metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(OC-6-33)-(2,2′-Bi­pyridine-κ2N,N′)trimeth­yl(2-methyl­sulfanyl-2-thia­zoline-κN)platinum(IV) tetra­fluoridoborate

aInstitut für Chemie – Anorganische Chemie, Martin-Luther-Universität, Halle-Wittenberg, D-06120 Halle, Kurt-Mothes-Strasse 2, Germany, and bInstitut für Chemie, Universität Kassel, D-34132 Kassel, Heinrich-Plett-Strasse 40, Germany
*Correspondence e-mail: dirk.steinborn@chemie.uni-halle.de

(Received 29 June 2010; accepted 12 July 2010; online 17 July 2010)

The asymmetric unit of the title complex, [Pt(CH3)3(C10H8N2)(C4H7NS2)]BF4, contains two crystallographically independent mol­ecules. The PtIV atom in each complex cation exhibits a distorted octa­hedral coordination geometry, built up by three methyl ligands in a facial binding fashion, a bipyridine ligand and a monodentately N-bound 2-methyl­sulfanyl-2-thia­zoline ligand (configuration index: OC-6–33). In the crystal structure, weak inter­molecular C—H⋯F hydrogen bonds are found between the complex cations and BF4 anions.

Related literature

For general background to the substitution reactions starting from complexes exhibiting a PtMe3 unit, see: Clegg et al. (1972[Clegg, D. E., Hall, J. R. & Swile, G. A. (1972). J. Organomet. Chem. 38, 403-420.]); Lindner et al. (2008[Lindner, R., Kaludđerović, G. N., Paschke, R., Wagner, C. & Steinborn, D. (2008). Polyhedron, 27, 914-922.]); Steinborn & Junicke (2000[Steinborn, D. & Junicke, H. (2000). Chem. Rev. 100, 4283-4318.]); Vetter et al. (2006[Vetter, C., Wagner, C., Schmidt, J. & Steinborn, D. (2006). Inorg. Chim. Acta, 359, 4326-4334.], 2010[Vetter, C., Wagner, C. & Steinborn, D. (2010). Acta Cryst. E66, m286.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the conformation of the five-membered thia­zoline ring, see: Bucourt (1974[Bucourt, R. (1974). Top. Stereochem. 8, 159-224.]). For the ligand synthesis, see: Bose et al. (1973[Bose, A. K., Fahey, J. L. & Manhas, M. S. (1973). J. Heterocycl. Chem. 10, 791-794.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(CH3)3(C10H8N2)(C4H7NS2)]BF4

  • Mr = 616.41

  • Triclinic, [P \overline 1]

  • a = 10.5163 (8) Å

  • b = 13.2441 (11) Å

  • c = 17.1372 (14) Å

  • α = 106.776 (6)°

  • β = 106.690 (6)°

  • γ = 97.050 (6)°

  • V = 2133.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.82 mm−1

  • T = 173 K

  • 0.55 × 0.30 × 0.26 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.082, Tmax = 0.259

  • 15501 measured reflections

  • 7133 independent reflections

  • 6275 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.118

  • S = 1.01

  • 7133 reflections

  • 513 parameters

  • H-atom parameters constrained

  • Δρmax = 2.72 e Å−3

  • Δρmin = −4.03 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—C1 2.062 (8)
Pt1—C2 2.060 (7)
Pt1—C3 2.060 (6)
Pt1—N1 2.222 (5)
Pt1—N2 2.166 (6)
Pt1—N3 2.176 (5)
Pt2—C18 2.061 (7)
Pt2—C19 2.048 (8)
Pt2—C20 2.055 (9)
Pt2—N4 2.245 (6)
Pt2—N5 2.146 (6)
Pt2—N6 2.174 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯F8 0.98 2.45 3.383 (11) 158
C9—H9A⋯F1i 0.95 2.44 3.192 (10) 136
C16—H16A⋯F6ii 0.95 2.44 3.114 (9) 128
C17—H17A⋯F7ii 0.95 2.39 3.190 (9) 142
C28—H28A⋯F2iii 0.95 2.53 3.322 (10) 141
C32—H32A⋯F8iv 0.95 2.55 3.497 (11) 173
C34—H34A⋯F4 0.95 2.43 3.178 (8) 136
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Due to the low-spin d6 electron configuration of platinum(IV), ligand substitution reactions of Pt(IV) complexes may be hampered. Starting from complexes exhibiting a PtMe3 unit (Clegg et al., 1972; Lindner et al., 2008; Vetter et al., 2006, 2010), substitution reactions were found to proceed smoothly even with weak donors (Steinborn & Junicke, 2000) because the leaving ligand is additionally activated by the high trans effect of a methyl ligand in trans position.

The asymmetric unit of the title compound consists of two symmetrically independent, structurally very similar molecules of two cationic Pt(IV) complexes [PtMe3(mttz-κN)(bpy)]+ (mttz = 2-methylsulfanyl-2-thiazoline, bpy = 2,2'-bipyridine) as well as two BF4- anions (Fig. 1). The primary coordination geometry of the PtIV atom in the cationic complex is built up by three methyl ligands in a facial binding fashion, a bpy ligand and a monodentately bound mttz ligand (Table 1). As expected for Pt(IV) complexes, an octahedral coordination geometry was found, which is distorted due to the restricted bite of the bpy ligand [N2—Pt1—N3 = 76.2 (2) and N5—Pt2—N6 = 76.4 (2)°]. The other angles between cis arranged ligands are between 84.0 (4) and 101.1 (3)°. Due to the high trans influence of the methyl ligands, the Pt1—N1 and Pt2—N4 bonds were found to be considerably longer [2.222 (5) and 2.245 (6) Å] compared to those of other PtIV—N(CH2)C complexes [median: 2.137, lower/upper quartile: 2.048/2.163 Å, 38 observations taken in consideration from CSD (version 5.30, Allen, 2002)]. The conformation of the five-membered thiazoline rings could be described as distorted half chair along C5—C6 and C22—C23, respectively (Bucourt, 1974). In the crystal of the title complex, weak intermolecular C—H···F hydrogen bonds were found between the cationic Pt(IV) complexes and BF4- anions (Table 2).

Related literature top

For general background to the substitution reactions starting from complexes exhibiting a PtMe3 unit, see: Clegg et al. (1972); Lindner et al. (2008); Steinborn & Junicke (2000); Vetter et al. (2006, 2010). For a description of the Cambridge Structural Database, see: Allen (2002). For the conformation of the five-membered thiazoline ring, see: Bucourt (1974). For the ligand synthesis, see: Bose et al. (1973).

Experimental top

Under anaerobic conditions [PtMe3I(bpy)] (70 mg, 0.13 mmol) and AgBF4 (26 mg, 0.13 mmol) were stirred in acetone (10 ml) for 30 min under absence of light. The precipitated AgI was filtered off and the colorless, clear filtrate was added to 2-methylsulfanyl-2-thiazoline (18 mg, 0.13 mmol) (Bose et al., 1973). The reaction mixture was stirred for 15 h, then the solvent was reduced in vacuo to 1 ml, layered with diethyl ether (3 ml) and cooled to -40°C. After 12 h the title complex was obtained as needles.

Refinement top

All H atoms were positioned geometrically and allowed to ride on the respective parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.98 Å from Pt2 and the deepest hole 0.89 Å from Pt1.

Structure description top

Due to the low-spin d6 electron configuration of platinum(IV), ligand substitution reactions of Pt(IV) complexes may be hampered. Starting from complexes exhibiting a PtMe3 unit (Clegg et al., 1972; Lindner et al., 2008; Vetter et al., 2006, 2010), substitution reactions were found to proceed smoothly even with weak donors (Steinborn & Junicke, 2000) because the leaving ligand is additionally activated by the high trans effect of a methyl ligand in trans position.

The asymmetric unit of the title compound consists of two symmetrically independent, structurally very similar molecules of two cationic Pt(IV) complexes [PtMe3(mttz-κN)(bpy)]+ (mttz = 2-methylsulfanyl-2-thiazoline, bpy = 2,2'-bipyridine) as well as two BF4- anions (Fig. 1). The primary coordination geometry of the PtIV atom in the cationic complex is built up by three methyl ligands in a facial binding fashion, a bpy ligand and a monodentately bound mttz ligand (Table 1). As expected for Pt(IV) complexes, an octahedral coordination geometry was found, which is distorted due to the restricted bite of the bpy ligand [N2—Pt1—N3 = 76.2 (2) and N5—Pt2—N6 = 76.4 (2)°]. The other angles between cis arranged ligands are between 84.0 (4) and 101.1 (3)°. Due to the high trans influence of the methyl ligands, the Pt1—N1 and Pt2—N4 bonds were found to be considerably longer [2.222 (5) and 2.245 (6) Å] compared to those of other PtIV—N(CH2)C complexes [median: 2.137, lower/upper quartile: 2.048/2.163 Å, 38 observations taken in consideration from CSD (version 5.30, Allen, 2002)]. The conformation of the five-membered thiazoline rings could be described as distorted half chair along C5—C6 and C22—C23, respectively (Bucourt, 1974). In the crystal of the title complex, weak intermolecular C—H···F hydrogen bonds were found between the cationic Pt(IV) complexes and BF4- anions (Table 2).

For general background to the substitution reactions starting from complexes exhibiting a PtMe3 unit, see: Clegg et al. (1972); Lindner et al. (2008); Steinborn & Junicke (2000); Vetter et al. (2006, 2010). For a description of the Cambridge Structural Database, see: Allen (2002). For the conformation of the five-membered thiazoline ring, see: Bucourt (1974). For the ligand synthesis, see: Bose et al. (1973).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
(OC-6-33)-(2,2'-bipyridine-κ2N,N)(2-methylsulfanyl-2-thiazoline-κN) trimethylplatinum(IV) tetrafluoroborate top
Crystal data top
[Pt(CH3)3(C10H8N2)(C4H7NS2)]BF4Z = 4
Mr = 616.41F(000) = 1192
Triclinic, P1Dx = 1.919 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5163 (8) ÅCell parameters from 24955 reflections
b = 13.2441 (11) Åθ = 1.7–25.6°
c = 17.1372 (14) ŵ = 6.82 mm1
α = 106.776 (6)°T = 173 K
β = 106.690 (6)°Block, yellow
γ = 97.050 (6)°0.55 × 0.30 × 0.26 mm
V = 2133.3 (3) Å3
Data collection top
Stoe IPDS-2
diffractometer
7133 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus6275 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.072
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 1.7°
rotation method scansh = 1212
Absorption correction: numerical
(X-RED; Stoe & Cie, 2002)
k = 1515
Tmin = 0.082, Tmax = 0.259l = 2020
15501 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0874P)2]
where P = (Fo2 + 2Fc2)/3
7133 reflections(Δ/σ)max = 0.002
513 parametersΔρmax = 2.72 e Å3
0 restraintsΔρmin = 4.03 e Å3
Crystal data top
[Pt(CH3)3(C10H8N2)(C4H7NS2)]BF4γ = 97.050 (6)°
Mr = 616.41V = 2133.3 (3) Å3
Triclinic, P1Z = 4
a = 10.5163 (8) ÅMo Kα radiation
b = 13.2441 (11) ŵ = 6.82 mm1
c = 17.1372 (14) ÅT = 173 K
α = 106.776 (6)°0.55 × 0.30 × 0.26 mm
β = 106.690 (6)°
Data collection top
Stoe IPDS-2
diffractometer
7133 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 2002)
6275 reflections with I > 2σ(I)
Tmin = 0.082, Tmax = 0.259Rint = 0.072
15501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.01Δρmax = 2.72 e Å3
7133 reflectionsΔρmin = 4.03 e Å3
513 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.90066 (2)0.795521 (18)0.128788 (14)0.03034 (11)
S10.7153 (2)0.42771 (14)0.05713 (12)0.0476 (5)
S20.6969 (2)0.54876 (14)0.11679 (12)0.0439 (4)
N10.8333 (6)0.6290 (4)0.0323 (3)0.0316 (12)
N20.6950 (6)0.8095 (4)0.1220 (4)0.0325 (12)
N30.8303 (5)0.8527 (4)0.0203 (3)0.0298 (11)
C10.9596 (8)0.7432 (6)0.2332 (5)0.0430 (17)
H1A1.03200.79960.28120.065*
H1B0.99330.67730.21660.065*
H1C0.88140.72790.25150.065*
C21.0985 (8)0.8014 (7)0.1312 (5)0.0441 (18)
H2A1.09870.75240.07610.066*
H2B1.14870.77920.17880.066*
H2C1.14210.87540.13990.066*
C30.9625 (7)0.9513 (5)0.2160 (5)0.0399 (16)
H3A0.93840.95310.26740.060*
H3B0.91730.99930.18910.060*
H3C1.06150.97560.23290.060*
C40.7580 (7)0.5470 (5)0.0323 (4)0.0349 (14)
C50.8328 (8)0.4902 (6)0.0979 (5)0.0479 (18)
H5A0.91960.46620.08410.057*
H5B0.79320.47150.16150.057*
C60.8557 (9)0.6106 (6)0.0524 (4)0.049 (2)
H6A0.94980.64690.04270.058*
H6B0.79170.64130.08880.058*
C70.5935 (8)0.4148 (6)0.0833 (5)0.0464 (18)
H7A0.51810.40150.02960.070*
H7B0.55700.40840.12860.070*
H7C0.64920.36140.07330.070*
C80.6363 (7)0.7983 (5)0.1800 (4)0.0385 (16)
H8A0.68310.77410.22500.046*
C90.5110 (7)0.8206 (5)0.1766 (5)0.0390 (16)
H9A0.47240.81230.21880.047*
C100.4419 (7)0.8549 (6)0.1115 (5)0.0440 (18)
H10A0.35460.86970.10760.053*
C110.5008 (7)0.8677 (6)0.0519 (5)0.0439 (17)
H11A0.45550.89250.00690.053*
C120.6281 (7)0.8436 (5)0.0584 (4)0.0337 (14)
C130.7013 (7)0.8560 (5)0.0021 (4)0.0337 (15)
C140.6371 (8)0.8755 (6)0.0784 (5)0.0434 (17)
H14A0.54300.87600.09550.052*
C150.7138 (9)0.8938 (7)0.1279 (5)0.051 (2)
H15A0.67290.90850.17940.061*
C160.8479 (8)0.8911 (6)0.1033 (5)0.0454 (17)
H16A0.90180.90370.13700.054*
C170.9039 (7)0.8695 (5)0.0282 (4)0.0367 (15)
H17A0.99730.86660.01070.044*
Pt20.69060 (2)0.254880 (18)0.416978 (15)0.03203 (11)
S30.7284 (2)0.00166 (16)0.57064 (12)0.0508 (5)
S40.8042 (3)0.00206 (16)0.41291 (13)0.0553 (5)
N40.7031 (6)0.1511 (5)0.5008 (4)0.0385 (13)
N50.9006 (6)0.2658 (4)0.4277 (4)0.0336 (13)
N60.7990 (6)0.3874 (4)0.5379 (4)0.0376 (14)
C180.6002 (8)0.1255 (6)0.3032 (5)0.0439 (18)
H18A0.67030.09070.28690.066*
H18B0.55200.15100.25720.066*
H18C0.53540.07310.31140.066*
C190.4940 (8)0.2598 (8)0.4102 (6)0.055 (2)
H19A0.45650.20170.42750.083*
H19B0.43900.25030.35070.083*
H19C0.49230.32990.44920.083*
C200.6776 (10)0.3554 (7)0.3447 (7)0.061 (2)
H20A0.58740.33350.29980.091*
H20B0.74780.35040.31730.091*
H20C0.69160.43010.38240.091*
C210.7396 (7)0.0620 (5)0.4931 (4)0.0384 (15)
C220.6366 (8)0.1002 (6)0.6105 (5)0.0486 (19)
H22A0.53750.06830.58730.058*
H22B0.66690.12520.67460.058*
C230.6678 (8)0.1919 (6)0.5802 (5)0.0445 (17)
H23A0.58760.22440.56760.053*
H23B0.74500.24840.62590.053*
C240.8292 (12)0.1231 (7)0.4296 (6)0.067 (3)
H24A0.74060.17260.41120.101*
H24B0.87720.10880.49120.101*
H24C0.88350.15590.39560.101*
C250.9448 (7)0.2162 (5)0.3634 (4)0.0380 (15)
H25A0.88000.17060.30920.046*
C261.0807 (8)0.2298 (6)0.3738 (5)0.0420 (16)
H26A1.10950.19420.32740.050*
C271.1754 (8)0.2958 (6)0.4526 (5)0.0454 (17)
H27A1.27010.30460.46170.054*
C281.1301 (7)0.3490 (6)0.5182 (5)0.0421 (16)
H28A1.19350.39570.57240.051*
C290.9931 (7)0.3338 (5)0.5040 (4)0.0345 (14)
C300.9366 (7)0.3958 (5)0.5676 (5)0.0385 (16)
C311.0144 (8)0.4619 (6)0.6503 (5)0.049 (2)
H31A1.10930.46460.67100.059*
C320.9557 (10)0.5250 (6)0.7040 (5)0.061 (2)
H32A1.00880.57080.76130.073*
C330.8183 (10)0.5189 (6)0.6712 (5)0.056 (2)
H33A0.77550.56270.70550.068*
C340.7431 (9)0.4500 (6)0.5896 (5)0.048 (2)
H34A0.64800.44620.56850.058*
F10.5476 (9)0.3215 (6)0.7103 (5)0.102 (2)
F20.3580 (5)0.3890 (5)0.7105 (3)0.0725 (16)
F30.5624 (6)0.4994 (5)0.7516 (3)0.0755 (16)
F40.4545 (5)0.3968 (5)0.6108 (3)0.0651 (15)
B10.4768 (10)0.3997 (8)0.6943 (6)0.048 (2)
F50.7192 (6)0.2028 (6)0.1475 (4)0.089 (2)
F60.9447 (5)0.2042 (5)0.1846 (3)0.0673 (14)
F70.8041 (6)0.1086 (5)0.0505 (4)0.084 (2)
F80.8528 (7)0.2856 (5)0.0919 (4)0.0819 (17)
B20.8268 (10)0.1985 (7)0.1203 (6)0.045 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02865 (17)0.03093 (15)0.02646 (15)0.00606 (11)0.00803 (11)0.00410 (11)
S10.0597 (12)0.0337 (8)0.0392 (9)0.0042 (8)0.0200 (9)0.0030 (7)
S20.0535 (11)0.0355 (8)0.0407 (9)0.0052 (8)0.0232 (8)0.0050 (7)
N10.028 (3)0.035 (3)0.026 (3)0.009 (2)0.007 (2)0.003 (2)
N20.032 (3)0.029 (2)0.032 (3)0.005 (2)0.013 (2)0.003 (2)
N30.027 (3)0.030 (2)0.026 (2)0.004 (2)0.004 (2)0.007 (2)
C10.045 (4)0.047 (4)0.033 (3)0.011 (3)0.009 (3)0.012 (3)
C20.030 (4)0.055 (4)0.040 (4)0.006 (3)0.010 (3)0.010 (3)
C30.035 (4)0.037 (3)0.041 (4)0.009 (3)0.009 (3)0.007 (3)
C40.033 (3)0.031 (3)0.033 (3)0.010 (3)0.007 (3)0.004 (3)
C50.049 (4)0.050 (4)0.038 (4)0.013 (4)0.015 (3)0.006 (3)
C60.078 (6)0.036 (3)0.025 (3)0.012 (4)0.020 (4)0.003 (3)
C70.048 (4)0.038 (4)0.056 (4)0.009 (3)0.024 (4)0.014 (3)
C80.043 (4)0.036 (3)0.034 (3)0.006 (3)0.019 (3)0.004 (3)
C90.038 (4)0.039 (3)0.044 (4)0.009 (3)0.023 (3)0.010 (3)
C100.032 (4)0.042 (4)0.052 (4)0.009 (3)0.018 (3)0.004 (3)
C110.041 (4)0.040 (4)0.048 (4)0.009 (3)0.017 (3)0.010 (3)
C120.031 (3)0.030 (3)0.032 (3)0.001 (3)0.009 (3)0.003 (2)
C130.035 (4)0.030 (3)0.027 (3)0.001 (3)0.012 (3)0.002 (2)
C140.035 (4)0.050 (4)0.043 (4)0.011 (3)0.010 (3)0.015 (3)
C150.057 (5)0.057 (4)0.036 (4)0.008 (4)0.009 (3)0.019 (3)
C160.045 (4)0.053 (4)0.042 (4)0.012 (4)0.019 (3)0.017 (3)
C170.038 (4)0.041 (3)0.032 (3)0.006 (3)0.013 (3)0.014 (3)
Pt20.02815 (17)0.03542 (16)0.03201 (16)0.00603 (11)0.01136 (12)0.01006 (11)
S30.0646 (13)0.0493 (10)0.0361 (9)0.0065 (9)0.0116 (9)0.0192 (8)
S40.0844 (16)0.0482 (10)0.0480 (10)0.0291 (10)0.0350 (11)0.0195 (8)
N40.043 (3)0.038 (3)0.035 (3)0.005 (3)0.016 (3)0.011 (2)
N50.030 (3)0.033 (3)0.034 (3)0.005 (2)0.012 (2)0.006 (2)
N60.035 (3)0.034 (3)0.042 (3)0.002 (2)0.018 (3)0.007 (2)
C180.043 (4)0.050 (4)0.035 (3)0.004 (3)0.009 (3)0.016 (3)
C190.024 (4)0.075 (6)0.066 (5)0.007 (4)0.014 (4)0.027 (5)
C200.063 (6)0.051 (5)0.079 (6)0.014 (4)0.031 (5)0.031 (4)
C210.041 (4)0.037 (3)0.032 (3)0.005 (3)0.006 (3)0.012 (3)
C220.048 (4)0.060 (5)0.032 (3)0.003 (4)0.013 (3)0.011 (3)
C230.048 (4)0.055 (4)0.032 (3)0.012 (4)0.019 (3)0.011 (3)
C240.101 (8)0.048 (4)0.058 (5)0.030 (5)0.031 (5)0.016 (4)
C250.038 (4)0.043 (3)0.035 (3)0.009 (3)0.019 (3)0.008 (3)
C260.044 (4)0.048 (4)0.044 (4)0.019 (3)0.022 (3)0.018 (3)
C270.034 (4)0.054 (4)0.053 (4)0.013 (3)0.020 (3)0.018 (4)
C280.037 (4)0.042 (4)0.042 (4)0.003 (3)0.014 (3)0.008 (3)
C290.034 (4)0.034 (3)0.035 (3)0.006 (3)0.013 (3)0.011 (3)
C300.035 (4)0.031 (3)0.050 (4)0.005 (3)0.022 (3)0.008 (3)
C310.049 (4)0.042 (4)0.040 (4)0.006 (3)0.018 (3)0.004 (3)
C320.076 (6)0.043 (4)0.047 (4)0.007 (4)0.026 (4)0.006 (4)
C330.073 (6)0.041 (4)0.056 (5)0.003 (4)0.041 (5)0.002 (4)
C340.055 (5)0.038 (3)0.050 (4)0.004 (3)0.033 (4)0.000 (3)
F10.163 (7)0.105 (5)0.092 (5)0.085 (5)0.076 (5)0.056 (4)
F20.065 (3)0.108 (4)0.048 (3)0.014 (3)0.035 (2)0.019 (3)
F30.066 (3)0.085 (4)0.057 (3)0.005 (3)0.010 (3)0.013 (3)
F40.042 (3)0.117 (4)0.039 (2)0.019 (3)0.019 (2)0.026 (3)
B10.048 (5)0.060 (5)0.043 (4)0.017 (4)0.022 (4)0.018 (4)
F50.067 (3)0.152 (6)0.063 (3)0.034 (4)0.040 (3)0.036 (4)
F60.058 (3)0.091 (4)0.049 (3)0.033 (3)0.009 (2)0.022 (3)
F70.059 (3)0.075 (3)0.078 (4)0.011 (3)0.018 (3)0.024 (3)
F80.080 (4)0.085 (4)0.096 (4)0.027 (3)0.030 (4)0.048 (4)
B20.048 (5)0.053 (5)0.041 (4)0.019 (4)0.017 (4)0.021 (4)
Geometric parameters (Å, º) top
Pt1—C12.062 (8)Pt2—N52.146 (6)
Pt1—C22.060 (7)Pt2—N62.174 (5)
Pt1—C32.060 (6)S3—C211.760 (7)
Pt1—N12.222 (5)S3—C221.809 (9)
Pt1—N22.166 (6)S4—C211.738 (7)
Pt1—N32.176 (5)S4—C241.799 (9)
S1—C41.755 (6)N4—C211.269 (10)
S1—C51.811 (8)N4—C231.483 (8)
S2—C41.740 (6)N5—C251.346 (8)
S2—C71.800 (7)N5—C291.358 (9)
N1—C41.264 (8)N6—C341.346 (9)
N1—C61.493 (8)N6—C301.368 (9)
N2—C121.344 (9)C18—H18A0.9800
N2—C81.345 (8)C18—H18B0.9800
N3—C131.310 (9)C18—H18C0.9800
N3—C171.332 (8)C19—H19A0.9800
C1—H1A0.9800C19—H19B0.9800
C1—H1B0.9800C19—H19C0.9800
C1—H1C0.9800C20—H20A0.9800
C2—H2A0.9800C20—H20B0.9800
C2—H2B0.9800C20—H20C0.9800
C2—H2C0.9800C22—C231.489 (11)
C3—H3A0.9800C22—H22A0.9900
C3—H3B0.9800C22—H22B0.9900
C3—H3C0.9800C23—H23A0.9900
C5—C61.512 (10)C23—H23B0.9900
C5—H5A0.9900C24—H24A0.9800
C5—H5B0.9900C24—H24B0.9800
C6—H6A0.9900C24—H24C0.9800
C6—H6B0.9900C25—C261.370 (10)
C7—H7A0.9800C25—H25A0.9500
C7—H7B0.9800C26—C271.383 (11)
C7—H7C0.9800C26—H26A0.9500
C8—C91.374 (10)C27—C281.385 (10)
C8—H8A0.9500C27—H27A0.9500
C9—C101.374 (11)C28—C291.369 (10)
C9—H9A0.9500C28—H28A0.9500
C10—C111.376 (10)C29—C301.480 (9)
C10—H10A0.9500C30—C311.373 (10)
C11—C121.395 (10)C31—C321.391 (11)
C11—H11A0.9500C31—H31A0.9500
C12—C131.489 (8)C32—C331.375 (14)
C13—C141.400 (10)C32—H32A0.9500
C14—C151.376 (10)C33—C341.366 (11)
C14—H14A0.9500C33—H33A0.9500
C15—C161.360 (12)C34—H34A0.9500
C15—H15A0.9500F1—B11.391 (12)
C16—C171.380 (11)F2—B11.356 (10)
C16—H16A0.9500F3—B11.403 (11)
C17—H17A0.9500F4—B11.370 (10)
Pt2—C182.061 (7)F5—B21.342 (10)
Pt2—C192.048 (8)F6—B21.379 (11)
Pt2—C202.055 (9)F7—B21.360 (10)
Pt2—N42.245 (6)F8—B21.401 (11)
C3—Pt1—C288.8 (3)C19—Pt2—N699.8 (3)
C3—Pt1—C187.6 (3)C20—Pt2—N692.9 (3)
C2—Pt1—C185.0 (3)C18—Pt2—N6176.0 (3)
C3—Pt1—N286.5 (2)N5—Pt2—N676.4 (2)
C2—Pt1—N2172.1 (3)C19—Pt2—N491.2 (3)
C1—Pt1—N2101.1 (3)C20—Pt2—N4177.3 (3)
C3—Pt1—N391.6 (3)C18—Pt2—N493.7 (3)
C2—Pt1—N397.6 (3)N5—Pt2—N492.1 (2)
C1—Pt1—N3177.3 (2)N6—Pt2—N485.0 (2)
N2—Pt1—N376.2 (2)C21—S3—C2289.1 (4)
C3—Pt1—N1178.7 (2)C21—S4—C24103.3 (4)
C2—Pt1—N191.1 (3)C21—N4—C23112.4 (6)
C1—Pt1—N193.7 (3)C21—N4—Pt2130.6 (5)
N2—Pt1—N193.46 (19)C23—N4—Pt2117.0 (5)
N3—Pt1—N187.1 (2)C25—N5—C29119.0 (6)
C4—S1—C589.9 (3)C25—N5—Pt2125.0 (5)
C4—S2—C7104.4 (3)C29—N5—Pt2115.9 (4)
C4—N1—C6111.8 (5)C34—N6—C30118.5 (6)
C4—N1—Pt1128.6 (4)C34—N6—Pt2126.7 (5)
C6—N1—Pt1118.6 (4)C30—N6—Pt2114.2 (4)
C12—N2—C8118.6 (6)Pt2—C18—H18A109.5
C12—N2—Pt1115.2 (4)Pt2—C18—H18B109.5
C8—N2—Pt1125.8 (5)H18A—C18—H18B109.5
C13—N3—C17120.7 (6)Pt2—C18—H18C109.5
C13—N3—Pt1114.5 (4)H18A—C18—H18C109.5
C17—N3—Pt1124.2 (5)H18B—C18—H18C109.5
Pt1—C1—H1A109.5Pt2—C19—H19A109.5
Pt1—C1—H1B109.5Pt2—C19—H19B109.5
H1A—C1—H1B109.5H19A—C19—H19B109.5
Pt1—C1—H1C109.5Pt2—C19—H19C109.5
H1A—C1—H1C109.5H19A—C19—H19C109.5
H1B—C1—H1C109.5H19B—C19—H19C109.5
Pt1—C2—H2A109.5Pt2—C20—H20A109.5
Pt1—C2—H2B109.5Pt2—C20—H20B109.5
H2A—C2—H2B109.5H20A—C20—H20B109.5
Pt1—C2—H2C109.5Pt2—C20—H20C109.5
H2A—C2—H2C109.5H20A—C20—H20C109.5
H2B—C2—H2C109.5H20B—C20—H20C109.5
Pt1—C3—H3A109.5N4—C21—S4122.7 (5)
Pt1—C3—H3B109.5N4—C21—S3117.1 (5)
H3A—C3—H3B109.5S4—C21—S3120.2 (4)
Pt1—C3—H3C109.5C23—C22—S3106.2 (5)
H3A—C3—H3C109.5C23—C22—H22A110.5
H3B—C3—H3C109.5S3—C22—H22A110.5
N1—C4—S2122.6 (5)C23—C22—H22B110.5
N1—C4—S1117.6 (5)S3—C22—H22B110.5
S2—C4—S1119.8 (4)H22A—C22—H22B108.7
C6—C5—S1105.1 (5)N4—C23—C22109.0 (6)
C6—C5—H5A110.7N4—C23—H23A109.9
S1—C5—H5A110.7C22—C23—H23A109.9
C6—C5—H5B110.7N4—C23—H23B109.9
S1—C5—H5B110.7C22—C23—H23B109.9
H5A—C5—H5B108.8H23A—C23—H23B108.3
N1—C6—C5108.9 (6)S4—C24—H24A109.5
N1—C6—H6A109.9S4—C24—H24B109.5
C5—C6—H6A109.9H24A—C24—H24B109.5
N1—C6—H6B109.9S4—C24—H24C109.5
C5—C6—H6B109.9H24A—C24—H24C109.5
H6A—C6—H6B108.3H24B—C24—H24C109.5
S2—C7—H7A109.5N5—C25—C26121.9 (6)
S2—C7—H7B109.5N5—C25—H25A119.1
H7A—C7—H7B109.5C26—C25—H25A119.1
S2—C7—H7C109.5C25—C26—C27119.2 (6)
H7A—C7—H7C109.5C25—C26—H26A120.4
H7B—C7—H7C109.5C27—C26—H26A120.4
N2—C8—C9122.3 (7)C26—C27—C28119.0 (7)
N2—C8—H8A118.8C26—C27—H27A120.5
C9—C8—H8A118.8C28—C27—H27A120.5
C8—C9—C10119.3 (6)C29—C28—C27119.4 (6)
C8—C9—H9A120.3C29—C28—H28A120.3
C10—C9—H9A120.3C27—C28—H28A120.3
C9—C10—C11119.2 (7)N5—C29—C28121.4 (6)
C9—C10—H10A120.4N5—C29—C30116.0 (6)
C11—C10—H10A120.4C28—C29—C30122.4 (6)
C10—C11—C12119.0 (8)C31—C30—N6120.5 (6)
C10—C11—H11A120.5C31—C30—C29123.9 (7)
C12—C11—H11A120.5N6—C30—C29115.6 (6)
N2—C12—C11121.5 (6)C30—C31—C32120.6 (8)
N2—C12—C13115.2 (6)C30—C31—H31A119.7
C11—C12—C13123.2 (7)C32—C31—H31A119.7
N3—C13—C14120.7 (6)C33—C32—C31117.7 (7)
N3—C13—C12117.6 (6)C33—C32—H32A121.1
C14—C13—C12121.7 (6)C31—C32—H32A121.1
C15—C14—C13118.4 (7)C34—C33—C32120.2 (7)
C15—C14—H14A120.8C34—C33—H33A119.9
C13—C14—H14A120.8C32—C33—H33A119.9
C16—C15—C14120.1 (7)N6—C34—C33122.3 (8)
C16—C15—H15A119.9N6—C34—H34A118.8
C14—C15—H15A119.9C33—C34—H34A118.8
C15—C16—C17118.4 (7)F2—B1—F4110.8 (8)
C15—C16—H16A120.8F2—B1—F1112.5 (8)
C17—C16—H16A120.8F4—B1—F1110.1 (7)
N3—C17—C16121.6 (7)F2—B1—F3108.5 (7)
N3—C17—H17A119.2F4—B1—F3109.2 (7)
C16—C17—H17A119.2F1—B1—F3105.6 (8)
C19—Pt2—C2087.6 (4)F5—B2—F7112.4 (8)
C19—Pt2—C1884.0 (4)F5—B2—F6112.9 (7)
C20—Pt2—C1888.5 (3)F7—B2—F6109.1 (8)
C19—Pt2—N5174.7 (3)F5—B2—F8110.3 (8)
C20—Pt2—N589.0 (3)F7—B2—F8104.9 (7)
C18—Pt2—N599.9 (3)F6—B2—F8106.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···F80.982.453.383 (11)158
C9—H9A···F1i0.952.443.192 (10)136
C16—H16A···F6ii0.952.443.114 (9)128
C17—H17A···F7ii0.952.393.190 (9)142
C28—H28A···F2iii0.952.533.322 (10)141
C32—H32A···F8iv0.952.553.497 (11)173
C34—H34A···F40.952.433.178 (8)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pt(CH3)3(C10H8N2)(C4H7NS2)]BF4
Mr616.41
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.5163 (8), 13.2441 (11), 17.1372 (14)
α, β, γ (°)106.776 (6), 106.690 (6), 97.050 (6)
V3)2133.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.82
Crystal size (mm)0.55 × 0.30 × 0.26
Data collection
DiffractometerStoe IPDS2
Absorption correctionNumerical
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.082, 0.259
No. of measured, independent and
observed [I > 2σ(I)] reflections
15501, 7133, 6275
Rint0.072
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.118, 1.01
No. of reflections7133
No. of parameters513
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.72, 4.03

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
Pt1—C12.062 (8)Pt2—C182.061 (7)
Pt1—C22.060 (7)Pt2—C192.048 (8)
Pt1—C32.060 (6)Pt2—C202.055 (9)
Pt1—N12.222 (5)Pt2—N42.245 (6)
Pt1—N22.166 (6)Pt2—N52.146 (6)
Pt1—N32.176 (5)Pt2—N62.174 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···F80.982.453.383 (11)158
C9—H9A···F1i0.952.443.192 (10)136
C16—H16A···F6ii0.952.443.114 (9)128
C17—H17A···F7ii0.952.393.190 (9)142
C28—H28A···F2iii0.952.533.322 (10)141
C32—H32A···F8iv0.952.553.497 (11)173
C34—H34A···F40.952.433.178 (8)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x+2, y+1, z+1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBose, A. K., Fahey, J. L. & Manhas, M. S. (1973). J. Heterocycl. Chem. 10, 791–794.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBucourt, R. (1974). Top. Stereochem. 8, 159–224.  CrossRef CAS Google Scholar
First citationClegg, D. E., Hall, J. R. & Swile, G. A. (1972). J. Organomet. Chem. 38, 403–420.  CrossRef CAS Web of Science Google Scholar
First citationLindner, R., Kaludđerović, G. N., Paschke, R., Wagner, C. & Steinborn, D. (2008). Polyhedron, 27, 914–922.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteinborn, D. & Junicke, H. (2000). Chem. Rev. 100, 4283–4318.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVetter, C., Wagner, C., Schmidt, J. & Steinborn, D. (2006). Inorg. Chim. Acta, 359, 4326–4334.  Web of Science CSD CrossRef CAS Google Scholar
First citationVetter, C., Wagner, C. & Steinborn, D. (2010). Acta Cryst. E66, m286.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds