metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­aqua­erbium(III)]-μ-oxalato-κ4O1,O2:O1′,O2′] [bromidobis(pyrazine-2-carboxyl­ato-κ2N1,O)cuprate(II)] tetra­hydrate]

aDepartment of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: xuhs09@126.com

(Received 10 June 2010; accepted 28 June 2010; online 3 July 2010)

In the title heterometallic complex, {[Er(C2O4)(H2O)4][CuBr(C5H3N2O2)2]·4H2O}n, the ErIII atom is eight-coordin­ated by four O atoms from two centrosymmetric oxalate ligands and four water mol­ecules, displaying a bicapped trigonal-prismatic geometry. The oxalate ligands bridge the Er atoms into a polymeric cationic chain along [110]. The CuII atom is five-coordinated in a square-pyramidal geometry by two pyrazine-2-carboxyl­ate ligands and a Br atom, forming a discrete anion. The polymeric cations, complex anions and uncoordinated water mol­ecules are self-assembled into a three-dimensional supra­molecular network through O—H⋯N, O—H⋯O and O—H⋯Br hydrogen bonds.

Related literature

For general background to the topologies and potential applications of transition metal–lanthanide complexes, see: Barbour (2006[Barbour, L. J. (2006). Chem. Commun. pp. 1163-1168.]); Kong et al. (2008[Kong, X.-J., Ren, Y.-P., Chen, W.-X., Long, L.-S., Zheng, Z.-P., Huang, R.-B. & Zheng, L.-S. (2008). Angew. Chem. Int. Ed. 47, 2398-2401.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanthan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Zhang et al. (2005[Zhang, M.-B., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 1385-1388.]); Zhao et al. (2003[Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934-936.]). For general background to transition metal–lanthanide complexes with organic ligands containing mixed-donor atoms, see: Costes et al. (2004[Costes, J.-P., Novitchi, G., Shova, S., Dahan, F., Donnadieu, B. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 7792-7799.]); Deng et al. (1996[Deng, H., Chun, S., Florian, P., Grandinetti, P. J. & Sore, S. G. (1996). Inorg. Chem. 35, 3891-3896.]); He et al. (2005[He, F., Tong, M.-L. & Chen, X.-M. (2005). Inorg. Chem. 44, 8285-8289.]); Liang et al. (2001[Liang, Y.-C., Hong, M.-C., Su, W.-P., Cao, R. & Zhang, W.-J. (2001). Inorg. Chem. 40, 4574-4582.]); Mahata et al. (2005[Mahata, P., Sankar, G., Madras, G. & Natarajan, S. (2005). Chem. Commun. pp. 5787-5789.]); Ma, Liu et al. (2009[Ma, D.-Y., Liu, H.-L. & Li, Y.-W. (2009). Inorg. Chem. Commun. 12, 883-886.]); Zhang et al. (2004[Zhang, J.-J., Sheng, T.-L., Xia, S.-Q., Leibeling, G., Meyer, F., Hu, S.-M., Fu, R.-B., Xiang, S.-C. & Tao, X.-T. (2004). Inorg. Chem. 43, 5472-5478.]). For heterometallic complexes constructed from pyrazine-2-carb­oxy­lic acid, see: Deng et al. (2008[Deng, H., Li, Y.-H., Qiu, Y.-C., Liu, Z.-H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1151-1154.]); Feng & Wen (2009[Feng, T.-J. & Wen, Y.-M. (2009). Acta Cryst. E65, m833-m834.]). For general background to in situ reactions, see: Li et al. (2006[Li, B., Gu, W., Zhang, L.-Z., Qu, J., Ma, Z.-P., Liu, X. & Liao, D.-Z. (2006). Inorg. Chem. 45, 10425-10427.]); Ma, Zeng et al. (2009[Ma, D.-Y., Zeng, H.-P., Li, Y.-W. & Li, J. (2009). Solid State Sci. 11, 1065-1070.]).

[Scheme 1]

Experimental

Crystal data
  • [Er(C2O4)(H2O)4][CuBr(C5H3N2O2)2]·4H2O

  • Mr = 789.05

  • Triclinic, [P \overline 1]

  • a = 8.6678 (3) Å

  • b = 10.2623 (4) Å

  • c = 13.8748 (2) Å

  • α = 96.872 (1)°

  • β = 99.419 (1)°

  • γ = 99.748 (1)°

  • V = 1186.10 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.18 mm−1

  • T = 295 K

  • 0.26 × 0.25 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.232, Tmax = 0.324

  • 14850 measured reflections

  • 5260 independent reflections

  • 4480 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.01

  • 5260 reflections

  • 316 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 1.59 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O5Wi 0.82 1.92 2.712 (3) 163
O1W—H2W⋯N2ii 0.82 2.01 2.823 (4) 168
O2W—H3W⋯O4iii 0.82 2.04 2.825 (3) 159
O2W—H4W⋯O7Wiv 0.82 1.97 2.788 (4) 174
O3W—H5W⋯O2v 0.82 1.97 2.781 (3) 167
O3W—H6W⋯O5Wvi 0.82 1.89 2.710 (4) 176
O4W—H7W⋯O7Wvi 0.82 1.94 2.758 (3) 178
O4W—H8W⋯N4 0.82 2.08 2.886 (4) 169
O5W—H9W⋯O8W 0.82 1.92 2.670 (4) 152
O5W—H10W⋯O6Wvii 0.82 2.03 2.835 (4) 168
O6W—H11W⋯Br1viii 0.82 2.59 3.299 (3) 146
O6W—H12W⋯O3ix 0.82 2.57 3.238 (4) 139
O6W—H12W⋯O4ix 0.82 2.07 2.866 (4) 164
O7W—H13W⋯O5 0.82 2.04 2.826 (3) 161
O7W—H14W⋯O6W 0.82 1.94 2.746 (4) 167
O8W—H15W⋯O1viii 0.82 2.58 3.351 (4) 157
O8W—H15W⋯O2viii 0.82 2.23 2.951 (4) 147
O8W—H16W⋯Br1vi 0.82 2.53 3.337 (3) 170
Symmetry codes: (i) x, y+1, z; (ii) x-1, y, z+1; (iii) -x+1, -y+2, -z+1; (iv) x-1, y, z; (v) -x+1, -y+1, -z; (vi) -x+1, -y+1, -z+1; (vii) x, y-1, z; (viii) x, y, z+1; (ix) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of transition–lanthanide metal complexes has gained great recognition over the last decade because of their intriguing network topolopies and potential applications, and due to their magnetic properties, their capacity for gas storage, as luminescent materials, and so on (Barbour, 2006; Kong et al., 2008; Rao et al., 2004; Zhang et al., 2005; Zhao et al., 2003). So far, numerous heterometallic complexes have been obtained by allowing the assembly of mixed metal ions and organic ligands containing mixed-donor atoms similar to the established methods used in traditional transition metal chemistry, such as pyridinecarboxylate, pyrazinecarboxylate, carbonyl, CN group, amino acids and so on (Costes et al., 2004; Deng et al., 1996; He et al., 2005; Liang et al., 2001; Mahata et al., 2005; Ma, Liu et al., 2009; Zhang et al., 2004). Pyrazine-2-carboxylic acid (2-Hpzc) is a multifunctional bridging ligand possessing of O and N donors, which can thus be chosen to construct heterometallic complexes, as is reported in literature (Deng et al., 2008; Feng & Wen, 2009). In this paper, we describe the synthesis and structure of a heterometallic hybrid compound obtained by the reaction of 2-Hpzc with Er2O3 and CuBr2 via a hydrothermal method. Since no oxalate was directly introduced into the starting reaction mixture, we suppose that the oxalate ligand was synthesized in situ reactions.

Firstly, the decarboxylation reaction of the 2-Hpzc occured under high temperatures, forming CO2. Then, the oxalate anion was formed via the in situ reductive coupling of CO2. Actually, such in situ reactions have been reported in literature [Li et al., 2006; Ma, Zeng et al., 2009]. As depicted in Fig. 1, the title compound is composed of an [Er(C2O4)(H2O)4]+ cation, a [Cu(2-pzc)2Br]- anion and four uncoordinated water molecules. The ErIII atom lies in the region of z close to 0.5 and the CuII atom in the region of z close to 0. The ErIII center is eight-coordinated by four carboxylate O atoms from two oxalate ligands and four water molecules, displaying a bicapped trigonal-prismatic geometry. The coordination geometry around the CuII center can be described as square-pyramidal, defined by two O and two N atoms from two 2-pzc ligands and one Br atom. The oxalate ligands bridge the Er atoms into a polymeric cationic chain along [1 1 0], with Er···Er separations of 6.176 (2) and 6.088 (3) Å. The Cu atoms form a simple dimer by a Cu···O contact [3.127 (2) Å], with a Cu···Cu separation of 5.321 (2) Å. The linear coordination polymers, discrete dimers and uncoordinated water molecules are further self-assembled into a three-dimensional supramolecular network structure via intermolecular O—H···O, O—H···N and O—H···Br hydrogen bonds involving the carboxylate O atoms of the 2-pzc ligands, the O atoms from coordinated and uncoordinated water molecules and Br atom (Fig. 2, Table 1).

Related literature top

For general background to the topologies and potential applications of transitionmetal–lanthanide complexes, see: Barbour (2006); Kong et al. (2008); Rao et al. (2004); Zhang et al. (2005); Zhao et al. (2003). For general background to transition metal–lanthanide complexes with organic ligands containing mixed-donor atoms, see: Costes et al. (2004); Deng et al. (1996); He et al. (2005); Liang et al. (2001); Mahata et al. (2005); Ma, Liu et al. (2009); Zhang et al. (2004). For heterometallic complexes constructed from pyrazine-2-carboxylic acid, see: Deng et al. (2008); Feng & Wen (2009). For general background to in situ reactions, see: Li et al. (2006); Ma, Zeng et al. (2009).

Experimental top

A mixture of copper bromide (0.5 mmol, 0.112 g), 2-Hpzc (0.5 mmol, 0.062 g), erbium oxide (0.52 mmol, 0.096 g), HNO3 (1 ml) and H2O (10 ml) was stirred for 30 min in air and then sealed in a 23 ml Teflon-lined reactor and kept under autogenous pressure at 423 K for 72 h. The mixture was cooled to room temperature at a rate of 10 K h-1. The purple block crystals were obtained in a yield of 42% based on Er.

Refinement top

C-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined as riding, with distance restraints of O—H = 0.82 and H···H = 1.32 Å and with Uiso(H) = 1.5Ueq(O). The highest residual electron density was found 1.59 Å from atom Cu1 and the deepest hole 0.88 Å from atom Er1.

Structure description top

The design and construction of transition–lanthanide metal complexes has gained great recognition over the last decade because of their intriguing network topolopies and potential applications, and due to their magnetic properties, their capacity for gas storage, as luminescent materials, and so on (Barbour, 2006; Kong et al., 2008; Rao et al., 2004; Zhang et al., 2005; Zhao et al., 2003). So far, numerous heterometallic complexes have been obtained by allowing the assembly of mixed metal ions and organic ligands containing mixed-donor atoms similar to the established methods used in traditional transition metal chemistry, such as pyridinecarboxylate, pyrazinecarboxylate, carbonyl, CN group, amino acids and so on (Costes et al., 2004; Deng et al., 1996; He et al., 2005; Liang et al., 2001; Mahata et al., 2005; Ma, Liu et al., 2009; Zhang et al., 2004). Pyrazine-2-carboxylic acid (2-Hpzc) is a multifunctional bridging ligand possessing of O and N donors, which can thus be chosen to construct heterometallic complexes, as is reported in literature (Deng et al., 2008; Feng & Wen, 2009). In this paper, we describe the synthesis and structure of a heterometallic hybrid compound obtained by the reaction of 2-Hpzc with Er2O3 and CuBr2 via a hydrothermal method. Since no oxalate was directly introduced into the starting reaction mixture, we suppose that the oxalate ligand was synthesized in situ reactions.

Firstly, the decarboxylation reaction of the 2-Hpzc occured under high temperatures, forming CO2. Then, the oxalate anion was formed via the in situ reductive coupling of CO2. Actually, such in situ reactions have been reported in literature [Li et al., 2006; Ma, Zeng et al., 2009]. As depicted in Fig. 1, the title compound is composed of an [Er(C2O4)(H2O)4]+ cation, a [Cu(2-pzc)2Br]- anion and four uncoordinated water molecules. The ErIII atom lies in the region of z close to 0.5 and the CuII atom in the region of z close to 0. The ErIII center is eight-coordinated by four carboxylate O atoms from two oxalate ligands and four water molecules, displaying a bicapped trigonal-prismatic geometry. The coordination geometry around the CuII center can be described as square-pyramidal, defined by two O and two N atoms from two 2-pzc ligands and one Br atom. The oxalate ligands bridge the Er atoms into a polymeric cationic chain along [1 1 0], with Er···Er separations of 6.176 (2) and 6.088 (3) Å. The Cu atoms form a simple dimer by a Cu···O contact [3.127 (2) Å], with a Cu···Cu separation of 5.321 (2) Å. The linear coordination polymers, discrete dimers and uncoordinated water molecules are further self-assembled into a three-dimensional supramolecular network structure via intermolecular O—H···O, O—H···N and O—H···Br hydrogen bonds involving the carboxylate O atoms of the 2-pzc ligands, the O atoms from coordinated and uncoordinated water molecules and Br atom (Fig. 2, Table 1).

For general background to the topologies and potential applications of transitionmetal–lanthanide complexes, see: Barbour (2006); Kong et al. (2008); Rao et al. (2004); Zhang et al. (2005); Zhao et al. (2003). For general background to transition metal–lanthanide complexes with organic ligands containing mixed-donor atoms, see: Costes et al. (2004); Deng et al. (1996); He et al. (2005); Liang et al. (2001); Mahata et al. (2005); Ma, Liu et al. (2009); Zhang et al. (2004). For heterometallic complexes constructed from pyrazine-2-carboxylic acid, see: Deng et al. (2008); Feng & Wen (2009). For general background to in situ reactions, see: Li et al. (2006); Ma, Zeng et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the 30% probability displacement ellipsoids. H atoms have been omitted for clarity. [Symmetry codes: (i) 2-x, -y, 1-z; (ii) 1-x, -y, 1-z.]
[Figure 2] Fig. 2. A packing view of the title compound, showing the intermolecular hydrogen bonds (dashed lines).
catena-Poly[[[tetraaquaerbium(III)]-µ-oxalato- κ4O1,O2:O1',O2'] [bromidobis(pyrazine-2-carboxylato-κ2N1,O)cuprate(II)] tetrahydrate] top
Crystal data top
[Er(C2O4)(H2O)4][CuBr(C5H3N2O2)2]·4H2OZ = 2
Mr = 789.05F(000) = 764
Triclinic, P1Dx = 2.209 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6678 (3) ÅCell parameters from 5837 reflections
b = 10.2623 (4) Åθ = 2.8–27.9°
c = 13.8748 (2) ŵ = 6.18 mm1
α = 96.872 (1)°T = 295 K
β = 99.419 (1)°Block, purple
γ = 99.748 (1)°0.26 × 0.25 × 0.19 mm
V = 1186.10 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5260 independent reflections
Radiation source: fine-focus sealed tube4480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scanθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.232, Tmax = 0.324k = 1313
14850 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.5356P]
where P = (Fo2 + 2Fc2)/3
5260 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 1.59 e Å3
24 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Er(C2O4)(H2O)4][CuBr(C5H3N2O2)2]·4H2Oγ = 99.748 (1)°
Mr = 789.05V = 1186.10 (6) Å3
Triclinic, P1Z = 2
a = 8.6678 (3) ÅMo Kα radiation
b = 10.2623 (4) ŵ = 6.18 mm1
c = 13.8748 (2) ÅT = 295 K
α = 96.872 (1)°0.26 × 0.25 × 0.19 mm
β = 99.419 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5260 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4480 reflections with I > 2σ(I)
Tmin = 0.232, Tmax = 0.324Rint = 0.023
14850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02724 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.01Δρmax = 1.59 e Å3
5260 reflectionsΔρmin = 0.88 e Å3
316 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.242464 (16)0.750762 (12)0.496898 (10)0.02163 (6)
Br10.63182 (5)0.80237 (4)0.05645 (3)0.04494 (11)
Cu10.86112 (6)0.70254 (4)0.05289 (3)0.03103 (11)
O10.8075 (3)0.5245 (2)0.02710 (18)0.0358 (6)
O20.8561 (4)0.4105 (3)0.1609 (2)0.0546 (8)
O30.9505 (3)0.8638 (2)0.14745 (18)0.0371 (6)
O40.9256 (4)0.9694 (3)0.29159 (19)0.0465 (7)
O50.5154 (3)0.8333 (2)0.49529 (17)0.0275 (5)
O60.7024 (3)1.0134 (2)0.49841 (18)0.0288 (5)
O70.0196 (3)0.5961 (2)0.40579 (16)0.0305 (6)
O80.1564 (3)0.4115 (2)0.40878 (17)0.0310 (6)
N11.0142 (3)0.7379 (3)0.03731 (19)0.0270 (6)
N21.1892 (4)0.7526 (3)0.1867 (2)0.0360 (7)
N30.7441 (4)0.6513 (3)0.1585 (2)0.0289 (6)
N40.5947 (4)0.6246 (3)0.3185 (2)0.0413 (8)
C10.8766 (5)0.5131 (3)0.1011 (2)0.0320 (8)
C20.9942 (4)0.6345 (3)0.1109 (2)0.0271 (7)
C31.0800 (4)0.6438 (4)0.1856 (3)0.0326 (8)
H31.06170.57250.23690.039*
C41.2098 (5)0.8521 (4)0.1124 (3)0.0358 (9)
H41.28670.92810.11010.043*
C51.1210 (4)0.8469 (3)0.0382 (3)0.0317 (8)
H51.13610.91990.01130.038*
C60.8932 (4)0.8711 (3)0.2268 (3)0.0310 (8)
C70.7757 (4)0.7492 (3)0.2364 (2)0.0282 (7)
C80.6999 (5)0.7350 (4)0.3157 (3)0.0353 (8)
H80.72260.80430.36870.042*
C90.5669 (5)0.5284 (4)0.2412 (3)0.0433 (10)
H90.49620.44950.24170.052*
C100.6391 (5)0.5408 (4)0.1601 (3)0.0384 (9)
H100.61440.47200.10670.046*
C110.5638 (4)0.9558 (3)0.4983 (2)0.0228 (7)
C120.0399 (4)0.5024 (3)0.4461 (2)0.0241 (7)
O1W0.3563 (3)0.8151 (3)0.66122 (17)0.0430 (7)
H1W0.41290.88820.68450.064*
H2W0.31440.78770.70570.064*
O2W0.0271 (3)0.8392 (2)0.5368 (2)0.0409 (7)
H3W0.04740.90820.57680.061*
H4W0.05800.79650.54430.061*
O3W0.2166 (3)0.7760 (2)0.33238 (17)0.0375 (6)
H5W0.18660.71380.28650.056*
H6W0.27010.83660.31180.056*
O4W0.3673 (3)0.5775 (2)0.4469 (2)0.0384 (6)
H7W0.33470.49640.43980.058*
H8W0.44100.59070.41680.058*
O5W0.5945 (3)0.0292 (3)0.7338 (2)0.0478 (7)
H9W0.57490.06530.78510.072*
H10W0.66030.01710.74940.072*
O6W0.8142 (4)0.8544 (3)0.7569 (2)0.0604 (9)
H12W0.89290.91050.75520.091*
H11W0.81100.85070.81520.091*
O7W0.7480 (3)0.6941 (2)0.5762 (2)0.0387 (6)
H13W0.69190.73450.54210.058*
H14W0.76220.73130.63360.058*
O8W0.5890 (4)0.2199 (3)0.8812 (2)0.0631 (9)
H15W0.65080.29170.88770.095*
H16W0.54310.22290.92840.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.02294 (10)0.01592 (8)0.02381 (9)0.00464 (6)0.00914 (6)0.00033 (6)
Br10.0424 (2)0.0477 (2)0.0447 (2)0.00720 (19)0.00907 (19)0.00745 (19)
Cu10.0406 (3)0.0249 (2)0.0266 (2)0.00133 (19)0.0166 (2)0.00292 (17)
O10.0452 (16)0.0277 (12)0.0329 (13)0.0031 (11)0.0188 (12)0.0028 (10)
O20.081 (2)0.0332 (14)0.0424 (16)0.0094 (15)0.0276 (16)0.0142 (12)
O30.0457 (16)0.0303 (13)0.0318 (14)0.0056 (12)0.0169 (12)0.0033 (11)
O40.0581 (19)0.0359 (14)0.0379 (15)0.0042 (13)0.0151 (14)0.0137 (12)
O50.0262 (12)0.0159 (10)0.0394 (14)0.0024 (9)0.0106 (11)0.0025 (10)
O60.0252 (13)0.0185 (10)0.0421 (14)0.0032 (10)0.0138 (11)0.0019 (10)
O70.0358 (14)0.0237 (11)0.0257 (12)0.0112 (10)0.0053 (11)0.0037 (10)
O80.0319 (13)0.0282 (12)0.0262 (12)0.0127 (10)0.0053 (11)0.0038 (10)
N10.0311 (16)0.0243 (14)0.0237 (14)0.0014 (12)0.0066 (12)0.0002 (11)
N20.0399 (18)0.0391 (17)0.0304 (16)0.0028 (15)0.0147 (14)0.0063 (13)
N30.0342 (16)0.0237 (14)0.0293 (15)0.0023 (12)0.0133 (13)0.0002 (12)
N40.048 (2)0.0419 (18)0.0375 (18)0.0063 (16)0.0211 (16)0.0071 (15)
C10.044 (2)0.0243 (16)0.0255 (17)0.0000 (16)0.0110 (16)0.0007 (14)
C20.0344 (19)0.0274 (16)0.0204 (16)0.0061 (15)0.0082 (14)0.0024 (13)
C30.039 (2)0.0337 (18)0.0246 (17)0.0051 (17)0.0110 (16)0.0001 (15)
C40.035 (2)0.0352 (19)0.036 (2)0.0019 (17)0.0102 (17)0.0057 (16)
C50.0326 (19)0.0286 (17)0.0312 (19)0.0014 (15)0.0071 (16)0.0004 (14)
C60.0318 (19)0.0271 (17)0.0326 (19)0.0021 (15)0.0093 (16)0.0005 (15)
C70.0325 (19)0.0268 (17)0.0258 (17)0.0069 (15)0.0082 (15)0.0009 (14)
C80.045 (2)0.0345 (19)0.0285 (19)0.0096 (17)0.0132 (17)0.0025 (15)
C90.047 (2)0.034 (2)0.052 (2)0.0019 (18)0.025 (2)0.0071 (18)
C100.044 (2)0.0285 (18)0.041 (2)0.0000 (17)0.0159 (18)0.0013 (16)
C110.0250 (17)0.0201 (15)0.0221 (16)0.0002 (14)0.0081 (14)0.0002 (12)
C120.0269 (18)0.0205 (15)0.0227 (17)0.0021 (14)0.0106 (14)0.0033 (13)
O1W0.0475 (17)0.0427 (15)0.0261 (13)0.0250 (13)0.0108 (12)0.0022 (11)
O2W0.0306 (14)0.0292 (13)0.0579 (17)0.0072 (11)0.0199 (13)0.0102 (12)
O3W0.0540 (17)0.0287 (12)0.0239 (12)0.0092 (12)0.0094 (12)0.0016 (10)
O4W0.0421 (15)0.0188 (11)0.0575 (17)0.0002 (11)0.0276 (13)0.0015 (11)
O5W0.0489 (18)0.0379 (15)0.0496 (17)0.0084 (13)0.0054 (14)0.0076 (13)
O6W0.060 (2)0.061 (2)0.0511 (19)0.0132 (17)0.0087 (16)0.0095 (16)
O7W0.0362 (15)0.0275 (12)0.0513 (16)0.0036 (11)0.0088 (13)0.0043 (12)
O8W0.061 (2)0.059 (2)0.067 (2)0.0046 (17)0.0265 (18)0.0014 (17)
Geometric parameters (Å, º) top
Er1—O1W2.300 (2)C1—C21.504 (5)
Er1—O3W2.307 (2)C2—C31.375 (5)
Er1—O2W2.326 (2)C3—H30.9300
Er1—O4W2.327 (2)C4—C51.384 (5)
Er1—O8i2.337 (2)C4—H40.9300
Er1—O72.352 (2)C5—H50.9300
Er1—O6ii2.377 (2)C6—C71.508 (5)
Er1—O52.379 (2)C7—C81.382 (5)
Br1—Cu12.7158 (7)C8—H80.9300
Cu1—O31.943 (2)C9—C101.383 (5)
Cu1—O11.961 (2)C9—H90.9300
Cu1—N31.985 (3)C10—H100.9300
Cu1—N11.987 (3)C11—C11ii1.547 (6)
O1—C11.274 (4)C12—C12i1.553 (6)
O2—C11.228 (4)O1W—H1W0.8200
O3—C61.278 (4)O1W—H2W0.8200
O4—C61.229 (4)O2W—H3W0.8200
O5—C111.250 (4)O2W—H4W0.8200
O6—C111.245 (4)O3W—H5W0.8200
O6—Er1ii2.377 (2)O3W—H6W0.8200
O7—C121.248 (4)O4W—H7W0.8200
O8—C121.246 (4)O4W—H8W0.8200
O8—Er1i2.337 (2)O5W—H9W0.8200
N1—C51.328 (4)O5W—H10W0.8200
N1—C21.349 (4)O6W—H12W0.8200
N2—C41.329 (5)O6W—H11W0.8200
N2—C31.340 (5)O7W—H13W0.8200
N3—C101.334 (5)O7W—H14W0.8200
N3—C71.342 (4)O8W—H15W0.8200
N4—C91.328 (5)O8W—H16W0.8200
N4—C81.337 (5)
O1W—Er1—O3W152.60 (9)O2—C1—O1124.3 (3)
O1W—Er1—O2W85.77 (10)O2—C1—C2119.9 (3)
O3W—Er1—O2W100.11 (10)O1—C1—C2115.8 (3)
O1W—Er1—O4W103.65 (10)N1—C2—C3120.4 (3)
O3W—Er1—O4W82.75 (9)N1—C2—C1114.4 (3)
O2W—Er1—O4W153.97 (9)C3—C2—C1125.1 (3)
O1W—Er1—O8i68.99 (8)N2—C3—C2121.9 (3)
O3W—Er1—O8i138.02 (8)N2—C3—H3119.1
O2W—Er1—O8i83.33 (9)C2—C3—H3119.1
O4W—Er1—O8i77.78 (9)N2—C4—C5122.4 (3)
O1W—Er1—O7136.09 (9)N2—C4—H4118.8
O3W—Er1—O770.96 (8)C5—C4—H4118.8
O2W—Er1—O776.34 (8)N1—C5—C4120.3 (3)
O4W—Er1—O780.30 (9)N1—C5—H5119.9
O8i—Er1—O769.32 (8)C4—C5—H5119.9
O1W—Er1—O6ii80.45 (9)O4—C6—O3124.5 (3)
O3W—Er1—O6ii76.48 (8)O4—C6—C7120.2 (3)
O2W—Er1—O6ii70.57 (8)O3—C6—C7115.3 (3)
O4W—Er1—O6ii134.44 (9)N3—C7—C8120.3 (3)
O8i—Er1—O6ii141.07 (8)N3—C7—C6114.6 (3)
O7—Er1—O6ii127.85 (8)C8—C7—C6125.1 (3)
O1W—Er1—O575.95 (9)N4—C8—C7121.9 (3)
O3W—Er1—O581.80 (9)N4—C8—H8119.1
O2W—Er1—O5136.79 (8)C7—C8—H8119.1
O4W—Er1—O569.22 (8)N4—C9—C10122.5 (4)
O8i—Er1—O5123.61 (8)N4—C9—H9118.7
O7—Er1—O5141.32 (8)C10—C9—H9118.7
O6ii—Er1—O567.99 (7)N3—C10—C9120.0 (3)
O3—Cu1—O1167.79 (12)N3—C10—H10120.0
O3—Cu1—N383.39 (11)C9—C10—H10120.0
O1—Cu1—N395.48 (11)O6—C11—O5127.1 (3)
O3—Cu1—N195.47 (11)O6—C11—C11ii117.2 (3)
O1—Cu1—N183.09 (10)O5—C11—C11ii115.8 (4)
N3—Cu1—N1167.97 (12)O7—C12—O8127.0 (3)
O3—Cu1—Br197.11 (8)O7—C12—C12i116.8 (3)
O1—Cu1—Br195.08 (8)O8—C12—C12i116.3 (4)
N3—Cu1—Br198.49 (9)Er1—O1W—H1W124.5
N1—Cu1—Br193.53 (8)Er1—O1W—H2W122.6
C1—O1—Cu1114.6 (2)H1W—O1W—H2W106.9
C6—O3—Cu1115.0 (2)Er1—O2W—H3W116.9
C11—O5—Er1119.8 (2)Er1—O2W—H4W126.3
C11—O6—Er1ii119.3 (2)H3W—O2W—H4W107.1
C12—O7—Er1118.4 (2)Er1—O3W—H5W124.0
C12—O8—Er1i119.3 (2)Er1—O3W—H6W123.9
C5—N1—C2118.2 (3)H5W—O3W—H6W107.0
C5—N1—Cu1130.1 (2)Er1—O4W—H7W129.1
C2—N1—Cu1111.5 (2)Er1—O4W—H8W120.7
C4—N2—C3116.7 (3)H7W—O4W—H8W107.7
C10—N3—C7118.4 (3)H9W—O5W—H10W107.1
C10—N3—Cu1129.9 (2)H12W—O6W—H11W107.2
C7—N3—Cu1111.6 (2)H13W—O7W—H14W107.4
C9—N4—C8116.8 (3)H15W—O8W—H16W106.9
O3—Cu1—O1—C189.6 (6)C5—N1—C2—C31.5 (5)
N3—Cu1—O1—C1173.7 (3)Cu1—N1—C2—C3174.7 (3)
N1—Cu1—O1—C15.7 (3)C5—N1—C2—C1177.2 (3)
Br1—Cu1—O1—C187.2 (3)Cu1—N1—C2—C16.6 (4)
O1—Cu1—O3—C689.5 (6)O2—C1—C2—N1175.8 (3)
N3—Cu1—O3—C64.1 (3)O1—C1—C2—N12.1 (5)
N1—Cu1—O3—C6172.1 (3)O2—C1—C2—C32.8 (6)
Br1—Cu1—O3—C693.7 (2)O1—C1—C2—C3179.3 (3)
O1W—Er1—O5—C1184.7 (2)C4—N2—C3—C20.6 (5)
O3W—Er1—O5—C1179.2 (2)N1—C2—C3—N22.2 (5)
O2W—Er1—O5—C1116.8 (3)C1—C2—C3—N2176.3 (3)
O4W—Er1—O5—C11164.5 (3)C3—N2—C4—C51.7 (5)
O8i—Er1—O5—C11137.1 (2)C2—N1—C5—C40.7 (5)
O7—Er1—O5—C11124.2 (2)Cu1—N1—C5—C4176.1 (3)
O6ii—Er1—O5—C110.6 (2)N2—C4—C5—N12.4 (6)
O1W—Er1—O7—C1219.6 (3)Cu1—O3—C6—O4174.1 (3)
O3W—Er1—O7—C12165.7 (3)Cu1—O3—C6—C74.4 (4)
O2W—Er1—O7—C1288.3 (2)C10—N3—C7—C80.4 (5)
O4W—Er1—O7—C1280.1 (2)Cu1—N3—C7—C8177.0 (3)
O8i—Er1—O7—C120.4 (2)C10—N3—C7—C6178.8 (3)
O6ii—Er1—O7—C12139.9 (2)Cu1—N3—C7—C61.4 (4)
O5—Er1—O7—C12118.0 (2)O4—C6—C7—N3176.7 (3)
O3—Cu1—N1—C59.8 (3)O3—C6—C7—N31.9 (5)
O1—Cu1—N1—C5177.6 (3)O4—C6—C7—C81.7 (6)
N3—Cu1—N1—C593.8 (6)O3—C6—C7—C8179.8 (3)
Br1—Cu1—N1—C587.7 (3)C9—N4—C8—C70.3 (6)
O3—Cu1—N1—C2174.5 (2)N3—C7—C8—N40.6 (6)
O1—Cu1—N1—C26.7 (2)C6—C7—C8—N4178.9 (3)
N3—Cu1—N1—C290.5 (6)C8—N4—C9—C101.4 (6)
Br1—Cu1—N1—C288.0 (2)C7—N3—C10—C90.7 (5)
O3—Cu1—N3—C10179.9 (3)Cu1—N3—C10—C9177.5 (3)
O1—Cu1—N3—C1012.3 (3)N4—C9—C10—N31.7 (6)
N1—Cu1—N3—C1094.9 (6)Er1ii—O6—C11—O5179.5 (3)
Br1—Cu1—N3—C1083.7 (3)Er1ii—O6—C11—C11ii0.3 (5)
O3—Cu1—N3—C72.9 (2)Er1—O5—C11—O6179.6 (3)
O1—Cu1—N3—C7170.6 (2)Er1—O5—C11—C11ii0.6 (4)
N1—Cu1—N3—C788.1 (6)Er1—O7—C12—O8179.4 (3)
Br1—Cu1—N3—C793.4 (2)Er1—O7—C12—C12i0.2 (5)
Cu1—O1—C1—O2178.5 (3)Er1i—O8—C12—O7179.6 (3)
Cu1—O1—C1—C23.6 (4)Er1i—O8—C12—C12i0.8 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O5Wiii0.821.922.712 (3)163
O1W—H2W···N2iv0.822.012.823 (4)168
O2W—H3W···O4ii0.822.042.825 (3)159
O2W—H4W···O7Wv0.821.972.788 (4)174
O3W—H5W···O2vi0.821.972.781 (3)167
O3W—H6W···O5Wvii0.821.892.710 (4)176
O4W—H7W···O7Wvii0.821.942.758 (3)178
O4W—H8W···N40.822.082.886 (4)169
O5W—H9W···O8W0.821.922.670 (4)152
O5W—H10W···O6Wviii0.822.032.835 (4)168
O6W—H11W···Br1ix0.822.593.299 (3)146
O6W—H12W···O3x0.822.573.238 (4)139
O6W—H12W···O4x0.822.072.866 (4)164
O7W—H13W···O50.822.042.826 (3)161
O7W—H14W···O6W0.821.942.746 (4)167
O8W—H15W···O1ix0.822.583.351 (4)157
O8W—H15W···O2ix0.822.232.951 (4)147
O8W—H16W···Br1vii0.822.533.337 (3)170
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y+1, z; (iv) x1, y, z+1; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x+1, y+1, z+1; (viii) x, y1, z; (ix) x, y, z+1; (x) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Er(C2O4)(H2O)4][CuBr(C5H3N2O2)2]·4H2O
Mr789.05
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.6678 (3), 10.2623 (4), 13.8748 (2)
α, β, γ (°)96.872 (1), 99.419 (1), 99.748 (1)
V3)1186.10 (6)
Z2
Radiation typeMo Kα
µ (mm1)6.18
Crystal size (mm)0.26 × 0.25 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.232, 0.324
No. of measured, independent and
observed [I > 2σ(I)] reflections
14850, 5260, 4480
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.01
No. of reflections5260
No. of parameters316
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.59, 0.88

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O5Wi0.821.922.712 (3)163
O1W—H2W···N2ii0.822.012.823 (4)168
O2W—H3W···O4iii0.822.042.825 (3)159
O2W—H4W···O7Wiv0.821.972.788 (4)174
O3W—H5W···O2v0.821.972.781 (3)167
O3W—H6W···O5Wvi0.821.892.710 (4)176
O4W—H7W···O7Wvi0.821.942.758 (3)178
O4W—H8W···N40.822.082.886 (4)169
O5W—H9W···O8W0.821.922.670 (4)152
O5W—H10W···O6Wvii0.822.032.835 (4)168
O6W—H11W···Br1viii0.822.593.299 (3)146
O6W—H12W···O3ix0.822.573.238 (4)139
O6W—H12W···O4ix0.822.072.866 (4)164
O7W—H13W···O50.822.042.826 (3)161
O7W—H14W···O6W0.821.942.746 (4)167
O8W—H15W···O1viii0.822.583.351 (4)157
O8W—H15W···O2viii0.822.232.951 (4)147
O8W—H16W···Br1vi0.822.533.337 (3)170
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z+1; (iii) x+1, y+2, z+1; (iv) x1, y, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x, y1, z; (viii) x, y, z+1; (ix) x+2, y+2, z+1.
 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (grant No. 20772048) for supporting this work.

References

First citationBarbour, L. J. (2006). Chem. Commun. pp. 1163–1168.  Web of Science CrossRef Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCostes, J.-P., Novitchi, G., Shova, S., Dahan, F., Donnadieu, B. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 7792–7799.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDeng, H., Chun, S., Florian, P., Grandinetti, P. J. & Sore, S. G. (1996). Inorg. Chem. 35, 3891–3896.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationDeng, H., Li, Y.-H., Qiu, Y.-C., Liu, Z.-H. & Zeller, M. (2008). Inorg. Chem. Commun. 11, 1151–1154.  Web of Science CSD CrossRef CAS Google Scholar
First citationFeng, T.-J. & Wen, Y.-M. (2009). Acta Cryst. E65, m833–m834.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, F., Tong, M.-L. & Chen, X.-M. (2005). Inorg. Chem. 44, 8285–8289.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKong, X.-J., Ren, Y.-P., Chen, W.-X., Long, L.-S., Zheng, Z.-P., Huang, R.-B. & Zheng, L.-S. (2008). Angew. Chem. Int. Ed. 47, 2398–2401.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, B., Gu, W., Zhang, L.-Z., Qu, J., Ma, Z.-P., Liu, X. & Liao, D.-Z. (2006). Inorg. Chem. 45, 10425–10427.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiang, Y.-C., Hong, M.-C., Su, W.-P., Cao, R. & Zhang, W.-J. (2001). Inorg. Chem. 40, 4574–4582.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMa, D.-Y., Liu, H.-L. & Li, Y.-W. (2009). Inorg. Chem. Commun. 12, 883–886.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, D.-Y., Zeng, H.-P., Li, Y.-W. & Li, J. (2009). Solid State Sci. 11, 1065–1070.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahata, P., Sankar, G., Madras, G. & Natarajan, S. (2005). Chem. Commun. pp. 5787–5789.  Web of Science CSD CrossRef Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanthan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J.-J., Sheng, T.-L., Xia, S.-Q., Leibeling, G., Meyer, F., Hu, S.-M., Fu, R.-B., Xiang, S.-C. & Tao, X.-T. (2004). Inorg. Chem. 43, 5472–5478.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, M.-B., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 1385–1388.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934–936.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds