metal-organic compounds
catena-Poly[[[tetraaquaerbium(III)]-μ-oxalato-κ4O1,O2:O1′,O2′] [bromidobis(pyrazine-2-carboxylato-κ2N1,O)cuprate(II)] tetrahydrate]
aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: xuhs09@126.com
In the title heterometallic complex, {[Er(C2O4)(H2O)4][CuBr(C5H3N2O2)2]·4H2O}n, the ErIII atom is eight-coordinated by four O atoms from two centrosymmetric oxalate ligands and four water molecules, displaying a bicapped trigonal-prismatic geometry. The oxalate ligands bridge the Er atoms into a polymeric cationic chain along [110]. The CuII atom is five-coordinated in a square-pyramidal geometry by two pyrazine-2-carboxylate ligands and a Br atom, forming a discrete anion. The polymeric cations, complex anions and uncoordinated water molecules are self-assembled into a three-dimensional supramolecular network through O—H⋯N, O—H⋯O and O—H⋯Br hydrogen bonds.
Related literature
For general background to the topologies and potential applications of transition metal–lanthanide complexes, see: Barbour (2006); Kong et al. (2008); Rao et al. (2004); Zhang et al. (2005); Zhao et al. (2003). For general background to transition metal–lanthanide complexes with organic ligands containing mixed-donor atoms, see: Costes et al. (2004); Deng et al. (1996); He et al. (2005); Liang et al. (2001); Mahata et al. (2005); Ma, Liu et al. (2009); Zhang et al. (2004). For heterometallic complexes constructed from pyrazine-2-carboxylic acid, see: Deng et al. (2008); Feng & Wen (2009). For general background to in situ reactions, see: Li et al. (2006); Ma, Zeng et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810025274/hy2323sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810025274/hy2323Isup2.hkl
A mixture of copper bromide (0.5 mmol, 0.112 g), 2-Hpzc (0.5 mmol, 0.062 g), erbium oxide (0.52 mmol, 0.096 g), HNO3 (1 ml) and H2O (10 ml) was stirred for 30 min in air and then sealed in a 23 ml Teflon-lined reactor and kept under autogenous pressure at 423 K for 72 h. The mixture was cooled to room temperature at a rate of 10 K h-1. The purple block crystals were obtained in a yield of 42% based on Er.
C-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined as riding, with distance restraints of O—H = 0.82 and H···H = 1.32 Å and with Uiso(H) = 1.5Ueq(O). The highest residual electron density was found 1.59 Å from atom Cu1 and the deepest hole 0.88 Å from atom Er1.
The design and construction of transition–lanthanide metal complexes has gained great recognition over the last decade because of their intriguing network topolopies and potential applications, and due to their magnetic properties, their capacity for gas storage, as luminescent materials, and so on (Barbour, 2006; Kong et al., 2008; Rao et al., 2004; Zhang et al., 2005; Zhao et al., 2003). So far, numerous heterometallic complexes have been obtained by allowing the assembly of mixed metal ions and organic ligands containing mixed-donor atoms similar to the established methods used in traditional transition metal chemistry, such as pyridinecarboxylate, pyrazinecarboxylate, carbonyl, CN group, amino acids and so on (Costes et al., 2004; Deng et al., 1996; He et al., 2005; Liang et al., 2001; Mahata et al., 2005; Ma, Liu et al., 2009; Zhang et al., 2004). Pyrazine-2-carboxylic acid (2-Hpzc) is a multifunctional bridging ligand possessing of O and N donors, which can thus be chosen to construct heterometallic complexes, as is reported in literature (Deng et al., 2008; Feng & Wen, 2009). In this paper, we describe the synthesis and structure of a heterometallic hybrid compound obtained by the reaction of 2-Hpzc with Er2O3 and CuBr2 via a hydrothermal method. Since no oxalate was directly introduced into the starting reaction mixture, we suppose that the oxalate ligand was synthesized in situ reactions.
Firstly, the decarboxylation reaction of the 2-Hpzc occured under high temperatures, forming CO2. Then, the oxalate anion was formed via the in situ reductive coupling of CO2. Actually, such in situ reactions have been reported in literature [Li et al., 2006; Ma, Zeng et al., 2009]. As depicted in Fig. 1, the title compound is composed of an [Er(C2O4)(H2O)4]+ cation, a [Cu(2-pzc)2Br]- anion and four uncoordinated water molecules. The ErIII atom lies in the region of z close to 0.5 and the CuII atom in the region of z close to 0. The ErIII center is eight-coordinated by four carboxylate O atoms from two oxalate ligands and four water molecules, displaying a bicapped trigonal-prismatic geometry. The coordination geometry around the CuII center can be described as square-pyramidal, defined by two O and two N atoms from two 2-pzc ligands and one Br atom. The oxalate ligands bridge the Er atoms into a polymeric cationic chain along [1 1 0], with Er···Er separations of 6.176 (2) and 6.088 (3) Å. The Cu atoms form a simple dimer by a Cu···O contact [3.127 (2) Å], with a Cu···Cu separation of 5.321 (2) Å. The linear coordination polymers, discrete dimers and uncoordinated water molecules are further self-assembled into a three-dimensional supramolecular network structure via intermolecular O—H···O, O—H···N and O—H···Br hydrogen bonds involving the carboxylate O atoms of the 2-pzc ligands, the O atoms from coordinated and uncoordinated water molecules and Br atom (Fig. 2, Table 1).
For general background to the topologies and potential applications of transitionmetal–lanthanide complexes, see: Barbour (2006); Kong et al. (2008); Rao et al. (2004); Zhang et al. (2005); Zhao et al. (2003). For general background to transition metal–lanthanide complexes with organic ligands containing mixed-donor atoms, see: Costes et al. (2004); Deng et al. (1996); He et al. (2005); Liang et al. (2001); Mahata et al. (2005); Ma, Liu et al. (2009); Zhang et al. (2004). For heterometallic complexes constructed from pyrazine-2-carboxylic acid, see: Deng et al. (2008); Feng & Wen (2009). For general background to in situ reactions, see: Li et al. (2006); Ma, Zeng et al. (2009).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of the title compound, showing the 30% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (i) 2-x, -y, 1-z; (ii) 1-x, -y, 1-z.] | |
Fig. 2. A packing view of the title compound, showing the intermolecular hydrogen bonds (dashed lines). |
[Er(C2O4)(H2O)4][CuBr(C5H3N2O2)2]·4H2O | Z = 2 |
Mr = 789.05 | F(000) = 764 |
Triclinic, P1 | Dx = 2.209 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6678 (3) Å | Cell parameters from 5837 reflections |
b = 10.2623 (4) Å | θ = 2.8–27.9° |
c = 13.8748 (2) Å | µ = 6.18 mm−1 |
α = 96.872 (1)° | T = 295 K |
β = 99.419 (1)° | Block, purple |
γ = 99.748 (1)° | 0.26 × 0.25 × 0.19 mm |
V = 1186.10 (6) Å3 |
Bruker APEXII CCD diffractometer | 5260 independent reflections |
Radiation source: fine-focus sealed tube | 4480 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
φ and ω scan | θmax = 27.5°, θmin = 1.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→11 |
Tmin = 0.232, Tmax = 0.324 | k = −13→13 |
14850 measured reflections | l = −18→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0399P)2 + 0.5356P] where P = (Fo2 + 2Fc2)/3 |
5260 reflections | (Δ/σ)max = 0.001 |
316 parameters | Δρmax = 1.59 e Å−3 |
24 restraints | Δρmin = −0.88 e Å−3 |
[Er(C2O4)(H2O)4][CuBr(C5H3N2O2)2]·4H2O | γ = 99.748 (1)° |
Mr = 789.05 | V = 1186.10 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.6678 (3) Å | Mo Kα radiation |
b = 10.2623 (4) Å | µ = 6.18 mm−1 |
c = 13.8748 (2) Å | T = 295 K |
α = 96.872 (1)° | 0.26 × 0.25 × 0.19 mm |
β = 99.419 (1)° |
Bruker APEXII CCD diffractometer | 5260 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 4480 reflections with I > 2σ(I) |
Tmin = 0.232, Tmax = 0.324 | Rint = 0.023 |
14850 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 24 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.01 | Δρmax = 1.59 e Å−3 |
5260 reflections | Δρmin = −0.88 e Å−3 |
316 parameters |
x | y | z | Uiso*/Ueq | ||
Er1 | 0.242464 (16) | 0.750762 (12) | 0.496898 (10) | 0.02163 (6) | |
Br1 | 0.63182 (5) | 0.80237 (4) | −0.05645 (3) | 0.04494 (11) | |
Cu1 | 0.86112 (6) | 0.70254 (4) | 0.05289 (3) | 0.03103 (11) | |
O1 | 0.8075 (3) | 0.5245 (2) | −0.02710 (18) | 0.0358 (6) | |
O2 | 0.8561 (4) | 0.4105 (3) | −0.1609 (2) | 0.0546 (8) | |
O3 | 0.9505 (3) | 0.8638 (2) | 0.14745 (18) | 0.0371 (6) | |
O4 | 0.9256 (4) | 0.9694 (3) | 0.29159 (19) | 0.0465 (7) | |
O5 | 0.5154 (3) | 0.8333 (2) | 0.49529 (17) | 0.0275 (5) | |
O6 | 0.7024 (3) | 1.0134 (2) | 0.49841 (18) | 0.0288 (5) | |
O7 | 0.0196 (3) | 0.5961 (2) | 0.40579 (16) | 0.0305 (6) | |
O8 | −0.1564 (3) | 0.4115 (2) | 0.40878 (17) | 0.0310 (6) | |
N1 | 1.0142 (3) | 0.7379 (3) | −0.03731 (19) | 0.0270 (6) | |
N2 | 1.1892 (4) | 0.7526 (3) | −0.1867 (2) | 0.0360 (7) | |
N3 | 0.7441 (4) | 0.6513 (3) | 0.1585 (2) | 0.0289 (6) | |
N4 | 0.5947 (4) | 0.6246 (3) | 0.3185 (2) | 0.0413 (8) | |
C1 | 0.8766 (5) | 0.5131 (3) | −0.1011 (2) | 0.0320 (8) | |
C2 | 0.9942 (4) | 0.6345 (3) | −0.1109 (2) | 0.0271 (7) | |
C3 | 1.0800 (4) | 0.6438 (4) | −0.1856 (3) | 0.0326 (8) | |
H3 | 1.0617 | 0.5725 | −0.2369 | 0.039* | |
C4 | 1.2098 (5) | 0.8521 (4) | −0.1124 (3) | 0.0358 (9) | |
H4 | 1.2867 | 0.9281 | −0.1101 | 0.043* | |
C5 | 1.1210 (4) | 0.8469 (3) | −0.0382 (3) | 0.0317 (8) | |
H5 | 1.1361 | 0.9199 | 0.0113 | 0.038* | |
C6 | 0.8932 (4) | 0.8711 (3) | 0.2268 (3) | 0.0310 (8) | |
C7 | 0.7757 (4) | 0.7492 (3) | 0.2364 (2) | 0.0282 (7) | |
C8 | 0.6999 (5) | 0.7350 (4) | 0.3157 (3) | 0.0353 (8) | |
H8 | 0.7226 | 0.8043 | 0.3687 | 0.042* | |
C9 | 0.5669 (5) | 0.5284 (4) | 0.2412 (3) | 0.0433 (10) | |
H9 | 0.4962 | 0.4495 | 0.2417 | 0.052* | |
C10 | 0.6391 (5) | 0.5408 (4) | 0.1601 (3) | 0.0384 (9) | |
H10 | 0.6144 | 0.4720 | 0.1067 | 0.046* | |
C11 | 0.5638 (4) | 0.9558 (3) | 0.4983 (2) | 0.0228 (7) | |
C12 | −0.0399 (4) | 0.5024 (3) | 0.4461 (2) | 0.0241 (7) | |
O1W | 0.3563 (3) | 0.8151 (3) | 0.66122 (17) | 0.0430 (7) | |
H1W | 0.4129 | 0.8882 | 0.6845 | 0.064* | |
H2W | 0.3144 | 0.7877 | 0.7057 | 0.064* | |
O2W | 0.0271 (3) | 0.8392 (2) | 0.5368 (2) | 0.0409 (7) | |
H3W | 0.0474 | 0.9082 | 0.5768 | 0.061* | |
H4W | −0.0580 | 0.7965 | 0.5443 | 0.061* | |
O3W | 0.2166 (3) | 0.7760 (2) | 0.33238 (17) | 0.0375 (6) | |
H5W | 0.1866 | 0.7138 | 0.2865 | 0.056* | |
H6W | 0.2701 | 0.8366 | 0.3118 | 0.056* | |
O4W | 0.3673 (3) | 0.5775 (2) | 0.4469 (2) | 0.0384 (6) | |
H7W | 0.3347 | 0.4964 | 0.4398 | 0.058* | |
H8W | 0.4410 | 0.5907 | 0.4168 | 0.058* | |
O5W | 0.5945 (3) | 0.0292 (3) | 0.7338 (2) | 0.0478 (7) | |
H9W | 0.5749 | 0.0653 | 0.7851 | 0.072* | |
H10W | 0.6603 | −0.0171 | 0.7494 | 0.072* | |
O6W | 0.8142 (4) | 0.8544 (3) | 0.7569 (2) | 0.0604 (9) | |
H12W | 0.8929 | 0.9105 | 0.7552 | 0.091* | |
H11W | 0.8110 | 0.8507 | 0.8152 | 0.091* | |
O7W | 0.7480 (3) | 0.6941 (2) | 0.5762 (2) | 0.0387 (6) | |
H13W | 0.6919 | 0.7345 | 0.5421 | 0.058* | |
H14W | 0.7622 | 0.7313 | 0.6336 | 0.058* | |
O8W | 0.5890 (4) | 0.2199 (3) | 0.8812 (2) | 0.0631 (9) | |
H15W | 0.6508 | 0.2917 | 0.8877 | 0.095* | |
H16W | 0.5431 | 0.2229 | 0.9284 | 0.095* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Er1 | 0.02294 (10) | 0.01592 (8) | 0.02381 (9) | −0.00464 (6) | 0.00914 (6) | −0.00033 (6) |
Br1 | 0.0424 (2) | 0.0477 (2) | 0.0447 (2) | 0.00720 (19) | 0.00907 (19) | 0.00745 (19) |
Cu1 | 0.0406 (3) | 0.0249 (2) | 0.0266 (2) | −0.00133 (19) | 0.0166 (2) | −0.00292 (17) |
O1 | 0.0452 (16) | 0.0277 (12) | 0.0329 (13) | −0.0031 (11) | 0.0188 (12) | −0.0028 (10) |
O2 | 0.081 (2) | 0.0332 (14) | 0.0424 (16) | −0.0094 (15) | 0.0276 (16) | −0.0142 (12) |
O3 | 0.0457 (16) | 0.0303 (13) | 0.0318 (14) | −0.0056 (12) | 0.0169 (12) | −0.0033 (11) |
O4 | 0.0581 (19) | 0.0359 (14) | 0.0379 (15) | −0.0042 (13) | 0.0151 (14) | −0.0137 (12) |
O5 | 0.0262 (12) | 0.0159 (10) | 0.0394 (14) | −0.0024 (9) | 0.0106 (11) | 0.0025 (10) |
O6 | 0.0252 (13) | 0.0185 (10) | 0.0421 (14) | −0.0032 (10) | 0.0138 (11) | 0.0019 (10) |
O7 | 0.0358 (14) | 0.0237 (11) | 0.0257 (12) | −0.0112 (10) | 0.0053 (11) | 0.0037 (10) |
O8 | 0.0319 (13) | 0.0282 (12) | 0.0262 (12) | −0.0127 (10) | 0.0053 (11) | 0.0038 (10) |
N1 | 0.0311 (16) | 0.0243 (14) | 0.0237 (14) | 0.0014 (12) | 0.0066 (12) | −0.0002 (11) |
N2 | 0.0399 (18) | 0.0391 (17) | 0.0304 (16) | 0.0028 (15) | 0.0147 (14) | 0.0063 (13) |
N3 | 0.0342 (16) | 0.0237 (14) | 0.0293 (15) | 0.0023 (12) | 0.0133 (13) | −0.0002 (12) |
N4 | 0.048 (2) | 0.0419 (18) | 0.0375 (18) | 0.0063 (16) | 0.0211 (16) | 0.0071 (15) |
C1 | 0.044 (2) | 0.0243 (16) | 0.0255 (17) | 0.0000 (16) | 0.0110 (16) | −0.0007 (14) |
C2 | 0.0344 (19) | 0.0274 (16) | 0.0204 (16) | 0.0061 (15) | 0.0082 (14) | 0.0024 (13) |
C3 | 0.039 (2) | 0.0337 (18) | 0.0246 (17) | 0.0051 (17) | 0.0110 (16) | −0.0001 (15) |
C4 | 0.035 (2) | 0.0352 (19) | 0.036 (2) | −0.0019 (17) | 0.0102 (17) | 0.0057 (16) |
C5 | 0.0326 (19) | 0.0286 (17) | 0.0312 (19) | 0.0014 (15) | 0.0071 (16) | −0.0004 (14) |
C6 | 0.0318 (19) | 0.0271 (17) | 0.0326 (19) | 0.0021 (15) | 0.0093 (16) | −0.0005 (15) |
C7 | 0.0325 (19) | 0.0268 (17) | 0.0258 (17) | 0.0069 (15) | 0.0082 (15) | 0.0009 (14) |
C8 | 0.045 (2) | 0.0345 (19) | 0.0285 (19) | 0.0096 (17) | 0.0132 (17) | 0.0025 (15) |
C9 | 0.047 (2) | 0.034 (2) | 0.052 (2) | 0.0019 (18) | 0.025 (2) | 0.0071 (18) |
C10 | 0.044 (2) | 0.0285 (18) | 0.041 (2) | 0.0000 (17) | 0.0159 (18) | −0.0013 (16) |
C11 | 0.0250 (17) | 0.0201 (15) | 0.0221 (16) | −0.0002 (14) | 0.0081 (14) | −0.0002 (12) |
C12 | 0.0269 (18) | 0.0205 (15) | 0.0227 (17) | −0.0021 (14) | 0.0106 (14) | −0.0033 (13) |
O1W | 0.0475 (17) | 0.0427 (15) | 0.0261 (13) | −0.0250 (13) | 0.0108 (12) | −0.0022 (11) |
O2W | 0.0306 (14) | 0.0292 (13) | 0.0579 (17) | −0.0072 (11) | 0.0199 (13) | −0.0102 (12) |
O3W | 0.0540 (17) | 0.0287 (12) | 0.0239 (12) | −0.0092 (12) | 0.0094 (12) | 0.0016 (10) |
O4W | 0.0421 (15) | 0.0188 (11) | 0.0575 (17) | 0.0002 (11) | 0.0276 (13) | 0.0015 (11) |
O5W | 0.0489 (18) | 0.0379 (15) | 0.0496 (17) | −0.0084 (13) | 0.0054 (14) | 0.0076 (13) |
O6W | 0.060 (2) | 0.061 (2) | 0.0511 (19) | −0.0132 (17) | 0.0087 (16) | 0.0095 (16) |
O7W | 0.0362 (15) | 0.0275 (12) | 0.0513 (16) | 0.0036 (11) | 0.0088 (13) | 0.0043 (12) |
O8W | 0.061 (2) | 0.059 (2) | 0.067 (2) | −0.0046 (17) | 0.0265 (18) | 0.0014 (17) |
Er1—O1W | 2.300 (2) | C1—C2 | 1.504 (5) |
Er1—O3W | 2.307 (2) | C2—C3 | 1.375 (5) |
Er1—O2W | 2.326 (2) | C3—H3 | 0.9300 |
Er1—O4W | 2.327 (2) | C4—C5 | 1.384 (5) |
Er1—O8i | 2.337 (2) | C4—H4 | 0.9300 |
Er1—O7 | 2.352 (2) | C5—H5 | 0.9300 |
Er1—O6ii | 2.377 (2) | C6—C7 | 1.508 (5) |
Er1—O5 | 2.379 (2) | C7—C8 | 1.382 (5) |
Br1—Cu1 | 2.7158 (7) | C8—H8 | 0.9300 |
Cu1—O3 | 1.943 (2) | C9—C10 | 1.383 (5) |
Cu1—O1 | 1.961 (2) | C9—H9 | 0.9300 |
Cu1—N3 | 1.985 (3) | C10—H10 | 0.9300 |
Cu1—N1 | 1.987 (3) | C11—C11ii | 1.547 (6) |
O1—C1 | 1.274 (4) | C12—C12i | 1.553 (6) |
O2—C1 | 1.228 (4) | O1W—H1W | 0.8200 |
O3—C6 | 1.278 (4) | O1W—H2W | 0.8200 |
O4—C6 | 1.229 (4) | O2W—H3W | 0.8200 |
O5—C11 | 1.250 (4) | O2W—H4W | 0.8200 |
O6—C11 | 1.245 (4) | O3W—H5W | 0.8200 |
O6—Er1ii | 2.377 (2) | O3W—H6W | 0.8200 |
O7—C12 | 1.248 (4) | O4W—H7W | 0.8200 |
O8—C12 | 1.246 (4) | O4W—H8W | 0.8200 |
O8—Er1i | 2.337 (2) | O5W—H9W | 0.8200 |
N1—C5 | 1.328 (4) | O5W—H10W | 0.8200 |
N1—C2 | 1.349 (4) | O6W—H12W | 0.8200 |
N2—C4 | 1.329 (5) | O6W—H11W | 0.8200 |
N2—C3 | 1.340 (5) | O7W—H13W | 0.8200 |
N3—C10 | 1.334 (5) | O7W—H14W | 0.8200 |
N3—C7 | 1.342 (4) | O8W—H15W | 0.8200 |
N4—C9 | 1.328 (5) | O8W—H16W | 0.8200 |
N4—C8 | 1.337 (5) | ||
O1W—Er1—O3W | 152.60 (9) | O2—C1—O1 | 124.3 (3) |
O1W—Er1—O2W | 85.77 (10) | O2—C1—C2 | 119.9 (3) |
O3W—Er1—O2W | 100.11 (10) | O1—C1—C2 | 115.8 (3) |
O1W—Er1—O4W | 103.65 (10) | N1—C2—C3 | 120.4 (3) |
O3W—Er1—O4W | 82.75 (9) | N1—C2—C1 | 114.4 (3) |
O2W—Er1—O4W | 153.97 (9) | C3—C2—C1 | 125.1 (3) |
O1W—Er1—O8i | 68.99 (8) | N2—C3—C2 | 121.9 (3) |
O3W—Er1—O8i | 138.02 (8) | N2—C3—H3 | 119.1 |
O2W—Er1—O8i | 83.33 (9) | C2—C3—H3 | 119.1 |
O4W—Er1—O8i | 77.78 (9) | N2—C4—C5 | 122.4 (3) |
O1W—Er1—O7 | 136.09 (9) | N2—C4—H4 | 118.8 |
O3W—Er1—O7 | 70.96 (8) | C5—C4—H4 | 118.8 |
O2W—Er1—O7 | 76.34 (8) | N1—C5—C4 | 120.3 (3) |
O4W—Er1—O7 | 80.30 (9) | N1—C5—H5 | 119.9 |
O8i—Er1—O7 | 69.32 (8) | C4—C5—H5 | 119.9 |
O1W—Er1—O6ii | 80.45 (9) | O4—C6—O3 | 124.5 (3) |
O3W—Er1—O6ii | 76.48 (8) | O4—C6—C7 | 120.2 (3) |
O2W—Er1—O6ii | 70.57 (8) | O3—C6—C7 | 115.3 (3) |
O4W—Er1—O6ii | 134.44 (9) | N3—C7—C8 | 120.3 (3) |
O8i—Er1—O6ii | 141.07 (8) | N3—C7—C6 | 114.6 (3) |
O7—Er1—O6ii | 127.85 (8) | C8—C7—C6 | 125.1 (3) |
O1W—Er1—O5 | 75.95 (9) | N4—C8—C7 | 121.9 (3) |
O3W—Er1—O5 | 81.80 (9) | N4—C8—H8 | 119.1 |
O2W—Er1—O5 | 136.79 (8) | C7—C8—H8 | 119.1 |
O4W—Er1—O5 | 69.22 (8) | N4—C9—C10 | 122.5 (4) |
O8i—Er1—O5 | 123.61 (8) | N4—C9—H9 | 118.7 |
O7—Er1—O5 | 141.32 (8) | C10—C9—H9 | 118.7 |
O6ii—Er1—O5 | 67.99 (7) | N3—C10—C9 | 120.0 (3) |
O3—Cu1—O1 | 167.79 (12) | N3—C10—H10 | 120.0 |
O3—Cu1—N3 | 83.39 (11) | C9—C10—H10 | 120.0 |
O1—Cu1—N3 | 95.48 (11) | O6—C11—O5 | 127.1 (3) |
O3—Cu1—N1 | 95.47 (11) | O6—C11—C11ii | 117.2 (3) |
O1—Cu1—N1 | 83.09 (10) | O5—C11—C11ii | 115.8 (4) |
N3—Cu1—N1 | 167.97 (12) | O7—C12—O8 | 127.0 (3) |
O3—Cu1—Br1 | 97.11 (8) | O7—C12—C12i | 116.8 (3) |
O1—Cu1—Br1 | 95.08 (8) | O8—C12—C12i | 116.3 (4) |
N3—Cu1—Br1 | 98.49 (9) | Er1—O1W—H1W | 124.5 |
N1—Cu1—Br1 | 93.53 (8) | Er1—O1W—H2W | 122.6 |
C1—O1—Cu1 | 114.6 (2) | H1W—O1W—H2W | 106.9 |
C6—O3—Cu1 | 115.0 (2) | Er1—O2W—H3W | 116.9 |
C11—O5—Er1 | 119.8 (2) | Er1—O2W—H4W | 126.3 |
C11—O6—Er1ii | 119.3 (2) | H3W—O2W—H4W | 107.1 |
C12—O7—Er1 | 118.4 (2) | Er1—O3W—H5W | 124.0 |
C12—O8—Er1i | 119.3 (2) | Er1—O3W—H6W | 123.9 |
C5—N1—C2 | 118.2 (3) | H5W—O3W—H6W | 107.0 |
C5—N1—Cu1 | 130.1 (2) | Er1—O4W—H7W | 129.1 |
C2—N1—Cu1 | 111.5 (2) | Er1—O4W—H8W | 120.7 |
C4—N2—C3 | 116.7 (3) | H7W—O4W—H8W | 107.7 |
C10—N3—C7 | 118.4 (3) | H9W—O5W—H10W | 107.1 |
C10—N3—Cu1 | 129.9 (2) | H12W—O6W—H11W | 107.2 |
C7—N3—Cu1 | 111.6 (2) | H13W—O7W—H14W | 107.4 |
C9—N4—C8 | 116.8 (3) | H15W—O8W—H16W | 106.9 |
O3—Cu1—O1—C1 | −89.6 (6) | C5—N1—C2—C3 | −1.5 (5) |
N3—Cu1—O1—C1 | −173.7 (3) | Cu1—N1—C2—C3 | 174.7 (3) |
N1—Cu1—O1—C1 | −5.7 (3) | C5—N1—C2—C1 | 177.2 (3) |
Br1—Cu1—O1—C1 | 87.2 (3) | Cu1—N1—C2—C1 | −6.6 (4) |
O1—Cu1—O3—C6 | −89.5 (6) | O2—C1—C2—N1 | −175.8 (3) |
N3—Cu1—O3—C6 | −4.1 (3) | O1—C1—C2—N1 | 2.1 (5) |
N1—Cu1—O3—C6 | −172.1 (3) | O2—C1—C2—C3 | 2.8 (6) |
Br1—Cu1—O3—C6 | 93.7 (2) | O1—C1—C2—C3 | −179.3 (3) |
O1W—Er1—O5—C11 | −84.7 (2) | C4—N2—C3—C2 | −0.6 (5) |
O3W—Er1—O5—C11 | 79.2 (2) | N1—C2—C3—N2 | 2.2 (5) |
O2W—Er1—O5—C11 | −16.8 (3) | C1—C2—C3—N2 | −176.3 (3) |
O4W—Er1—O5—C11 | 164.5 (3) | C3—N2—C4—C5 | −1.7 (5) |
O8i—Er1—O5—C11 | −137.1 (2) | C2—N1—C5—C4 | −0.7 (5) |
O7—Er1—O5—C11 | 124.2 (2) | Cu1—N1—C5—C4 | −176.1 (3) |
O6ii—Er1—O5—C11 | 0.6 (2) | N2—C4—C5—N1 | 2.4 (6) |
O1W—Er1—O7—C12 | −19.6 (3) | Cu1—O3—C6—O4 | −174.1 (3) |
O3W—Er1—O7—C12 | 165.7 (3) | Cu1—O3—C6—C7 | 4.4 (4) |
O2W—Er1—O7—C12 | −88.3 (2) | C10—N3—C7—C8 | −0.4 (5) |
O4W—Er1—O7—C12 | 80.1 (2) | Cu1—N3—C7—C8 | 177.0 (3) |
O8i—Er1—O7—C12 | −0.4 (2) | C10—N3—C7—C6 | −178.8 (3) |
O6ii—Er1—O7—C12 | −139.9 (2) | Cu1—N3—C7—C6 | −1.4 (4) |
O5—Er1—O7—C12 | 118.0 (2) | O4—C6—C7—N3 | 176.7 (3) |
O3—Cu1—N1—C5 | −9.8 (3) | O3—C6—C7—N3 | −1.9 (5) |
O1—Cu1—N1—C5 | −177.6 (3) | O4—C6—C7—C8 | −1.7 (6) |
N3—Cu1—N1—C5 | −93.8 (6) | O3—C6—C7—C8 | 179.8 (3) |
Br1—Cu1—N1—C5 | 87.7 (3) | C9—N4—C8—C7 | 0.3 (6) |
O3—Cu1—N1—C2 | 174.5 (2) | N3—C7—C8—N4 | 0.6 (6) |
O1—Cu1—N1—C2 | 6.7 (2) | C6—C7—C8—N4 | 178.9 (3) |
N3—Cu1—N1—C2 | 90.5 (6) | C8—N4—C9—C10 | −1.4 (6) |
Br1—Cu1—N1—C2 | −88.0 (2) | C7—N3—C10—C9 | −0.7 (5) |
O3—Cu1—N3—C10 | 179.9 (3) | Cu1—N3—C10—C9 | −177.5 (3) |
O1—Cu1—N3—C10 | −12.3 (3) | N4—C9—C10—N3 | 1.7 (6) |
N1—Cu1—N3—C10 | −94.9 (6) | Er1ii—O6—C11—O5 | 179.5 (3) |
Br1—Cu1—N3—C10 | 83.7 (3) | Er1ii—O6—C11—C11ii | −0.3 (5) |
O3—Cu1—N3—C7 | 2.9 (2) | Er1—O5—C11—O6 | 179.6 (3) |
O1—Cu1—N3—C7 | 170.6 (2) | Er1—O5—C11—C11ii | −0.6 (4) |
N1—Cu1—N3—C7 | 88.1 (6) | Er1—O7—C12—O8 | −179.4 (3) |
Br1—Cu1—N3—C7 | −93.4 (2) | Er1—O7—C12—C12i | 0.2 (5) |
Cu1—O1—C1—O2 | −178.5 (3) | Er1i—O8—C12—O7 | −179.6 (3) |
Cu1—O1—C1—C2 | 3.6 (4) | Er1i—O8—C12—C12i | 0.8 (5) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O5Wiii | 0.82 | 1.92 | 2.712 (3) | 163 |
O1W—H2W···N2iv | 0.82 | 2.01 | 2.823 (4) | 168 |
O2W—H3W···O4ii | 0.82 | 2.04 | 2.825 (3) | 159 |
O2W—H4W···O7Wv | 0.82 | 1.97 | 2.788 (4) | 174 |
O3W—H5W···O2vi | 0.82 | 1.97 | 2.781 (3) | 167 |
O3W—H6W···O5Wvii | 0.82 | 1.89 | 2.710 (4) | 176 |
O4W—H7W···O7Wvii | 0.82 | 1.94 | 2.758 (3) | 178 |
O4W—H8W···N4 | 0.82 | 2.08 | 2.886 (4) | 169 |
O5W—H9W···O8W | 0.82 | 1.92 | 2.670 (4) | 152 |
O5W—H10W···O6Wviii | 0.82 | 2.03 | 2.835 (4) | 168 |
O6W—H11W···Br1ix | 0.82 | 2.59 | 3.299 (3) | 146 |
O6W—H12W···O3x | 0.82 | 2.57 | 3.238 (4) | 139 |
O6W—H12W···O4x | 0.82 | 2.07 | 2.866 (4) | 164 |
O7W—H13W···O5 | 0.82 | 2.04 | 2.826 (3) | 161 |
O7W—H14W···O6W | 0.82 | 1.94 | 2.746 (4) | 167 |
O8W—H15W···O1ix | 0.82 | 2.58 | 3.351 (4) | 157 |
O8W—H15W···O2ix | 0.82 | 2.23 | 2.951 (4) | 147 |
O8W—H16W···Br1vii | 0.82 | 2.53 | 3.337 (3) | 170 |
Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) x, y+1, z; (iv) x−1, y, z+1; (v) x−1, y, z; (vi) −x+1, −y+1, −z; (vii) −x+1, −y+1, −z+1; (viii) x, y−1, z; (ix) x, y, z+1; (x) −x+2, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Er(C2O4)(H2O)4][CuBr(C5H3N2O2)2]·4H2O |
Mr | 789.05 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 8.6678 (3), 10.2623 (4), 13.8748 (2) |
α, β, γ (°) | 96.872 (1), 99.419 (1), 99.748 (1) |
V (Å3) | 1186.10 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.18 |
Crystal size (mm) | 0.26 × 0.25 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.232, 0.324 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14850, 5260, 4480 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.072, 1.01 |
No. of reflections | 5260 |
No. of parameters | 316 |
No. of restraints | 24 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.59, −0.88 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···O5Wi | 0.82 | 1.92 | 2.712 (3) | 163 |
O1W—H2W···N2ii | 0.82 | 2.01 | 2.823 (4) | 168 |
O2W—H3W···O4iii | 0.82 | 2.04 | 2.825 (3) | 159 |
O2W—H4W···O7Wiv | 0.82 | 1.97 | 2.788 (4) | 174 |
O3W—H5W···O2v | 0.82 | 1.97 | 2.781 (3) | 167 |
O3W—H6W···O5Wvi | 0.82 | 1.89 | 2.710 (4) | 176 |
O4W—H7W···O7Wvi | 0.82 | 1.94 | 2.758 (3) | 178 |
O4W—H8W···N4 | 0.82 | 2.08 | 2.886 (4) | 169 |
O5W—H9W···O8W | 0.82 | 1.92 | 2.670 (4) | 152 |
O5W—H10W···O6Wvii | 0.82 | 2.03 | 2.835 (4) | 168 |
O6W—H11W···Br1viii | 0.82 | 2.59 | 3.299 (3) | 146 |
O6W—H12W···O3ix | 0.82 | 2.57 | 3.238 (4) | 139 |
O6W—H12W···O4ix | 0.82 | 2.07 | 2.866 (4) | 164 |
O7W—H13W···O5 | 0.82 | 2.04 | 2.826 (3) | 161 |
O7W—H14W···O6W | 0.82 | 1.94 | 2.746 (4) | 167 |
O8W—H15W···O1viii | 0.82 | 2.58 | 3.351 (4) | 157 |
O8W—H15W···O2viii | 0.82 | 2.23 | 2.951 (4) | 147 |
O8W—H16W···Br1vi | 0.82 | 2.53 | 3.337 (3) | 170 |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y, z+1; (iii) −x+1, −y+2, −z+1; (iv) x−1, y, z; (v) −x+1, −y+1, −z; (vi) −x+1, −y+1, −z+1; (vii) x, y−1, z; (viii) x, y, z+1; (ix) −x+2, −y+2, −z+1. |
Acknowledgements
The authors acknowledge the National Natural Science Foundation of China (grant No. 20772048) for supporting this work.
References
Barbour, L. J. (2006). Chem. Commun. pp. 1163–1168. Web of Science CrossRef Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Costes, J.-P., Novitchi, G., Shova, S., Dahan, F., Donnadieu, B. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 7792–7799. Web of Science CSD CrossRef PubMed CAS Google Scholar
Deng, H., Chun, S., Florian, P., Grandinetti, P. J. & Sore, S. G. (1996). Inorg. Chem. 35, 3891–3896. CSD CrossRef PubMed CAS Web of Science Google Scholar
Deng, H., Li, Y.-H., Qiu, Y.-C., Liu, Z.-H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1151–1154. Web of Science CSD CrossRef CAS Google Scholar
Feng, T.-J. & Wen, Y.-M. (2009). Acta Cryst. E65, m833–m834. Web of Science CSD CrossRef IUCr Journals Google Scholar
He, F., Tong, M.-L. & Chen, X.-M. (2005). Inorg. Chem. 44, 8285–8289. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kong, X.-J., Ren, Y.-P., Chen, W.-X., Long, L.-S., Zheng, Z.-P., Huang, R.-B. & Zheng, L.-S. (2008). Angew. Chem. Int. Ed. 47, 2398–2401. Web of Science CSD CrossRef CAS Google Scholar
Li, B., Gu, W., Zhang, L.-Z., Qu, J., Ma, Z.-P., Liu, X. & Liao, D.-Z. (2006). Inorg. Chem. 45, 10425–10427. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liang, Y.-C., Hong, M.-C., Su, W.-P., Cao, R. & Zhang, W.-J. (2001). Inorg. Chem. 40, 4574–4582. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ma, D.-Y., Liu, H.-L. & Li, Y.-W. (2009). Inorg. Chem. Commun. 12, 883–886. Web of Science CSD CrossRef CAS Google Scholar
Ma, D.-Y., Zeng, H.-P., Li, Y.-W. & Li, J. (2009). Solid State Sci. 11, 1065–1070. Web of Science CSD CrossRef CAS Google Scholar
Mahata, P., Sankar, G., Madras, G. & Natarajan, S. (2005). Chem. Commun. pp. 5787–5789. Web of Science CSD CrossRef Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanthan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, J.-J., Sheng, T.-L., Xia, S.-Q., Leibeling, G., Meyer, F., Hu, S.-M., Fu, R.-B., Xiang, S.-C. & Tao, X.-T. (2004). Inorg. Chem. 43, 5472–5478. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, M.-B., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 1385–1388. Web of Science CSD CrossRef CAS Google Scholar
Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934–936. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and construction of transition–lanthanide metal complexes has gained great recognition over the last decade because of their intriguing network topolopies and potential applications, and due to their magnetic properties, their capacity for gas storage, as luminescent materials, and so on (Barbour, 2006; Kong et al., 2008; Rao et al., 2004; Zhang et al., 2005; Zhao et al., 2003). So far, numerous heterometallic complexes have been obtained by allowing the assembly of mixed metal ions and organic ligands containing mixed-donor atoms similar to the established methods used in traditional transition metal chemistry, such as pyridinecarboxylate, pyrazinecarboxylate, carbonyl, CN group, amino acids and so on (Costes et al., 2004; Deng et al., 1996; He et al., 2005; Liang et al., 2001; Mahata et al., 2005; Ma, Liu et al., 2009; Zhang et al., 2004). Pyrazine-2-carboxylic acid (2-Hpzc) is a multifunctional bridging ligand possessing of O and N donors, which can thus be chosen to construct heterometallic complexes, as is reported in literature (Deng et al., 2008; Feng & Wen, 2009). In this paper, we describe the synthesis and structure of a heterometallic hybrid compound obtained by the reaction of 2-Hpzc with Er2O3 and CuBr2 via a hydrothermal method. Since no oxalate was directly introduced into the starting reaction mixture, we suppose that the oxalate ligand was synthesized in situ reactions.
Firstly, the decarboxylation reaction of the 2-Hpzc occured under high temperatures, forming CO2. Then, the oxalate anion was formed via the in situ reductive coupling of CO2. Actually, such in situ reactions have been reported in literature [Li et al., 2006; Ma, Zeng et al., 2009]. As depicted in Fig. 1, the title compound is composed of an [Er(C2O4)(H2O)4]+ cation, a [Cu(2-pzc)2Br]- anion and four uncoordinated water molecules. The ErIII atom lies in the region of z close to 0.5 and the CuII atom in the region of z close to 0. The ErIII center is eight-coordinated by four carboxylate O atoms from two oxalate ligands and four water molecules, displaying a bicapped trigonal-prismatic geometry. The coordination geometry around the CuII center can be described as square-pyramidal, defined by two O and two N atoms from two 2-pzc ligands and one Br atom. The oxalate ligands bridge the Er atoms into a polymeric cationic chain along [1 1 0], with Er···Er separations of 6.176 (2) and 6.088 (3) Å. The Cu atoms form a simple dimer by a Cu···O contact [3.127 (2) Å], with a Cu···Cu separation of 5.321 (2) Å. The linear coordination polymers, discrete dimers and uncoordinated water molecules are further self-assembled into a three-dimensional supramolecular network structure via intermolecular O—H···O, O—H···N and O—H···Br hydrogen bonds involving the carboxylate O atoms of the 2-pzc ligands, the O atoms from coordinated and uncoordinated water molecules and Br atom (Fig. 2, Table 1).