metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(4-carb­­oxy-2-propyl-1H-imidazole-5-carboxyl­ato-κ2N3,O4)copper(II) N,N-di­methyl­formamide disolvate

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and bCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 4 June 2010; accepted 27 June 2010; online 7 July 2010)

In the title complex, [Cu(C8H9N2O4)2(H2O)2]·2C3H7NO, the CuII ion, lying on an inversion center, is six-coordinated in a slightly distorted octa­hedral geometry. Two N atoms and two O atoms from two H2pimda (H3pimda is 2-propyl-1H-4,5-dicarb­oxy­lic acid) ligands are in the equatorial plane. The axial positions are occupied by two O atoms from two water mol­ecules. A two-dimensional supra­molecular network parallel to (001) is constructed by N—H⋯O and O—H⋯O hydrogen bonds. An intra­molecular O—H⋯O hydrogen bond is also observed.

Related literature

For the potential uses and diverse structural types of metal complexes with imidazole-4,5-dicarb­oxy­lic acid, see: Li et al. (2006[Li, C.-J., Hu, S., Li, W., Lam, C.-K., Zheng, Y.-Z. & Tong, M.-L. (2006). Eur. J. Inorg. Chem. pp. 1931-1935.]); Liu et al. (2004[Liu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806-2807.]); Sun et al. (2005[Sun, Y.-Q., Zhang, J., Chen, Y.-M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814-5817.]); Zou et al. (2006[Zou, R.-Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542-2546.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H9N2O4)2(H2O)2]·2C3H7NO

  • Mr = 640.11

  • Triclinic, [P \overline 1]

  • a = 7.2831 (8) Å

  • b = 9.250 (1) Å

  • c = 11.3329 (13) Å

  • α = 75.264 (1)°

  • β = 87.305 (2)°

  • γ = 68.416 (1)°

  • V = 685.68 (13) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 298 K

  • 0.32 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.768, Tmax = 0.852

  • 3603 measured reflections

  • 2385 independent reflections

  • 2011 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.06

  • 2385 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O6i 0.86 1.83 2.679 (3) 167
O2—H2A⋯O3 0.82 1.67 2.494 (3) 177
O5—H5A⋯O4ii 0.85 1.91 2.755 (3) 172
O5—H5B⋯O4iii 0.85 2.07 2.906 (3) 167
Symmetry codes: (i) x+1, y-1, z; (ii) -x+1, -y, -z+1; (iii) x-1, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design and synthesis of metal-organic complexes via deliberate selection of metal ions and organic ligands have been one of the most attractive subjects due to their fascinating structures and potential applications in many field. It is well known that ligands containing N and O atoms which are highly accessible to metal ions are good candidates for the design and synthesis. For example, imidazole-4,5-dicarboxylic acid (H3idc) containing N and O coordination sites can be deprotonated to form (H2idc)-, (Hidc)2- and (idc)3- anions at different pH values. H3idc has been widely used to react with metal salts to obtain a series of metal-organic frameworks with different structures and useful properties (Li et al., 2006; Liu et al., 2004; Sun et al., 2005; Zou et al., 2006). Therefore, we chose 2-propyl-imidazole-4,5-dicarboxylic acid (H3pimda) as ligand for the synthesis of fascinating structures and we report a new CuII complex here.

As illustrated in Fig. 1, the asymmetric unit of the title complex comprises one H2pimda ligand, one CuII ion lying on an inversion center, one coordinated water molecule and one solvent DMF molecule. The CuII ion is six-coordinated in a slightly distorted octahedral geometry, formed by two N atoms and two O atoms from two H2pimda ligands in the equatorial plane. The Cu—O bond length with the value of 2.458 (2) Å is somewhat longer than the Cu—N bond with the value of 1.987 (2) Å. The axial positions are occupied by two O atoms from two water molecules [Cu—O = 2.020 (2) Å]. The H2pimda ligand adopts a bidentate mode to chelate the metal atom through one imidazole N atom and one O atom from the protonated carboxyl group. The other carboxyl group is deprotonated, indicated by a difference of the bond lengths. The two imidazole rings are coplanar. The DMF molecules are linked to the H2pimda ligand via N—H···O hydrogen bonds. The two-dimensional supramolecular network is stabilized by N—H···O and O—H···O hydrogen bonds (Fig. 2, Table 1).

Related literature top

For the potential uses and diverse structural types of metal complexes with imidazole-4,5-dicarboxylic acid, see: Li et al. (2006); Liu et al. (2004); Sun et al. (2005); Zou et al. (2006).

Experimental top

A mixture of Cu(NO3)2 (0.5 mmol, 0.05 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.99 g) in 15 ml of DMF solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433 K for 4 d. Blue crystals were obtained by slow evaporation of the solvent at room temperature.

Refinement top

C- and N-bound H atoms were placed at calculated positions and were treated as riding on the parent atoms, with C—H = 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å, N—H = 0.86 Å, and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N). H atoms of the water molecule and hydroxyl group were located in a difference map and were allowed to ride on the parent atom, with O—H = 0.85 and 0.82 Å and Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(O).

Structure description top

Design and synthesis of metal-organic complexes via deliberate selection of metal ions and organic ligands have been one of the most attractive subjects due to their fascinating structures and potential applications in many field. It is well known that ligands containing N and O atoms which are highly accessible to metal ions are good candidates for the design and synthesis. For example, imidazole-4,5-dicarboxylic acid (H3idc) containing N and O coordination sites can be deprotonated to form (H2idc)-, (Hidc)2- and (idc)3- anions at different pH values. H3idc has been widely used to react with metal salts to obtain a series of metal-organic frameworks with different structures and useful properties (Li et al., 2006; Liu et al., 2004; Sun et al., 2005; Zou et al., 2006). Therefore, we chose 2-propyl-imidazole-4,5-dicarboxylic acid (H3pimda) as ligand for the synthesis of fascinating structures and we report a new CuII complex here.

As illustrated in Fig. 1, the asymmetric unit of the title complex comprises one H2pimda ligand, one CuII ion lying on an inversion center, one coordinated water molecule and one solvent DMF molecule. The CuII ion is six-coordinated in a slightly distorted octahedral geometry, formed by two N atoms and two O atoms from two H2pimda ligands in the equatorial plane. The Cu—O bond length with the value of 2.458 (2) Å is somewhat longer than the Cu—N bond with the value of 1.987 (2) Å. The axial positions are occupied by two O atoms from two water molecules [Cu—O = 2.020 (2) Å]. The H2pimda ligand adopts a bidentate mode to chelate the metal atom through one imidazole N atom and one O atom from the protonated carboxyl group. The other carboxyl group is deprotonated, indicated by a difference of the bond lengths. The two imidazole rings are coplanar. The DMF molecules are linked to the H2pimda ligand via N—H···O hydrogen bonds. The two-dimensional supramolecular network is stabilized by N—H···O and O—H···O hydrogen bonds (Fig. 2, Table 1).

For the potential uses and diverse structural types of metal complexes with imidazole-4,5-dicarboxylic acid, see: Li et al. (2006); Liu et al. (2004); Sun et al. (2005); Zou et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level. H atoms are omitted for clarity. [Symmetry code: (i) 1-x, 1-y, 1-z.]
[Figure 2] Fig. 2. A view of the two-dimensional network constructed by O—H···O and N—H···O hydrogen bonding interactions. H atoms are omitted for clarity.
Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- κ2N3,O4)copper(II) N,N-dimethylformamide disolvate top
Crystal data top
[Cu(C8H9N2O4)2(H2O)2]·2C3H7NOZ = 1
Mr = 640.11F(000) = 335
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2831 (8) ÅCell parameters from 1702 reflections
b = 9.250 (1) Åθ = 2.5–25.9°
c = 11.3329 (13) ŵ = 0.87 mm1
α = 75.264 (1)°T = 298 K
β = 87.305 (2)°Cubic, blue
γ = 68.416 (1)°0.32 × 0.21 × 0.19 mm
V = 685.68 (13) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
2385 independent reflections
Radiation source: fine-focus sealed tube2011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.768, Tmax = 0.852k = 1010
3603 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.548P]
where P = (Fo2 + 2Fc2)/3
2385 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C8H9N2O4)2(H2O)2]·2C3H7NOγ = 68.416 (1)°
Mr = 640.11V = 685.68 (13) Å3
Triclinic, P1Z = 1
a = 7.2831 (8) ÅMo Kα radiation
b = 9.250 (1) ŵ = 0.87 mm1
c = 11.3329 (13) ÅT = 298 K
α = 75.264 (1)°0.32 × 0.21 × 0.19 mm
β = 87.305 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2385 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2011 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.852Rint = 0.017
3603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
2385 reflectionsΔρmin = 0.29 e Å3
187 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.02632 (17)
N10.6271 (3)0.2621 (3)0.5343 (2)0.0251 (5)
N20.7981 (3)0.0045 (3)0.5992 (2)0.0295 (6)
H20.87070.08620.64610.035*
N30.1268 (4)0.4896 (3)0.8656 (3)0.0434 (7)
O10.4276 (3)0.4348 (2)0.31460 (19)0.0387 (5)
O20.4952 (3)0.2191 (3)0.24467 (19)0.0422 (6)
H2A0.55730.12210.26870.063*
O30.6933 (4)0.0740 (3)0.3193 (2)0.0442 (6)
O40.8653 (3)0.2477 (2)0.4863 (2)0.0398 (5)
O50.2402 (3)0.4858 (2)0.56026 (19)0.0353 (5)
H5A0.21860.40610.54850.042*
H5B0.14120.57010.52930.042*
O60.0414 (4)0.7502 (3)0.7641 (2)0.0568 (7)
C10.5080 (4)0.2896 (3)0.3284 (3)0.0305 (7)
C20.6222 (4)0.1888 (3)0.4434 (3)0.0255 (6)
C30.7286 (4)0.0262 (3)0.4834 (3)0.0265 (6)
C40.7665 (4)0.1092 (3)0.4254 (3)0.0305 (7)
C50.7356 (4)0.1463 (3)0.6284 (3)0.0289 (7)
C60.7787 (5)0.1646 (4)0.7491 (3)0.0414 (8)
H6A0.73280.27820.74600.050*
H6B0.92080.11990.76590.050*
C70.6827 (7)0.0825 (6)0.8528 (4)0.0694 (12)
H7A0.54140.12400.83360.083*
H7B0.73280.03160.85730.083*
C80.7160 (7)0.1037 (5)0.9754 (3)0.0659 (12)
H8A0.84390.02881.00980.099*
H8B0.61590.08451.02820.099*
H8C0.70970.21140.96680.099*
C90.0181 (5)0.6215 (4)0.7857 (3)0.0451 (8)
H90.08400.61670.74240.054*
C100.0974 (8)0.3399 (5)0.8779 (4)0.0779 (14)
H10A0.02120.36050.83220.117*
H10B0.08560.29320.96250.117*
H10C0.20820.26690.84710.117*
C110.2925 (6)0.4885 (5)0.9321 (4)0.0625 (11)
H11A0.41160.44800.89100.094*
H11B0.30490.42071.01340.094*
H11C0.27090.59590.93610.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0281 (3)0.0167 (3)0.0329 (3)0.0064 (2)0.0004 (2)0.0065 (2)
N10.0284 (13)0.0187 (11)0.0282 (13)0.0084 (10)0.0010 (10)0.0066 (10)
N20.0300 (14)0.0166 (11)0.0365 (14)0.0047 (10)0.0039 (11)0.0025 (10)
N30.0490 (18)0.0311 (14)0.0453 (17)0.0112 (13)0.0017 (13)0.0060 (12)
O10.0464 (14)0.0227 (11)0.0391 (13)0.0053 (10)0.0048 (10)0.0045 (9)
O20.0540 (15)0.0332 (12)0.0363 (13)0.0100 (11)0.0097 (10)0.0105 (10)
O30.0579 (16)0.0319 (12)0.0443 (14)0.0110 (11)0.0031 (12)0.0194 (10)
O40.0397 (13)0.0185 (11)0.0580 (15)0.0045 (9)0.0025 (11)0.0125 (10)
O50.0289 (11)0.0218 (10)0.0565 (14)0.0094 (9)0.0037 (10)0.0123 (9)
O60.0589 (17)0.0316 (13)0.0649 (17)0.0080 (12)0.0174 (13)0.0038 (12)
C10.0282 (16)0.0297 (16)0.0334 (17)0.0103 (13)0.0012 (13)0.0082 (13)
C20.0263 (15)0.0228 (14)0.0309 (16)0.0122 (12)0.0038 (12)0.0086 (12)
C30.0237 (15)0.0227 (14)0.0340 (17)0.0091 (12)0.0046 (12)0.0083 (12)
C40.0256 (16)0.0236 (15)0.0445 (19)0.0096 (13)0.0060 (13)0.0128 (14)
C50.0304 (16)0.0222 (14)0.0340 (17)0.0100 (12)0.0013 (13)0.0060 (12)
C60.053 (2)0.0267 (16)0.0416 (19)0.0119 (15)0.0131 (16)0.0051 (14)
C70.085 (3)0.094 (3)0.052 (3)0.050 (3)0.019 (2)0.035 (2)
C80.079 (3)0.067 (3)0.051 (2)0.024 (2)0.006 (2)0.018 (2)
C90.0362 (19)0.047 (2)0.048 (2)0.0092 (16)0.0039 (16)0.0138 (17)
C100.105 (4)0.041 (2)0.094 (3)0.033 (2)0.015 (3)0.019 (2)
C110.050 (2)0.058 (2)0.062 (3)0.0083 (19)0.0161 (19)0.001 (2)
Geometric parameters (Å, º) top
Cu1—N1i1.987 (2)C1—C21.475 (4)
Cu1—N11.987 (2)C2—C31.377 (4)
Cu1—O5i2.020 (2)C3—C41.491 (4)
Cu1—O52.020 (2)C5—C61.481 (4)
Cu1—O12.458 (2)C6—C71.519 (5)
N1—C51.336 (3)C6—H6A0.9700
N1—C21.378 (3)C6—H6B0.9700
N2—C51.344 (3)C7—C81.494 (5)
N2—C31.368 (4)C7—H7A0.9700
N2—H20.8600C7—H7B0.9700
N3—C91.315 (4)C8—H8A0.9600
N3—C111.448 (4)C8—H8B0.9600
N3—C101.449 (4)C8—H8C0.9600
O1—C11.222 (3)C9—H90.9300
O2—C11.305 (3)C10—H10A0.9600
O2—H2A0.8200C10—H10B0.9600
O3—C41.253 (4)C10—H10C0.9600
O4—C41.247 (3)C11—H11A0.9600
O5—H5A0.8499C11—H11B0.9600
O5—H5B0.8500C11—H11C0.9600
O6—C91.226 (4)
N1i—Cu1—N1180.00 (6)N1—C5—N2109.4 (2)
N1i—Cu1—O5i91.57 (9)N1—C5—C6127.0 (3)
N1—Cu1—O5i88.44 (9)N2—C5—C6123.6 (3)
N1i—Cu1—O588.43 (9)C5—C6—C7113.2 (3)
N1—Cu1—O591.56 (9)C5—C6—H6A108.9
O5i—Cu1—O5180.0C7—C6—H6A108.9
N1i—Cu1—O1104.94 (8)C5—C6—H6B108.9
N1—Cu1—O175.06 (8)C7—C6—H6B108.9
O5i—Cu1—O192.58 (8)H6A—C6—H6B107.7
O5—Cu1—O187.42 (8)C8—C7—C6114.9 (3)
C5—N1—C2106.6 (2)C8—C7—H7A108.6
C5—N1—Cu1134.39 (19)C6—C7—H7A108.6
C2—N1—Cu1118.83 (18)C8—C7—H7B108.6
C5—N2—C3109.7 (2)C6—C7—H7B108.6
C5—N2—H2125.2H7A—C7—H7B107.5
C3—N2—H2125.2C7—C8—H8A109.5
C9—N3—C11119.9 (3)C7—C8—H8B109.5
C9—N3—C10120.6 (3)H8A—C8—H8B109.5
C11—N3—C10119.1 (3)C7—C8—H8C109.5
C1—O1—Cu1108.15 (18)H8A—C8—H8C109.5
C1—O2—H2A109.5H8B—C8—H8C109.5
Cu1—O5—H5A114.3O6—C9—N3124.8 (3)
Cu1—O5—H5B113.0O6—C9—H9117.6
H5A—O5—H5B107.6N3—C9—H9117.6
O1—C1—O2122.2 (3)N3—C10—H10A109.5
O1—C1—C2119.7 (3)N3—C10—H10B109.5
O2—C1—C2118.1 (2)H10A—C10—H10B109.5
C3—C2—N1109.4 (2)N3—C10—H10C109.5
C3—C2—C1132.5 (3)H10A—C10—H10C109.5
N1—C2—C1118.1 (2)H10B—C10—H10C109.5
N2—C3—C2104.9 (2)N3—C11—H11A109.5
N2—C3—C4122.9 (2)N3—C11—H11B109.5
C2—C3—C4132.2 (3)H11A—C11—H11B109.5
O4—C4—O3125.3 (3)N3—C11—H11C109.5
O4—C4—C3117.8 (3)H11A—C11—H11C109.5
O3—C4—C3116.9 (3)H11B—C11—H11C109.5
O5i—Cu1—N1—C585.3 (3)C5—N2—C3—C4177.9 (3)
O5—Cu1—N1—C594.7 (3)N1—C2—C3—N20.5 (3)
O1—Cu1—N1—C5178.4 (3)C1—C2—C3—N2178.9 (3)
O5i—Cu1—N1—C289.3 (2)N1—C2—C3—C4177.8 (3)
O5—Cu1—N1—C290.7 (2)C1—C2—C3—C40.7 (5)
O1—Cu1—N1—C23.76 (19)N2—C3—C4—O40.3 (4)
N1i—Cu1—O1—C1177.7 (2)C2—C3—C4—O4177.7 (3)
N1—Cu1—O1—C12.3 (2)N2—C3—C4—O3179.4 (3)
O5i—Cu1—O1—C185.4 (2)C2—C3—C4—O31.4 (5)
O5—Cu1—O1—C194.6 (2)C2—N1—C5—N20.1 (3)
Cu1—O1—C1—O2179.8 (2)Cu1—N1—C5—N2175.00 (19)
Cu1—O1—C1—C20.4 (3)C2—N1—C5—C6178.0 (3)
C5—N1—C2—C30.3 (3)Cu1—N1—C5—C66.9 (5)
Cu1—N1—C2—C3176.24 (18)C3—N2—C5—N10.4 (3)
C5—N1—C2—C1179.0 (2)C3—N2—C5—C6177.8 (3)
Cu1—N1—C2—C15.1 (3)N1—C5—C6—C7112.5 (4)
O1—C1—C2—C3179.0 (3)N2—C5—C6—C765.4 (4)
O2—C1—C2—C31.7 (5)C5—C6—C7—C8177.7 (3)
O1—C1—C2—N12.7 (4)C11—N3—C9—O62.4 (6)
O2—C1—C2—N1176.7 (2)C10—N3—C9—O6175.2 (4)
C5—N2—C3—C20.5 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6ii0.861.832.679 (3)167
O2—H2A···O30.821.672.494 (3)177
O5—H5A···O4iii0.851.912.755 (3)172
O5—H5B···O4iv0.852.072.906 (3)167
Symmetry codes: (ii) x+1, y1, z; (iii) x+1, y, z+1; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H9N2O4)2(H2O)2]·2C3H7NO
Mr640.11
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2831 (8), 9.250 (1), 11.3329 (13)
α, β, γ (°)75.264 (1), 87.305 (2), 68.416 (1)
V3)685.68 (13)
Z1
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.32 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.768, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
3603, 2385, 2011
Rint0.017
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.06
No. of reflections2385
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.29

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6i0.861.832.679 (3)166.6
O2—H2A···O30.821.672.494 (3)177.3
O5—H5A···O4ii0.851.912.755 (3)172.1
O5—H5B···O4iii0.852.072.906 (3)166.5
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z+1; (iii) x1, y+1, z.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, C.-J., Hu, S., Li, W., Lam, C.-K., Zheng, Y.-Z. & Tong, M.-L. (2006). Eur. J. Inorg. Chem. pp. 1931–1935.  Web of Science CSD CrossRef Google Scholar
First citationLiu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806–2807.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J., Chen, Y.-M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814–5817.  Web of Science CSD CrossRef CAS Google Scholar
First citationZou, R.-Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542–2546.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds