N3—C9108.3 (2)C9—C10—H10B109.7
C8—N4—C12108.1 (2)H10A—C10—H10B108.2
C8—N4—C10108.79 (19)N3—C11—C12110.32 (19)
C12—N4—C10108.05 (19)N3—C11—H11A109.6
N1—C1—C2110.2 (2)C12—C11—H11A109.6
N1—C1—H1A109.6N3—C11—H11B109.6
C2—C1—H1A109.6C12—C11—H11B109.6
N1—C1—H1B109.6H11A—C11—H11B108.1
C2—C1—H1B109.6N4—C12—C11110.03 (19)
H1A—C1—H1B108.1N4—C12—H12A109.7
N2—C2—C1109.9 (2)C11—C12—H12A109.7
N2—C2—H2A109.7N4—C12—H12B109.7
C1—C2—H2A109.7C11—C12—H12B109.7
N2—C2—H2B109.7H12A—C12—H12B108.2
C1—C2—H2B109.7O1—C13—C14116.7 (2)
H2A—C2—H2B108.2O1—C13—C18123.6 (2)
N1—C3—C4110.2 (2)C14—C13—C18119.7 (2)
N1—C3—H3A109.6C13—C14—C15120.8 (2)
C4—C3—H3A109.6C13—C14—H14119.6
N1—C3—H3B109.6C15—C14—H14119.6
C4—C3—H3B109.6O2—C15—C14116.7 (2)
H3A—C3—H3B108.1O2—C15—C16123.5 (2)
N2—C4—C3109.8 (2)C14—C15—C16119.8 (2)
N2—C4—H4A109.7C17—C16—C15118.9 (2)
C3—C4—H4A109.7C17—C16—H16120.5
N2—C4—H4B109.7C15—C16—H16120.5
C3—C4—H4B109.7C18—C17—C16121.7 (2)
H4A—C4—H4B108.2C18—C17—H17119.2
N1—C5—C6109.8 (2)C16—C17—H17119.1
N1—C5—H5A109.7C17—C18—C13119.1 (2)
C6—C5—H5A109.7C17—C18—H18120.5
N1—C5—H5B109.7C13—C18—H18120.5
C6—C5—H5B109.7O3—C19—C20118.0 (2)
H5A—C5—H5B108.2O3—C19—C24121.8 (2)
N2—C6—C5110.4 (2)C20—C19—C24120.2 (2)
N2—C6—H6A109.6C21—C20—C19120.2 (2)
C5—C6—H6A109.6C21—C20—H20119.9
N2—C6—H6B109.6C19—C20—H20119.9
C5—C6—H6B109.6O4—C21—C20118.1 (2)
H6A—C6—H6B108.1O4—C21—C22122.3 (2)
N3—C7—C8110.4 (2)C20—C21—C22119.6 (2)
N3—C7—H7A109.6C23—C22—C21119.8 (2)
C8—C7—H7A109.6C23—C22—H22120.1
N3—C7—H7B109.6C21—C22—H22120.1
C8—C7—H7B109.6C22—C23—C24121.1 (2)
H7A—C7—H7B108.1C22—C23—H23119.4
N4—C8—C7110.20 (19)C24—C23—H23119.4
N4—C8—H8A109.6C23—C24—C19119.1 (2)
C7—C8—H8A109.6C23—C24—H24120.5
N4—C8—H8B109.6C19—C24—H24120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.85 (2)1.81 (2)2.639 (3)167 (3)
O2—H2O···N20.85 (3)1.84 (2)2.670 (3)169 (3)
O3—H3O···N3ii0.85 (2)1.88 (2)2.718 (3)171 (2)
O4—H4O···N40.85 (2)1.93 (2)2.763 (3)169 (3)
C23—H23···O1iii0.952.553.330 (3)139
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H12N2·C6H6O2
Mr222.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)9.3620 (19), 23.645 (5), 11.072 (2)
β (°) 112.64 (3)
V3)2262.1 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.25 × 0.07
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.423, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11918, 3973, 3355
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.157, 1.00
No. of reflections3973
No. of parameters301
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.85 (2)1.81 (2)2.639 (3)167 (3)
O2—H2O···N20.85 (3)1.84 (2)2.670 (3)169 (3)
O3—H3O···N3ii0.85 (2)1.88 (2)2.718 (3)171 (2)
O4—H4O···N40.85 (2)1.93 (2)2.763 (3)169 (3)
C23—H23···O1iii0.952.553.330 (3)139
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y+3/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: xcosmo3@gmail.com.

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds