metal-organic compounds
Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato-κ2N3,O4)copper(II) N,N-dimethylformamide disolvate
aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and bCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com
In the title complex, [Cu(C8H9N2O4)2(H2O)2]·2C3H7NO, the CuII ion, lying on an inversion center, is six-coordinated in a slightly distorted octahedral geometry. Two N atoms and two O atoms from two H2pimda (H3pimda is 2-propyl-1H-4,5-dicarboxylic acid) ligands are in the equatorial plane. The axial positions are occupied by two O atoms from two water molecules. A two-dimensional supramolecular network parallel to (001) is constructed by N—H⋯O and O—H⋯O hydrogen bonds. An intramolecular O—H⋯O hydrogen bond is also observed.
Related literature
For the potential uses and diverse structural types of metal complexes with imidazole-4,5-dicarboxylic acid, see: Li et al. (2006); Liu et al. (2004); Sun et al. (2005); Zou et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810025249/hy2320sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810025249/hy2320Isup2.hkl
A mixture of Cu(NO3)2 (0.5 mmol, 0.05 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.99 g) in 15 ml of DMF solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433 K for 4 d. Blue crystals were obtained by slow evaporation of the solvent at room temperature.
C- and N-bound H atoms were placed at calculated positions and were treated as riding on the parent atoms, with C—H = 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å, N—H = 0.86 Å, and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N). H atoms of the water molecule and hydroxyl group were located in a difference map and were allowed to ride on the parent atom, with O—H = 0.85 and 0.82 Å and Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(O).
Design and synthesis of metal-organic complexes via deliberate selection of metal ions and organic ligands have been one of the most attractive subjects due to their fascinating structures and potential applications in many field. It is well known that ligands containing N and O atoms which are highly accessible to metal ions are good candidates for the design and synthesis. For example, imidazole-4,5-dicarboxylic acid (H3idc) containing N and O coordination sites can be deprotonated to form (H2idc)-, (Hidc)2- and (idc)3- anions at different pH values. H3idc has been widely used to react with metal salts to obtain a series of metal-organic frameworks with different structures and useful properties (Li et al., 2006; Liu et al., 2004; Sun et al., 2005; Zou et al., 2006). Therefore, we chose 2-propyl-imidazole-4,5-dicarboxylic acid (H3pimda) as ligand for the synthesis of fascinating structures and we report a new CuII complex here.
As illustrated in Fig. 1, the
of the title complex comprises one H2pimda ligand, one CuII ion lying on an inversion center, one coordinated water molecule and one solvent DMF molecule. The CuII ion is six-coordinated in a slightly distorted octahedral geometry, formed by two N atoms and two O atoms from two H2pimda ligands in the equatorial plane. The Cu—O bond length with the value of 2.458 (2) Å is somewhat longer than the Cu—N bond with the value of 1.987 (2) Å. The axial positions are occupied by two O atoms from two water molecules [Cu—O = 2.020 (2) Å]. The H2pimda ligand adopts a bidentate mode to chelate the metal atom through one imidazole N atom and one O atom from the protonated carboxyl group. The other carboxyl group is deprotonated, indicated by a difference of the bond lengths. The two imidazole rings are coplanar. The DMF molecules are linked to the H2pimda ligand via N—H···O hydrogen bonds. The two-dimensional supramolecular network is stabilized by N—H···O and O—H···O hydrogen bonds (Fig. 2, Table 1).For the potential uses and diverse structural types of metal complexes with imidazole-4,5-dicarboxylic acid, see: Li et al. (2006); Liu et al. (2004); Sun et al. (2005); Zou et al. (2006).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C8H9N2O4)2(H2O)2]·2C3H7NO | Z = 1 |
Mr = 640.11 | F(000) = 335 |
Triclinic, P1 | Dx = 1.550 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2831 (8) Å | Cell parameters from 1702 reflections |
b = 9.250 (1) Å | θ = 2.5–25.9° |
c = 11.3329 (13) Å | µ = 0.87 mm−1 |
α = 75.264 (1)° | T = 298 K |
β = 87.305 (2)° | Cubic, blue |
γ = 68.416 (1)° | 0.32 × 0.21 × 0.19 mm |
V = 685.68 (13) Å3 |
Bruker SMART 1000 CCD diffractometer | 2385 independent reflections |
Radiation source: fine-focus sealed tube | 2011 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
φ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→7 |
Tmin = 0.768, Tmax = 0.852 | k = −10→10 |
3603 measured reflections | l = −10→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0414P)2 + 0.548P] where P = (Fo2 + 2Fc2)/3 |
2385 reflections | (Δ/σ)max < 0.001 |
187 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
[Cu(C8H9N2O4)2(H2O)2]·2C3H7NO | γ = 68.416 (1)° |
Mr = 640.11 | V = 685.68 (13) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.2831 (8) Å | Mo Kα radiation |
b = 9.250 (1) Å | µ = 0.87 mm−1 |
c = 11.3329 (13) Å | T = 298 K |
α = 75.264 (1)° | 0.32 × 0.21 × 0.19 mm |
β = 87.305 (2)° |
Bruker SMART 1000 CCD diffractometer | 2385 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2011 reflections with I > 2σ(I) |
Tmin = 0.768, Tmax = 0.852 | Rint = 0.017 |
3603 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.38 e Å−3 |
2385 reflections | Δρmin = −0.29 e Å−3 |
187 parameters |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.02632 (17) | |
N1 | 0.6271 (3) | 0.2621 (3) | 0.5343 (2) | 0.0251 (5) | |
N2 | 0.7981 (3) | 0.0045 (3) | 0.5992 (2) | 0.0295 (6) | |
H2 | 0.8707 | −0.0862 | 0.6461 | 0.035* | |
N3 | 0.1268 (4) | 0.4896 (3) | 0.8656 (3) | 0.0434 (7) | |
O1 | 0.4276 (3) | 0.4348 (2) | 0.31460 (19) | 0.0387 (5) | |
O2 | 0.4952 (3) | 0.2191 (3) | 0.24467 (19) | 0.0422 (6) | |
H2A | 0.5573 | 0.1221 | 0.2687 | 0.063* | |
O3 | 0.6933 (4) | −0.0740 (3) | 0.3193 (2) | 0.0442 (6) | |
O4 | 0.8653 (3) | −0.2477 (2) | 0.4863 (2) | 0.0398 (5) | |
O5 | 0.2402 (3) | 0.4858 (2) | 0.56026 (19) | 0.0353 (5) | |
H5A | 0.2186 | 0.4061 | 0.5485 | 0.042* | |
H5B | 0.1412 | 0.5701 | 0.5293 | 0.042* | |
O6 | 0.0414 (4) | 0.7502 (3) | 0.7641 (2) | 0.0568 (7) | |
C1 | 0.5080 (4) | 0.2896 (3) | 0.3284 (3) | 0.0305 (7) | |
C2 | 0.6222 (4) | 0.1888 (3) | 0.4434 (3) | 0.0255 (6) | |
C3 | 0.7286 (4) | 0.0262 (3) | 0.4834 (3) | 0.0265 (6) | |
C4 | 0.7665 (4) | −0.1092 (3) | 0.4254 (3) | 0.0305 (7) | |
C5 | 0.7356 (4) | 0.1463 (3) | 0.6284 (3) | 0.0289 (7) | |
C6 | 0.7787 (5) | 0.1646 (4) | 0.7491 (3) | 0.0414 (8) | |
H6A | 0.7328 | 0.2782 | 0.7460 | 0.050* | |
H6B | 0.9208 | 0.1199 | 0.7659 | 0.050* | |
C7 | 0.6827 (7) | 0.0825 (6) | 0.8528 (4) | 0.0694 (12) | |
H7A | 0.5414 | 0.1240 | 0.8336 | 0.083* | |
H7B | 0.7328 | −0.0316 | 0.8573 | 0.083* | |
C8 | 0.7160 (7) | 0.1037 (5) | 0.9754 (3) | 0.0659 (12) | |
H8A | 0.8439 | 0.0288 | 1.0098 | 0.099* | |
H8B | 0.6159 | 0.0845 | 1.0282 | 0.099* | |
H8C | 0.7097 | 0.2114 | 0.9668 | 0.099* | |
C9 | 0.0181 (5) | 0.6215 (4) | 0.7857 (3) | 0.0451 (8) | |
H9 | −0.0840 | 0.6167 | 0.7424 | 0.054* | |
C10 | 0.0974 (8) | 0.3399 (5) | 0.8779 (4) | 0.0779 (14) | |
H10A | −0.0212 | 0.3605 | 0.8322 | 0.117* | |
H10B | 0.0856 | 0.2932 | 0.9625 | 0.117* | |
H10C | 0.2082 | 0.2669 | 0.8471 | 0.117* | |
C11 | 0.2925 (6) | 0.4885 (5) | 0.9321 (4) | 0.0625 (11) | |
H11A | 0.4116 | 0.4480 | 0.8910 | 0.094* | |
H11B | 0.3049 | 0.4207 | 1.0134 | 0.094* | |
H11C | 0.2709 | 0.5959 | 0.9361 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0281 (3) | 0.0167 (3) | 0.0329 (3) | −0.0064 (2) | −0.0004 (2) | −0.0065 (2) |
N1 | 0.0284 (13) | 0.0187 (11) | 0.0282 (13) | −0.0084 (10) | 0.0010 (10) | −0.0066 (10) |
N2 | 0.0300 (14) | 0.0166 (11) | 0.0365 (14) | −0.0047 (10) | −0.0039 (11) | −0.0025 (10) |
N3 | 0.0490 (18) | 0.0311 (14) | 0.0453 (17) | −0.0112 (13) | −0.0017 (13) | −0.0060 (12) |
O1 | 0.0464 (14) | 0.0227 (11) | 0.0391 (13) | −0.0053 (10) | −0.0048 (10) | −0.0045 (9) |
O2 | 0.0540 (15) | 0.0332 (12) | 0.0363 (13) | −0.0100 (11) | −0.0097 (10) | −0.0105 (10) |
O3 | 0.0579 (16) | 0.0319 (12) | 0.0443 (14) | −0.0110 (11) | −0.0031 (12) | −0.0194 (10) |
O4 | 0.0397 (13) | 0.0185 (11) | 0.0580 (15) | −0.0045 (9) | −0.0025 (11) | −0.0125 (10) |
O5 | 0.0289 (11) | 0.0218 (10) | 0.0565 (14) | −0.0094 (9) | 0.0037 (10) | −0.0123 (9) |
O6 | 0.0589 (17) | 0.0316 (13) | 0.0649 (17) | −0.0080 (12) | −0.0174 (13) | 0.0038 (12) |
C1 | 0.0282 (16) | 0.0297 (16) | 0.0334 (17) | −0.0103 (13) | 0.0012 (13) | −0.0082 (13) |
C2 | 0.0263 (15) | 0.0228 (14) | 0.0309 (16) | −0.0122 (12) | 0.0038 (12) | −0.0086 (12) |
C3 | 0.0237 (15) | 0.0227 (14) | 0.0340 (17) | −0.0091 (12) | 0.0046 (12) | −0.0083 (12) |
C4 | 0.0256 (16) | 0.0236 (15) | 0.0445 (19) | −0.0096 (13) | 0.0060 (13) | −0.0128 (14) |
C5 | 0.0304 (16) | 0.0222 (14) | 0.0340 (17) | −0.0100 (12) | −0.0013 (13) | −0.0060 (12) |
C6 | 0.053 (2) | 0.0267 (16) | 0.0416 (19) | −0.0119 (15) | −0.0131 (16) | −0.0051 (14) |
C7 | 0.085 (3) | 0.094 (3) | 0.052 (3) | −0.050 (3) | 0.019 (2) | −0.035 (2) |
C8 | 0.079 (3) | 0.067 (3) | 0.051 (2) | −0.024 (2) | 0.006 (2) | −0.018 (2) |
C9 | 0.0362 (19) | 0.047 (2) | 0.048 (2) | −0.0092 (16) | −0.0039 (16) | −0.0138 (17) |
C10 | 0.105 (4) | 0.041 (2) | 0.094 (3) | −0.033 (2) | 0.015 (3) | −0.019 (2) |
C11 | 0.050 (2) | 0.058 (2) | 0.062 (3) | −0.0083 (19) | −0.0161 (19) | 0.001 (2) |
Cu1—N1i | 1.987 (2) | C1—C2 | 1.475 (4) |
Cu1—N1 | 1.987 (2) | C2—C3 | 1.377 (4) |
Cu1—O5i | 2.020 (2) | C3—C4 | 1.491 (4) |
Cu1—O5 | 2.020 (2) | C5—C6 | 1.481 (4) |
Cu1—O1 | 2.458 (2) | C6—C7 | 1.519 (5) |
N1—C5 | 1.336 (3) | C6—H6A | 0.9700 |
N1—C2 | 1.378 (3) | C6—H6B | 0.9700 |
N2—C5 | 1.344 (3) | C7—C8 | 1.494 (5) |
N2—C3 | 1.368 (4) | C7—H7A | 0.9700 |
N2—H2 | 0.8600 | C7—H7B | 0.9700 |
N3—C9 | 1.315 (4) | C8—H8A | 0.9600 |
N3—C11 | 1.448 (4) | C8—H8B | 0.9600 |
N3—C10 | 1.449 (4) | C8—H8C | 0.9600 |
O1—C1 | 1.222 (3) | C9—H9 | 0.9300 |
O2—C1 | 1.305 (3) | C10—H10A | 0.9600 |
O2—H2A | 0.8200 | C10—H10B | 0.9600 |
O3—C4 | 1.253 (4) | C10—H10C | 0.9600 |
O4—C4 | 1.247 (3) | C11—H11A | 0.9600 |
O5—H5A | 0.8499 | C11—H11B | 0.9600 |
O5—H5B | 0.8500 | C11—H11C | 0.9600 |
O6—C9 | 1.226 (4) | ||
N1i—Cu1—N1 | 180.00 (6) | N1—C5—N2 | 109.4 (2) |
N1i—Cu1—O5i | 91.57 (9) | N1—C5—C6 | 127.0 (3) |
N1—Cu1—O5i | 88.44 (9) | N2—C5—C6 | 123.6 (3) |
N1i—Cu1—O5 | 88.43 (9) | C5—C6—C7 | 113.2 (3) |
N1—Cu1—O5 | 91.56 (9) | C5—C6—H6A | 108.9 |
O5i—Cu1—O5 | 180.0 | C7—C6—H6A | 108.9 |
N1i—Cu1—O1 | 104.94 (8) | C5—C6—H6B | 108.9 |
N1—Cu1—O1 | 75.06 (8) | C7—C6—H6B | 108.9 |
O5i—Cu1—O1 | 92.58 (8) | H6A—C6—H6B | 107.7 |
O5—Cu1—O1 | 87.42 (8) | C8—C7—C6 | 114.9 (3) |
C5—N1—C2 | 106.6 (2) | C8—C7—H7A | 108.6 |
C5—N1—Cu1 | 134.39 (19) | C6—C7—H7A | 108.6 |
C2—N1—Cu1 | 118.83 (18) | C8—C7—H7B | 108.6 |
C5—N2—C3 | 109.7 (2) | C6—C7—H7B | 108.6 |
C5—N2—H2 | 125.2 | H7A—C7—H7B | 107.5 |
C3—N2—H2 | 125.2 | C7—C8—H8A | 109.5 |
C9—N3—C11 | 119.9 (3) | C7—C8—H8B | 109.5 |
C9—N3—C10 | 120.6 (3) | H8A—C8—H8B | 109.5 |
C11—N3—C10 | 119.1 (3) | C7—C8—H8C | 109.5 |
C1—O1—Cu1 | 108.15 (18) | H8A—C8—H8C | 109.5 |
C1—O2—H2A | 109.5 | H8B—C8—H8C | 109.5 |
Cu1—O5—H5A | 114.3 | O6—C9—N3 | 124.8 (3) |
Cu1—O5—H5B | 113.0 | O6—C9—H9 | 117.6 |
H5A—O5—H5B | 107.6 | N3—C9—H9 | 117.6 |
O1—C1—O2 | 122.2 (3) | N3—C10—H10A | 109.5 |
O1—C1—C2 | 119.7 (3) | N3—C10—H10B | 109.5 |
O2—C1—C2 | 118.1 (2) | H10A—C10—H10B | 109.5 |
C3—C2—N1 | 109.4 (2) | N3—C10—H10C | 109.5 |
C3—C2—C1 | 132.5 (3) | H10A—C10—H10C | 109.5 |
N1—C2—C1 | 118.1 (2) | H10B—C10—H10C | 109.5 |
N2—C3—C2 | 104.9 (2) | N3—C11—H11A | 109.5 |
N2—C3—C4 | 122.9 (2) | N3—C11—H11B | 109.5 |
C2—C3—C4 | 132.2 (3) | H11A—C11—H11B | 109.5 |
O4—C4—O3 | 125.3 (3) | N3—C11—H11C | 109.5 |
O4—C4—C3 | 117.8 (3) | H11A—C11—H11C | 109.5 |
O3—C4—C3 | 116.9 (3) | H11B—C11—H11C | 109.5 |
O5i—Cu1—N1—C5 | 85.3 (3) | C5—N2—C3—C4 | −177.9 (3) |
O5—Cu1—N1—C5 | −94.7 (3) | N1—C2—C3—N2 | −0.5 (3) |
O1—Cu1—N1—C5 | 178.4 (3) | C1—C2—C3—N2 | −178.9 (3) |
O5i—Cu1—N1—C2 | −89.3 (2) | N1—C2—C3—C4 | 177.8 (3) |
O5—Cu1—N1—C2 | 90.7 (2) | C1—C2—C3—C4 | −0.7 (5) |
O1—Cu1—N1—C2 | 3.76 (19) | N2—C3—C4—O4 | 0.3 (4) |
N1i—Cu1—O1—C1 | 177.7 (2) | C2—C3—C4—O4 | −177.7 (3) |
N1—Cu1—O1—C1 | −2.3 (2) | N2—C3—C4—O3 | 179.4 (3) |
O5i—Cu1—O1—C1 | 85.4 (2) | C2—C3—C4—O3 | 1.4 (5) |
O5—Cu1—O1—C1 | −94.6 (2) | C2—N1—C5—N2 | 0.1 (3) |
Cu1—O1—C1—O2 | 179.8 (2) | Cu1—N1—C5—N2 | −175.00 (19) |
Cu1—O1—C1—C2 | 0.4 (3) | C2—N1—C5—C6 | −178.0 (3) |
C5—N1—C2—C3 | 0.3 (3) | Cu1—N1—C5—C6 | 6.9 (5) |
Cu1—N1—C2—C3 | 176.24 (18) | C3—N2—C5—N1 | −0.4 (3) |
C5—N1—C2—C1 | 179.0 (2) | C3—N2—C5—C6 | 177.8 (3) |
Cu1—N1—C2—C1 | −5.1 (3) | N1—C5—C6—C7 | 112.5 (4) |
O1—C1—C2—C3 | −179.0 (3) | N2—C5—C6—C7 | −65.4 (4) |
O2—C1—C2—C3 | 1.7 (5) | C5—C6—C7—C8 | −177.7 (3) |
O1—C1—C2—N1 | 2.7 (4) | C11—N3—C9—O6 | −2.4 (6) |
O2—C1—C2—N1 | −176.7 (2) | C10—N3—C9—O6 | −175.2 (4) |
C5—N2—C3—C2 | 0.5 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O6ii | 0.86 | 1.83 | 2.679 (3) | 167 |
O2—H2A···O3 | 0.82 | 1.67 | 2.494 (3) | 177 |
O5—H5A···O4iii | 0.85 | 1.91 | 2.755 (3) | 172 |
O5—H5B···O4iv | 0.85 | 2.07 | 2.906 (3) | 167 |
Symmetry codes: (ii) x+1, y−1, z; (iii) −x+1, −y, −z+1; (iv) x−1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C8H9N2O4)2(H2O)2]·2C3H7NO |
Mr | 640.11 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.2831 (8), 9.250 (1), 11.3329 (13) |
α, β, γ (°) | 75.264 (1), 87.305 (2), 68.416 (1) |
V (Å3) | 685.68 (13) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.87 |
Crystal size (mm) | 0.32 × 0.21 × 0.19 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.768, 0.852 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3603, 2385, 2011 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.097, 1.06 |
No. of reflections | 2385 |
No. of parameters | 187 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.29 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O6i | 0.86 | 1.83 | 2.679 (3) | 166.6 |
O2—H2A···O3 | 0.82 | 1.67 | 2.494 (3) | 177.3 |
O5—H5A···O4ii | 0.85 | 1.91 | 2.755 (3) | 172.1 |
O5—H5B···O4iii | 0.85 | 2.07 | 2.906 (3) | 166.5 |
Symmetry codes: (i) x+1, y−1, z; (ii) −x+1, −y, −z+1; (iii) x−1, y+1, z. |
Acknowledgements
The authors acknowledge Guang Dong Ocean University for supporting this work.
References
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Li, C.-J., Hu, S., Li, W., Lam, C.-K., Zheng, Y.-Z. & Tong, M.-L. (2006). Eur. J. Inorg. Chem. pp. 1931–1935. Web of Science CSD CrossRef Google Scholar
Liu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806–2807. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-Q., Zhang, J., Chen, Y.-M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814–5817. Web of Science CSD CrossRef CAS Google Scholar
Zou, R.-Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542–2546. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Design and synthesis of metal-organic complexes via deliberate selection of metal ions and organic ligands have been one of the most attractive subjects due to their fascinating structures and potential applications in many field. It is well known that ligands containing N and O atoms which are highly accessible to metal ions are good candidates for the design and synthesis. For example, imidazole-4,5-dicarboxylic acid (H3idc) containing N and O coordination sites can be deprotonated to form (H2idc)-, (Hidc)2- and (idc)3- anions at different pH values. H3idc has been widely used to react with metal salts to obtain a series of metal-organic frameworks with different structures and useful properties (Li et al., 2006; Liu et al., 2004; Sun et al., 2005; Zou et al., 2006). Therefore, we chose 2-propyl-imidazole-4,5-dicarboxylic acid (H3pimda) as ligand for the synthesis of fascinating structures and we report a new CuII complex here.
As illustrated in Fig. 1, the asymmetric unit of the title complex comprises one H2pimda ligand, one CuII ion lying on an inversion center, one coordinated water molecule and one solvent DMF molecule. The CuII ion is six-coordinated in a slightly distorted octahedral geometry, formed by two N atoms and two O atoms from two H2pimda ligands in the equatorial plane. The Cu—O bond length with the value of 2.458 (2) Å is somewhat longer than the Cu—N bond with the value of 1.987 (2) Å. The axial positions are occupied by two O atoms from two water molecules [Cu—O = 2.020 (2) Å]. The H2pimda ligand adopts a bidentate mode to chelate the metal atom through one imidazole N atom and one O atom from the protonated carboxyl group. The other carboxyl group is deprotonated, indicated by a difference of the bond lengths. The two imidazole rings are coplanar. The DMF molecules are linked to the H2pimda ligand via N—H···O hydrogen bonds. The two-dimensional supramolecular network is stabilized by N—H···O and O—H···O hydrogen bonds (Fig. 2, Table 1).