metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Di­methyl-4,4′-bi-1,3-thia­zole-κ2N,N′)di­iodidomercury(II)

aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: anita_abedi@yahoo.com

(Received 18 July 2010; accepted 22 July 2010; online 31 July 2010)

In the title compound, [HgI2(C8H8N2S2)], the HgII atom is four-coordinated in a distorted tetra­hedral geometry by two N atoms from a 2,2′-dimethyl-4,4′-bithia­zole ligand and two I atoms. In the crystal structure, adjacent mol­ecules are connected by ππ contacts between the thia­zole rings [centroid–centroid distance = 3.591 (3) Å].

Related literature

For metal complexes with the 2,2′-dimethyl-4,4′-bithia­zole ligand, see: Al-Hashemi et al. (2009[Al-Hashemi, R., Safari, N., Abedi, A., Notash, B., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 2909-2918.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Notash et al. (2008[Notash, B., Safari, N., Khavasi, H. R., Amani, V. & Abedi, A. (2008). J. Organomet. Chem. 693, 3553-3557.]). For related structures, see: Safari et al. (2009[Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.]); Tadayon Pour et al. (2008[Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.]); Yousefi et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]).

[Scheme 1]

Experimental

Crystal data
  • [HgI2(C8H8N2S2)]

  • Mr = 650.67

  • Orthorhombic, P b c a

  • a = 12.9059 (10) Å

  • b = 14.8605 (11) Å

  • c = 14.9432 (11) Å

  • V = 2865.9 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 15.31 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.085, Tmax = 0.191

  • 27850 measured reflections

  • 3135 independent reflections

  • 2746 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.058

  • S = 1.00

  • 3135 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −1.36 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—N1 2.397 (4)
Hg1—N2 2.408 (4)
Hg1—I1 2.6600 (4)
Hg1—I2 2.6592 (4)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Khavasi et al. (2008) reported the synthesis and structure of 2,2'-dimethyl-4,4'-bithiazole (dm4bt) by single crystal X-ray diffraction methods. Dm4bt is a good bidentate ligand, and numerous complexes with dm4bt have been prepared, such as those of zinc (Khavasi et al., 2008), thallium (Notash et al., 2008), cadmium (Notash et al., 2008) and copper (Al-Hashemi et al., 2009). For further investigation of dm4bt, we synthezised the title complex, and report herein its crystal structure.

In the title compound (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a 2,2'-dimethyl-4,4'-bithiazole ligand and two I atoms. The Hg—N and Hg—I bond lengths and angles (Table 1) are within normal range of [Hg(SCN)2(dm4bt)] (Safari et al., 2009), [HgI2(4,4'-dmbpy)] (Yousefi et al., 2008) and [HgI2(5,5'-dmbpy)] (Tadayon Pour et al., 2008) (4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridine; 5,5'-dmbpy = 5,5'-dimethyl-2, 2'-bipyridine). In the crystal structure, ππ contacts (Fig. 2) between the thiazole rings, Cg2···Cg3i [symmetry code: (i) 1-x, 1-y, -z. Cg2 and Cg3 are centroids of the S1, C1, N1, C3, C2 ring and the S2, C5, C4, N2, C6 ring], stabilize the structure, with a centroid–centroid distance of 3.591 (3) Å.

Related literature top

For metal complexes with the 2,2'-dimethyl-4,4'-bithiazole ligand, see: Al-Hashemi et al. (2009); Khavasi et al. (2008); Notash et al. (2008). For related structures, see: Safari et al. (2009); Tadayon Pour et al. (2008); Yousefi et al. (2008).

Experimental top

A solution of 2,2'-dimethyl-4,4'-bithiazole (0.20 g, 1.00 mmol) in methanol (15 ml) was added to a solution of HgI2 (0.46 g, 1.00 mmol) in methanol (15 ml) at room temperature. Crystals suitable for X-ray diffraction experiment were obtained after one week by methanol diffusion to a colorless solution of the title compound in DMSO (yield: 0.48 g, 73.8%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (CH) and 0.98 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

Khavasi et al. (2008) reported the synthesis and structure of 2,2'-dimethyl-4,4'-bithiazole (dm4bt) by single crystal X-ray diffraction methods. Dm4bt is a good bidentate ligand, and numerous complexes with dm4bt have been prepared, such as those of zinc (Khavasi et al., 2008), thallium (Notash et al., 2008), cadmium (Notash et al., 2008) and copper (Al-Hashemi et al., 2009). For further investigation of dm4bt, we synthezised the title complex, and report herein its crystal structure.

In the title compound (Fig. 1), the HgII atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a 2,2'-dimethyl-4,4'-bithiazole ligand and two I atoms. The Hg—N and Hg—I bond lengths and angles (Table 1) are within normal range of [Hg(SCN)2(dm4bt)] (Safari et al., 2009), [HgI2(4,4'-dmbpy)] (Yousefi et al., 2008) and [HgI2(5,5'-dmbpy)] (Tadayon Pour et al., 2008) (4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridine; 5,5'-dmbpy = 5,5'-dimethyl-2, 2'-bipyridine). In the crystal structure, ππ contacts (Fig. 2) between the thiazole rings, Cg2···Cg3i [symmetry code: (i) 1-x, 1-y, -z. Cg2 and Cg3 are centroids of the S1, C1, N1, C3, C2 ring and the S2, C5, C4, N2, C6 ring], stabilize the structure, with a centroid–centroid distance of 3.591 (3) Å.

For metal complexes with the 2,2'-dimethyl-4,4'-bithiazole ligand, see: Al-Hashemi et al. (2009); Khavasi et al. (2008); Notash et al. (2008). For related structures, see: Safari et al. (2009); Tadayon Pour et al. (2008); Yousefi et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing diagram of the title compound.
(2,2'-Dimethyl-4,4'-bi-1,3-thiazole-κ2N,N')diiodidomercury(II) top
Crystal data top
[HgI2(C8H8N2S2)]Dx = 3.016 Mg m3
Mr = 650.67Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4823 reflections
a = 12.9059 (10) Åθ = 4–27°
b = 14.8605 (11) ŵ = 15.31 mm1
c = 14.9432 (11) ÅT = 100 K
V = 2865.9 (4) Å3Prism, colorless
Z = 80.18 × 0.16 × 0.11 mm
F(000) = 2304
Data collection top
Bruker APEXII CCD
diffractometer
3135 independent reflections
Radiation source: fine-focus sealed tube2746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1616
Tmin = 0.085, Tmax = 0.191k = 1818
27850 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.030P)2 + 3.P]
where P = (Fo2 + 2Fc2)/3
3135 reflections(Δ/σ)max = 0.002
138 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 1.36 e Å3
Crystal data top
[HgI2(C8H8N2S2)]V = 2865.9 (4) Å3
Mr = 650.67Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.9059 (10) ŵ = 15.31 mm1
b = 14.8605 (11) ÅT = 100 K
c = 14.9432 (11) Å0.18 × 0.16 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
3135 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2746 reflections with I > 2σ(I)
Tmin = 0.085, Tmax = 0.191Rint = 0.060
27850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.00Δρmax = 0.74 e Å3
3135 reflectionsΔρmin = 1.36 e Å3
138 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.510845 (16)0.378820 (14)0.225249 (14)0.01739 (7)
I10.59477 (3)0.23923 (3)0.14062 (3)0.02478 (10)
I20.46410 (3)0.41700 (2)0.39435 (2)0.02213 (9)
S10.61688 (11)0.68779 (9)0.15627 (10)0.0197 (3)
S20.24214 (11)0.45250 (10)0.00224 (9)0.0209 (3)
N10.5553 (3)0.5267 (3)0.1740 (3)0.0169 (9)
N20.3846 (3)0.4293 (3)0.1177 (3)0.0158 (9)
C10.6287 (4)0.5813 (4)0.2004 (4)0.0177 (11)
C20.5076 (4)0.6562 (4)0.1008 (4)0.0203 (12)
H2A0.46780.69480.06370.024*
C30.4849 (4)0.5682 (4)0.1169 (4)0.0181 (11)
C40.3987 (4)0.5150 (4)0.0821 (3)0.0166 (11)
C50.3287 (4)0.5378 (4)0.0189 (4)0.0186 (11)
H5A0.32780.59360.01210.022*
C60.3056 (4)0.3887 (4)0.0811 (4)0.0177 (11)
C70.7144 (5)0.5550 (4)0.2603 (4)0.0271 (13)
H7A0.68600.53500.31780.041*
H7B0.76020.60660.27000.041*
H7C0.75370.50570.23300.041*
C80.2714 (5)0.2959 (4)0.1047 (4)0.0260 (13)
H8A0.25840.29230.16920.039*
H8B0.32570.25280.08820.039*
H8C0.20760.28150.07210.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.01885 (11)0.01823 (11)0.01509 (11)0.00215 (8)0.00002 (8)0.00063 (8)
I10.0298 (2)0.0248 (2)0.01979 (19)0.01150 (16)0.00339 (16)0.00036 (15)
I20.0271 (2)0.0226 (2)0.01672 (18)0.00144 (15)0.00188 (14)0.00428 (14)
S10.0204 (7)0.0173 (7)0.0214 (7)0.0005 (5)0.0012 (5)0.0021 (5)
S20.0201 (7)0.0259 (8)0.0166 (7)0.0026 (5)0.0042 (5)0.0006 (6)
N10.018 (2)0.019 (2)0.013 (2)0.0015 (18)0.0012 (18)0.0033 (18)
N20.016 (2)0.018 (2)0.013 (2)0.0047 (17)0.0009 (17)0.0022 (18)
C10.018 (3)0.021 (3)0.014 (3)0.002 (2)0.000 (2)0.000 (2)
C20.015 (3)0.025 (3)0.021 (3)0.005 (2)0.000 (2)0.001 (2)
C30.017 (3)0.026 (3)0.011 (3)0.005 (2)0.004 (2)0.001 (2)
C40.015 (3)0.022 (3)0.013 (3)0.002 (2)0.001 (2)0.003 (2)
C50.020 (3)0.018 (3)0.018 (3)0.002 (2)0.007 (2)0.003 (2)
C60.018 (3)0.019 (3)0.016 (3)0.004 (2)0.001 (2)0.005 (2)
C70.027 (3)0.027 (3)0.028 (3)0.004 (2)0.010 (3)0.006 (3)
C80.028 (3)0.023 (3)0.027 (3)0.001 (2)0.007 (3)0.000 (3)
Geometric parameters (Å, º) top
Hg1—N12.397 (4)C2—C31.361 (8)
Hg1—N22.408 (4)C2—H2A0.9500
Hg1—I12.6600 (4)C3—C41.462 (8)
Hg1—I22.6592 (4)C4—C51.349 (7)
S1—C21.701 (6)C5—H5A0.9500
S1—C11.721 (6)C6—C81.491 (8)
S2—C51.708 (6)C7—H7A0.9800
S2—C61.720 (6)C7—H7B0.9800
N1—C11.309 (7)C7—H7C0.9800
N1—C31.390 (7)C8—H8A0.9800
N2—C61.304 (7)C8—H8B0.9800
N2—C41.393 (7)C8—H8C0.9800
C1—C71.475 (8)
N1—Hg1—N270.32 (15)N1—C3—C4118.4 (5)
N1—Hg1—I299.35 (11)C5—C4—N2114.2 (5)
N2—Hg1—I2114.46 (10)C5—C4—C3128.5 (5)
N1—Hg1—I1117.74 (11)N2—C4—C3117.3 (5)
N2—Hg1—I1101.61 (10)C4—C5—S2110.7 (4)
I2—Hg1—I1135.280 (14)C4—C5—H5A124.7
C2—S1—C190.4 (3)S2—C5—H5A124.7
C5—S2—C689.9 (3)N2—C6—C8124.1 (5)
C1—N1—C3112.5 (5)N2—C6—S2113.9 (4)
C1—N1—Hg1130.2 (4)C8—C6—S2122.1 (4)
C3—N1—Hg1116.5 (3)C1—C7—H7A109.5
C6—N2—C4111.4 (4)C1—C7—H7B109.5
C6—N2—Hg1131.7 (4)H7A—C7—H7B109.5
C4—N2—Hg1116.9 (3)C1—C7—H7C109.5
N1—C1—C7124.1 (5)H7A—C7—H7C109.5
N1—C1—S1113.0 (4)H7B—C7—H7C109.5
C7—C1—S1122.9 (4)C6—C8—H8A109.5
C3—C2—S1110.9 (4)C6—C8—H8B109.5
C3—C2—H2A124.5H8A—C8—H8B109.5
S1—C2—H2A124.5C6—C8—H8C109.5
C2—C3—N1113.2 (5)H8A—C8—H8C109.5
C2—C3—C4128.4 (5)H8B—C8—H8C109.5
N2—Hg1—N1—C1174.2 (5)C1—N1—C3—C20.1 (7)
I2—Hg1—N1—C161.5 (5)Hg1—N1—C3—C2171.1 (4)
I1—Hg1—N1—C192.7 (5)C1—N1—C3—C4180.0 (5)
N2—Hg1—N1—C35.1 (3)Hg1—N1—C3—C49.0 (6)
I2—Hg1—N1—C3107.6 (4)C6—N2—C4—C50.4 (6)
I1—Hg1—N1—C398.2 (4)Hg1—N2—C4—C5176.8 (4)
N1—Hg1—N2—C6174.7 (5)C6—N2—C4—C3179.8 (5)
I2—Hg1—N2—C693.8 (5)Hg1—N2—C4—C33.5 (6)
I1—Hg1—N2—C659.1 (5)C2—C3—C4—C58.0 (9)
N1—Hg1—N2—C40.7 (3)N1—C3—C4—C5171.9 (5)
I2—Hg1—N2—C490.8 (3)C2—C3—C4—N2171.8 (5)
I1—Hg1—N2—C4116.3 (3)N1—C3—C4—N28.4 (7)
C3—N1—C1—C7179.2 (5)N2—C4—C5—S20.3 (6)
Hg1—N1—C1—C711.3 (8)C3—C4—C5—S2179.5 (4)
C3—N1—C1—S10.4 (6)C6—S2—C5—C40.6 (4)
Hg1—N1—C1—S1169.9 (2)C4—N2—C6—C8179.5 (5)
C2—S1—C1—N10.4 (4)Hg1—N2—C6—C83.9 (8)
C2—S1—C1—C7179.3 (5)C4—N2—C6—S20.9 (6)
C1—S1—C2—C30.4 (4)Hg1—N2—C6—S2176.6 (2)
S1—C2—C3—N10.2 (6)C5—S2—C6—N20.9 (4)
S1—C2—C3—C4179.6 (4)C5—S2—C6—C8179.5 (5)

Experimental details

Crystal data
Chemical formula[HgI2(C8H8N2S2)]
Mr650.67
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)12.9059 (10), 14.8605 (11), 14.9432 (11)
V3)2865.9 (4)
Z8
Radiation typeMo Kα
µ (mm1)15.31
Crystal size (mm)0.18 × 0.16 × 0.11
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.085, 0.191
No. of measured, independent and
observed [I > 2σ(I)] reflections
27850, 3135, 2746
Rint0.060
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 1.00
No. of reflections3135
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 1.36

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Hg1—N12.397 (4)Hg1—I12.6600 (4)
Hg1—N22.408 (4)Hg1—I22.6592 (4)
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAl-Hashemi, R., Safari, N., Abedi, A., Notash, B., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 2909–2918.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationNotash, B., Safari, N., Khavasi, H. R., Amani, V. & Abedi, A. (2008). J. Organomet. Chem. 693, 3553–3557.  Web of Science CrossRef CAS Google Scholar
First citationSafari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds