organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1,3-Bis(2,3,4,5,6-penta­fluoro­phen­yl)prop-2-en-1-one

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: Edwin.Weber@chemie.tu-freiberg.de

(Received 21 June 2010; accepted 30 June 2010; online 7 July 2010)

In the title compound, C15H2F10O, the two perfluorinated arene rings are tilted at an angle of 66.08 (5)° with respect to each other. The olefinic double bond adopts an E configuration and the single bond between the olefinic and carbonyl double bonds has an s-trans conformation. The carbonyl group is not in a coplanar alignment with respect to the neighbouring arene ring (0.963 Å from aryl plane) while being coplanar with regard to the olefinic double bond (0.0805 Å from olefinic bond). The crystal packing does not feature significant hydrogen-bond-type or stacking inter­actions.

Related literature

For a detailed discussion of fluorinated chalcones, see: Cesarin-Sobrinho & Netto-Ferreira (2002[Cesarin-Sobrinho, D. & Netto-Ferreira, J. C. (2002). Quim. Nova, 25, 62-68.]); Cesarin-Sobrinho et al. (2001[Cesarin-Sobrinho, D., Netto-Ferreira, J. C. & Braz-Filho, R. (2001). Quim. Nova, 24, 604-611.]). For the crystal structure of the parent chalcone, see: Rabinovich (1970[Rabinovich, D. (1970). J. Chem. Soc. B, pp. 11-16.]); Ohkura et al. (1973[Ohkura, K., Kashino, S. & Haisa, M. (1973). Bull. Chem. Soc. Jpn, 46, 627-628.]); Arai et al. (1994[Arai, H., Higashigaki, Y., Goto, M. & Yano, S. (1994). Jpn J. Appl. Phys. 33, 5755-5758.]); Wu et al. (2006[Wu, M.-H., Yang, X.-H., Zou, W.-D., Liu, W.-J. & Li, C. (2006). Z. Kristallogr. New Cryst. Struct. 221, 323.]). For a related structure, see: Schwarzer & Weber (2009[Schwarzer, A. & Weber, E. (2009). Acta Cryst. E65, o2801.]). For inter­molecular F⋯F contacts, see: Awwadi et al. (2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]). For weak hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.]). For the polymorphism of the non-fluorinated derivative, see: Weygand (1929[Weygand, C. (1929). Liebigs Ann. Chem. 472, 143-179.]).

[Scheme 1]

Experimental

Crystal data
  • C15H2F10O

  • Mr = 388.17

  • Monoclinic, P 21 /n

  • a = 11.444 (1) Å

  • b = 9.563 (1) Å

  • c = 12.138 (2) Å

  • β = 101.414 (3)°

  • V = 1302.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 93 K

  • 0.26 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 26448 measured reflections

  • 2993 independent reflections

  • 2404 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.08

  • 2993 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (Fig. 1) exhibits a non-planar structure, that can be described by dihedral and torsional angles realting the arene rings and the carbonyl group to each other. The two perfluorinated arene rings are tilted at an angle of 66.08 (5)° with respect to each other. The carbonyl group is tilted with reference to the adjacent perfluoro arene unit showing a torsional angle O1—C9—C10—C15 of 60.3 (2)°. According to Cesarin-Sobrinho et al. (2001) this can be expressed as the s-trans conformation. The olefinic double bond is fixed in the (E)-configuration.

Remarkably, in the crystal structure, the oxygen atom of the polar carbonyl group does not show an intermolecular interaction such as a C—H···O contact (Desiraju & Steiner, 1999). Moreover, neither C—H···F– nor C—H···π contacts and stacking interactions between the perfluorinated arene units occur in the crystal packing. Only closer distances between fluorine atoms and the centre of adjacent perfluorinated aryl rings in the range of 3.0–3.2 Å (150–168°) as well as F···F contacts with distances smaller than the sum of the van-der-Waals-radii can be detected. Nevertheless, there is no indication regarding the angles of the F···F contacts pointing to a head-on or side-on mode of interaction typical for halogen-halogen contacts (Awwadi et al., 2006).

Drawing a comparison with the parent non-fluorinated compound (E)-1,3-diphenyl-2-propen-1-one, which exists in at least four different crystalline polymorphs (Weygand, 1929), a main difference between the decafluorinated chalcone and the nonfluorinated chalcones is the location of the olefinic double bond with reference to the carbonyl double bond. While in the present title compound these bonds are s-trans, in the structures of the unfluorinated chalcones they are s-cis. The molecular geometries also differ concerning planarity. That is to say, the perfluoro arene units, one with another, show a torsional angle of 66.08 (5)° but for the unfluorinated chalcones the angles are around 12°. Also the torsions involving the adjacent arene and carbonyl groups (2.5, 15.0 and 17.6°) are significantly smaller compared with the fluorinated title compound (60.3 (2)°). Moreover, regarding the packing arrangement, the parent chalcones show a number of intermolecular C—H···O and C—H···π type contacts.

Related literature top

For a detailed discussion of fluorinated chalcones, see: Cesarin-Sobrinho & Netto-Ferreira (2002); Cesarin-Sobrinho et al. (2001). For crystal structure of the parent chalcone, see: Rabinovich (1970); Ohkura et al. (1973); Arai et al. (1994); Wu et al. (2006). For a related structure, see: Schwarzer & Weber (2009). For intermolecular F···F contacts, see: Awwadi et al. (2006). For weak hydrogen bonds, see: Desiraju & Steiner (1999). For the polymorphism of the non-fluorinated derivative, see: Weygand (1929).

Experimental top

The title compound was obtained from a solution of 2,3,4,5,6-pentafluoroacetophenone and 2,3,4,5,6-pentafluorobenzaldehyde in sulfuric acid. Recrystallization from ethanol yielded 56% single crystals suitable for X-ray crystallography.

Structure description top

The title compound (Fig. 1) exhibits a non-planar structure, that can be described by dihedral and torsional angles realting the arene rings and the carbonyl group to each other. The two perfluorinated arene rings are tilted at an angle of 66.08 (5)° with respect to each other. The carbonyl group is tilted with reference to the adjacent perfluoro arene unit showing a torsional angle O1—C9—C10—C15 of 60.3 (2)°. According to Cesarin-Sobrinho et al. (2001) this can be expressed as the s-trans conformation. The olefinic double bond is fixed in the (E)-configuration.

Remarkably, in the crystal structure, the oxygen atom of the polar carbonyl group does not show an intermolecular interaction such as a C—H···O contact (Desiraju & Steiner, 1999). Moreover, neither C—H···F– nor C—H···π contacts and stacking interactions between the perfluorinated arene units occur in the crystal packing. Only closer distances between fluorine atoms and the centre of adjacent perfluorinated aryl rings in the range of 3.0–3.2 Å (150–168°) as well as F···F contacts with distances smaller than the sum of the van-der-Waals-radii can be detected. Nevertheless, there is no indication regarding the angles of the F···F contacts pointing to a head-on or side-on mode of interaction typical for halogen-halogen contacts (Awwadi et al., 2006).

Drawing a comparison with the parent non-fluorinated compound (E)-1,3-diphenyl-2-propen-1-one, which exists in at least four different crystalline polymorphs (Weygand, 1929), a main difference between the decafluorinated chalcone and the nonfluorinated chalcones is the location of the olefinic double bond with reference to the carbonyl double bond. While in the present title compound these bonds are s-trans, in the structures of the unfluorinated chalcones they are s-cis. The molecular geometries also differ concerning planarity. That is to say, the perfluoro arene units, one with another, show a torsional angle of 66.08 (5)° but for the unfluorinated chalcones the angles are around 12°. Also the torsions involving the adjacent arene and carbonyl groups (2.5, 15.0 and 17.6°) are significantly smaller compared with the fluorinated title compound (60.3 (2)°). Moreover, regarding the packing arrangement, the parent chalcones show a number of intermolecular C—H···O and C—H···π type contacts.

For a detailed discussion of fluorinated chalcones, see: Cesarin-Sobrinho & Netto-Ferreira (2002); Cesarin-Sobrinho et al. (2001). For crystal structure of the parent chalcone, see: Rabinovich (1970); Ohkura et al. (1973); Arai et al. (1994); Wu et al. (2006). For a related structure, see: Schwarzer & Weber (2009). For intermolecular F···F contacts, see: Awwadi et al. (2006). For weak hydrogen bonds, see: Desiraju & Steiner (1999). For the polymorphism of the non-fluorinated derivative, see: Weygand (1929).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), showing 50% probability displacement ellipsoids for the non-H atoms.
(E)-1,3-Bis(2,3,4,5,6-pentafluorophenyl)prop-2-en-1-one top
Crystal data top
C15H2F10OF(000) = 760
Mr = 388.17Dx = 1.980 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6932 reflections
a = 11.444 (1) Åθ = 2.7–31.2°
b = 9.563 (1) ŵ = 0.22 mm1
c = 12.138 (2) ÅT = 93 K
β = 101.414 (3)°Splitter, yellow
V = 1302.1 (3) Å30.26 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2404 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
phi and ω scansh = 1414
26448 measured reflectionsk = 1211
2993 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.8152P]
where P = (Fo2 + 2Fc2)/3
2993 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H2F10OV = 1302.1 (3) Å3
Mr = 388.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.444 (1) ŵ = 0.22 mm1
b = 9.563 (1) ÅT = 93 K
c = 12.138 (2) Å0.26 × 0.16 × 0.14 mm
β = 101.414 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2404 reflections with I > 2σ(I)
26448 measured reflectionsRint = 0.037
2993 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
2993 reflectionsΔρmin = 0.26 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08561 (10)0.88461 (13)0.74475 (9)0.0217 (3)
F10.11079 (8)0.82449 (11)1.13198 (7)0.0219 (2)
F20.25675 (9)0.81099 (10)1.33222 (7)0.0229 (2)
F30.47708 (9)0.92977 (11)1.36477 (8)0.0252 (2)
F40.54620 (8)1.07257 (10)1.19539 (8)0.0235 (2)
F50.39739 (8)1.09616 (10)0.99452 (8)0.0214 (2)
F60.21736 (9)0.74714 (11)0.73250 (8)0.0252 (2)
F70.34571 (9)0.82160 (11)0.57810 (8)0.0264 (2)
F80.29589 (9)1.06719 (11)0.46224 (8)0.0237 (2)
F90.10919 (9)1.22599 (10)0.49466 (8)0.0228 (2)
F100.02162 (8)1.14862 (10)0.64486 (8)0.0217 (2)
C10.21650 (14)0.89021 (17)1.14490 (13)0.0170 (3)
C20.29072 (15)0.88141 (17)1.24884 (13)0.0184 (3)
C30.40208 (15)0.94296 (17)1.26555 (13)0.0187 (3)
C40.43704 (14)1.01588 (17)1.17940 (13)0.0182 (3)
C50.36026 (14)1.02514 (17)1.07695 (12)0.0167 (3)
C60.24865 (14)0.96066 (17)1.05466 (12)0.0163 (3)
C70.18133 (14)0.95916 (17)0.93890 (13)0.0170 (3)
H70.21771.00560.88520.020*
C80.07515 (15)0.90086 (17)0.89895 (13)0.0189 (3)
H80.03460.85410.94930.023*
C90.01954 (14)0.90743 (17)0.77860 (13)0.0168 (3)
C100.09586 (14)0.94777 (17)0.69495 (12)0.0160 (3)
C110.18995 (15)0.86724 (17)0.67481 (13)0.0180 (3)
C120.25647 (14)0.90341 (18)0.59587 (13)0.0193 (3)
C130.23042 (14)1.02638 (18)0.53571 (12)0.0181 (3)
C140.13576 (14)1.10771 (16)0.55273 (13)0.0165 (3)
C150.06936 (14)1.06744 (17)0.63041 (13)0.0167 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0186 (6)0.0239 (6)0.0216 (6)0.0039 (5)0.0013 (5)0.0006 (5)
F10.0197 (5)0.0284 (6)0.0177 (5)0.0028 (4)0.0041 (4)0.0009 (4)
F20.0242 (5)0.0301 (6)0.0156 (4)0.0031 (4)0.0067 (4)0.0050 (4)
F30.0228 (5)0.0339 (6)0.0163 (5)0.0038 (4)0.0022 (4)0.0021 (4)
F40.0190 (5)0.0273 (6)0.0224 (5)0.0040 (4)0.0009 (4)0.0008 (4)
F50.0223 (5)0.0232 (5)0.0183 (5)0.0049 (4)0.0031 (4)0.0029 (4)
F60.0330 (6)0.0224 (5)0.0201 (5)0.0108 (4)0.0050 (4)0.0059 (4)
F70.0242 (5)0.0338 (6)0.0216 (5)0.0121 (5)0.0058 (4)0.0012 (4)
F80.0231 (5)0.0312 (6)0.0186 (5)0.0020 (4)0.0086 (4)0.0002 (4)
F90.0290 (5)0.0168 (5)0.0237 (5)0.0005 (4)0.0077 (4)0.0054 (4)
F100.0203 (5)0.0197 (5)0.0265 (5)0.0047 (4)0.0081 (4)0.0026 (4)
C10.0154 (8)0.0173 (8)0.0190 (8)0.0018 (6)0.0049 (6)0.0028 (6)
C20.0226 (8)0.0192 (8)0.0149 (7)0.0050 (7)0.0072 (6)0.0017 (6)
C30.0208 (8)0.0206 (8)0.0133 (7)0.0069 (7)0.0001 (6)0.0016 (6)
C40.0156 (8)0.0178 (8)0.0204 (8)0.0008 (6)0.0020 (6)0.0035 (6)
C50.0218 (8)0.0146 (8)0.0139 (7)0.0018 (6)0.0045 (6)0.0002 (6)
C60.0183 (8)0.0156 (8)0.0149 (7)0.0038 (6)0.0029 (6)0.0027 (6)
C70.0208 (8)0.0152 (8)0.0153 (7)0.0031 (6)0.0042 (6)0.0004 (6)
C80.0225 (8)0.0189 (8)0.0154 (7)0.0002 (7)0.0043 (6)0.0002 (6)
C90.0197 (8)0.0141 (8)0.0165 (7)0.0000 (6)0.0032 (6)0.0006 (6)
C100.0160 (8)0.0183 (8)0.0123 (7)0.0021 (6)0.0008 (6)0.0025 (6)
C110.0215 (8)0.0170 (8)0.0136 (7)0.0020 (6)0.0013 (6)0.0009 (6)
C120.0182 (8)0.0231 (9)0.0156 (7)0.0043 (7)0.0009 (6)0.0059 (6)
C130.0185 (8)0.0235 (9)0.0122 (7)0.0035 (7)0.0028 (6)0.0031 (6)
C140.0187 (8)0.0148 (8)0.0146 (7)0.0028 (6)0.0003 (6)0.0005 (6)
C150.0161 (8)0.0164 (8)0.0162 (7)0.0010 (6)0.0002 (6)0.0034 (6)
Geometric parameters (Å, º) top
O1—C91.212 (2)C4—C51.376 (2)
F1—C11.3446 (19)C5—C61.396 (2)
F2—C21.3358 (18)C6—C71.463 (2)
F3—C31.3393 (17)C7—C81.338 (2)
F4—C41.3401 (19)C7—H70.9500
F5—C51.3458 (18)C8—C91.475 (2)
F6—C111.3495 (19)C8—H80.9500
F7—C121.3375 (19)C9—C101.514 (2)
F8—C131.3317 (18)C10—C111.384 (2)
F9—C141.3356 (18)C10—C151.386 (2)
F10—C151.3378 (19)C11—C121.381 (2)
C1—C21.377 (2)C12—C131.385 (2)
C1—C61.396 (2)C13—C141.382 (2)
C2—C31.382 (2)C14—C151.378 (2)
C3—C41.380 (2)
F1—C1—C2117.12 (14)C9—C8—H8119.2
F1—C1—C6120.32 (14)O1—C9—C8122.21 (15)
C2—C1—C6122.54 (15)O1—C9—C10118.96 (14)
F2—C2—C1120.38 (15)C8—C9—C10118.81 (14)
F2—C2—C3120.11 (14)C11—C10—C15116.77 (15)
C1—C2—C3119.48 (15)C11—C10—C9123.27 (14)
F3—C3—C4119.90 (15)C15—C10—C9119.90 (14)
F3—C3—C2120.01 (14)F6—C11—C12118.02 (14)
C4—C3—C2120.08 (14)F6—C11—C10119.40 (14)
F4—C4—C5121.00 (15)C12—C11—C10122.56 (15)
F4—C4—C3119.75 (14)F7—C12—C11120.59 (15)
C5—C4—C3119.21 (15)F7—C12—C13120.21 (15)
F5—C5—C4117.72 (14)C11—C12—C13119.20 (15)
F5—C5—C6119.36 (13)F8—C13—C14119.78 (15)
C4—C5—C6122.88 (15)F8—C13—C12120.72 (15)
C5—C6—C1115.74 (14)C14—C13—C12119.50 (15)
C5—C6—C7118.58 (14)F9—C14—C15119.94 (14)
C1—C6—C7125.35 (15)F9—C14—C13120.08 (14)
C8—C7—C6128.34 (15)C15—C14—C13119.98 (15)
C8—C7—H7115.8F10—C15—C14118.45 (14)
C6—C7—H7115.8F10—C15—C10119.60 (14)
C7—C8—C9121.62 (15)C14—C15—C10121.93 (15)
C7—C8—H8119.2
F1—C1—C2—F20.5 (2)O1—C9—C10—C11116.74 (18)
C6—C1—C2—F2178.97 (14)C8—C9—C10—C1164.8 (2)
F1—C1—C2—C3177.77 (14)O1—C9—C10—C1560.3 (2)
C6—C1—C2—C30.7 (2)C8—C9—C10—C15118.11 (17)
F2—C2—C3—F31.3 (2)C15—C10—C11—F6177.84 (14)
C1—C2—C3—F3177.02 (14)C9—C10—C11—F60.7 (2)
F2—C2—C3—C4179.91 (15)C15—C10—C11—C120.9 (2)
C1—C2—C3—C41.8 (2)C9—C10—C11—C12178.04 (15)
F3—C3—C4—F40.3 (2)F6—C11—C12—F70.4 (2)
C2—C3—C4—F4178.47 (14)C10—C11—C12—F7179.14 (14)
F3—C3—C4—C5178.17 (14)F6—C11—C12—C13179.81 (14)
C2—C3—C4—C50.6 (2)C10—C11—C12—C131.4 (2)
F4—C4—C5—F51.7 (2)F7—C12—C13—F82.2 (2)
C3—C4—C5—F5179.55 (14)C11—C12—C13—F8177.26 (14)
F4—C4—C5—C6176.10 (14)F7—C12—C13—C14178.14 (14)
C3—C4—C5—C61.7 (2)C11—C12—C13—C142.4 (2)
F5—C5—C6—C1179.47 (14)F8—C13—C14—F90.8 (2)
C4—C5—C6—C12.7 (2)C12—C13—C14—F9179.51 (14)
F5—C5—C6—C76.8 (2)F8—C13—C14—C15178.60 (13)
C4—C5—C6—C7171.00 (15)C12—C13—C14—C151.1 (2)
F1—C1—C6—C5179.90 (14)F9—C14—C15—F100.5 (2)
C2—C1—C6—C51.5 (2)C13—C14—C15—F10179.96 (13)
F1—C1—C6—C76.7 (2)F9—C14—C15—C10178.06 (13)
C2—C1—C6—C7171.73 (15)C13—C14—C15—C101.4 (2)
C5—C6—C7—C8178.28 (16)C11—C10—C15—F10179.11 (13)
C1—C6—C7—C85.2 (3)C9—C10—C15—F101.9 (2)
C6—C7—C8—C9179.30 (15)C11—C10—C15—C142.3 (2)
C7—C8—C9—O1162.80 (16)C9—C10—C15—C14179.54 (14)
C7—C8—C9—C1015.6 (2)

Experimental details

Crystal data
Chemical formulaC15H2F10O
Mr388.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)11.444 (1), 9.563 (1), 12.138 (2)
β (°) 101.414 (3)
V3)1302.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.26 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26448, 2993, 2404
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.08
No. of reflections2993
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationArai, H., Higashigaki, Y., Goto, M. & Yano, S. (1994). Jpn J. Appl. Phys. 33, 5755–5758.  CSD CrossRef CAS Web of Science Google Scholar
First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCesarin-Sobrinho, D. & Netto-Ferreira, J. C. (2002). Quim. Nova, 25, 62–68.  CAS Google Scholar
First citationCesarin-Sobrinho, D., Netto-Ferreira, J. C. & Braz-Filho, R. (2001). Quim. Nova, 24, 604–611.  CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationOhkura, K., Kashino, S. & Haisa, M. (1973). Bull. Chem. Soc. Jpn, 46, 627–628.  CrossRef CAS Web of Science Google Scholar
First citationRabinovich, D. (1970). J. Chem. Soc. B, pp. 11–16.  Google Scholar
First citationSchwarzer, A. & Weber, E. (2009). Acta Cryst. E65, o2801.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeygand, C. (1929). Liebigs Ann. Chem. 472, 143–179.  CrossRef CAS Google Scholar
First citationWu, M.-H., Yang, X.-H., Zou, W.-D., Liu, W.-J. & Li, C. (2006). Z. Kristallogr. New Cryst. Struct. 221, 323.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds