metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-[(3-Formyl-4-hy­dr­oxy­phen­yl)diazen­yl]benzoato}tri­phenyl­tin

aDepartment of Chemistry, North Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793022, India, bDepartment of Chemistry, Shillong College, Boyce Road, Laitumkhrah, Shillong 793003, India, and cDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
*Correspondence e-mail: smitabasu2023@yahoo.co.in

(Received 25 June 2010; accepted 8 July 2010; online 14 July 2010)

In the title compound, [Sn(C6H5)3(C14H9N2O4)], the Sn atom has a distorted tetra­hedral geometry with one of the carboxyl­ate O atoms and the C atoms from three phenyl groups. The other carboxyl­ate O atom of the benzoate ligand inter­acts weakly with the Sn atom, with an Sn⋯O distance of 2.790 (2) Å, which causes a distortion of the tetra­hedral coordination geometry.

Related literature

For related literature on organotin carboxyl­ates, see: Basu Baul et al. (1996[Basu Baul, T. S., Pyke, S., Sarma, K. K. & Tiekink, E. R. T. (1996). Main Group Met. Chem. 19, 807-814.], 2004[Basu Baul, T. S., Singh, K. S., Linden, A., Song, X., Zapata, A., Eng, G., Lycka, A. & Linden, A. (2004). J. Organomet. Chem. 689, 4702-4711.]). For the synthesis, see: Basu Baul et al. (2006[Basu Baul, T. S., Singh, K. S., Lycka, A., Linden, A., Song, X., Zapata, A. & Eng, G. (2006). Appl. Organomet. Chem. 20, 788-797.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C14H9N2O4)]

  • Mr = 619.22

  • Monoclinic, P 21 /c

  • a = 8.3751 (2) Å

  • b = 48.8458 (11) Å

  • c = 6.9742 (2) Å

  • β = 97.262 (1)°

  • V = 2830.18 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 296 K

  • 0.25 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 29857 measured reflections

  • 4891 independent reflections

  • 3415 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.058

  • S = 0.95

  • 4891 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (1), was prepared during an ongoing study of the coordination chemistry of organotin carboxylates containing an azo linkage (Basu Baul et al., 1996, 2004). These compounds, especially triphenyltin(IV) complexes, offered interesting structural possibilities. In this context, the crystal structures of many member of this class of compound have been studied. The potential structural usefulness of such systems has prompted in determining the structure of the title compound, (1).

The solid-state structure of complex (1) is a monomeric species with one symmetry-independent molecule in the asymmetric unit where its unit cell contains four molecules (Z = 4). The asymmetric unit of the crystal structure contains just one of the principal chemical units (Fig. 1).The primary coordination sphere of the Sn-atom is best described as 4-coordinate with a distorted C3O tetrahedral geometry involving one of the carboxylate O atoms and the C atoms from the three phenyl moieties. The other carboxylate O atom of the benzoate ligand also coordinates weakly to the Sn atom with the Sn1···O1 distance being 2.790 (2) Å. The interaction is the cause of the distortion of the tetrahedral primary coordination sphere, but the Sn···O is considered to be too long for the Sn atom to be described as truly 5-coordinate. In addition, the bond angles around the Sn atom in (I) are more consistent with tetrahedral environment than a trigonal bipyramidal five coordinate environment. If the longer of the Sn1···O1 interaction is interpreted as significant bonding interaction, then the geometry about the tin atom would be described as cis-R3SnO2 trigonal bipyramidal with atoms C21, C27, C15 defining the trigonal plane. The unit cell projection of the compound reveals that there is no intermolecular carboxylate bridging. The geometry at the tin atom is intermediate between tetrahedral and cis-trigonal bipyramidal, in which the carboxylato ligand spans equatorial and axial sites.

Related literature top

For related literature on organotin carboxylates, see: Basu Baul et al. (1996, 2004). For the synthesis, see: Basu Baul et al. (2006).

Experimental top

The preparation and spectroscopic data of the title compound have been described by Basu Baul et al. (2006).

Refinement top

All H atoms were placed geometrically (C—H = 0.93 and O—H = 0.82 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Structure description top

The title compound, (1), was prepared during an ongoing study of the coordination chemistry of organotin carboxylates containing an azo linkage (Basu Baul et al., 1996, 2004). These compounds, especially triphenyltin(IV) complexes, offered interesting structural possibilities. In this context, the crystal structures of many member of this class of compound have been studied. The potential structural usefulness of such systems has prompted in determining the structure of the title compound, (1).

The solid-state structure of complex (1) is a monomeric species with one symmetry-independent molecule in the asymmetric unit where its unit cell contains four molecules (Z = 4). The asymmetric unit of the crystal structure contains just one of the principal chemical units (Fig. 1).The primary coordination sphere of the Sn-atom is best described as 4-coordinate with a distorted C3O tetrahedral geometry involving one of the carboxylate O atoms and the C atoms from the three phenyl moieties. The other carboxylate O atom of the benzoate ligand also coordinates weakly to the Sn atom with the Sn1···O1 distance being 2.790 (2) Å. The interaction is the cause of the distortion of the tetrahedral primary coordination sphere, but the Sn···O is considered to be too long for the Sn atom to be described as truly 5-coordinate. In addition, the bond angles around the Sn atom in (I) are more consistent with tetrahedral environment than a trigonal bipyramidal five coordinate environment. If the longer of the Sn1···O1 interaction is interpreted as significant bonding interaction, then the geometry about the tin atom would be described as cis-R3SnO2 trigonal bipyramidal with atoms C21, C27, C15 defining the trigonal plane. The unit cell projection of the compound reveals that there is no intermolecular carboxylate bridging. The geometry at the tin atom is intermediate between tetrahedral and cis-trigonal bipyramidal, in which the carboxylato ligand spans equatorial and axial sites.

For related literature on organotin carboxylates, see: Basu Baul et al. (1996, 2004). For the synthesis, see: Basu Baul et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the (1), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii.
{4-[(3-Formyl-4-hydroxyphenyl)diazenyl]benzoato}triphenyltin top
Crystal data top
[Sn(C6H5)3(C14H9N2O4)]F(000) = 1248
Mr = 619.22Dx = 1.453 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9937 reflections
a = 8.3751 (2) Åθ = 0.8–27.3°
b = 48.8458 (11) ŵ = 0.94 mm1
c = 6.9742 (2) ÅT = 296 K
β = 97.262 (1)°Plates, yellow
V = 2830.18 (12) Å30.25 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3415 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
φ and ω scansh = 99
29857 measured reflectionsk = 5757
4891 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.023P)2]
where P = (Fo2 + 2Fc2)/3
4891 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Sn(C6H5)3(C14H9N2O4)]V = 2830.18 (12) Å3
Mr = 619.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3751 (2) ŵ = 0.94 mm1
b = 48.8458 (11) ÅT = 296 K
c = 6.9742 (2) Å0.25 × 0.16 × 0.10 mm
β = 97.262 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3415 reflections with I > 2σ(I)
29857 measured reflectionsRint = 0.059
4891 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 0.95Δρmax = 0.31 e Å3
4891 reflectionsΔρmin = 0.44 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6547 (3)0.11657 (6)0.9304 (5)0.0516 (8)
C20.6036 (3)0.09446 (5)0.7896 (4)0.0442 (7)
C30.5061 (3)0.07333 (6)0.8418 (4)0.0516 (8)
H3A0.48030.07240.96740.062*
C40.4479 (3)0.05383 (6)0.7093 (5)0.0526 (8)
H40.38200.03990.74480.063*
C50.4873 (3)0.05497 (6)0.5236 (5)0.0463 (8)
C60.5886 (3)0.07506 (6)0.4717 (4)0.0569 (8)
H60.61890.07530.34800.068*
C70.6451 (3)0.09494 (6)0.6040 (5)0.0545 (8)
H70.71160.10880.56780.065*
C80.2627 (4)0.00218 (6)0.2606 (5)0.0519 (8)
C90.1587 (4)0.01790 (6)0.3020 (5)0.0625 (9)
H90.13080.01940.42650.075*
C100.0936 (4)0.03626 (6)0.1580 (5)0.0586 (9)
C110.1364 (4)0.03351 (7)0.0275 (6)0.0622 (9)
C120.2416 (4)0.01337 (7)0.0683 (5)0.0742 (10)
H120.27020.01180.19240.089*
C130.3043 (4)0.00436 (6)0.0740 (5)0.0671 (9)
H130.37530.01800.04570.081*
C140.0161 (4)0.05678 (8)0.2034 (6)0.0924 (12)
H140.03940.05780.33000.111*
C150.9102 (4)0.19239 (5)0.9057 (4)0.0453 (7)
C161.0741 (4)0.19735 (6)0.9357 (4)0.0615 (9)
H161.13750.18811.03410.074*
C171.1451 (5)0.21562 (8)0.8234 (6)0.0850 (11)
H171.25580.21840.84520.102*
C181.0549 (7)0.22972 (7)0.6805 (6)0.0909 (14)
H181.10360.24230.60650.109*
C190.8933 (6)0.22542 (7)0.6457 (5)0.0817 (11)
H190.83160.23500.54760.098*
C200.8212 (4)0.20680 (6)0.7567 (5)0.0623 (9)
H200.71090.20380.73120.075*
C210.9745 (3)0.14332 (5)1.2753 (4)0.0449 (8)
C220.9802 (4)0.14661 (6)1.4718 (5)0.0633 (9)
H220.90870.15861.51990.076*
C231.0892 (5)0.13256 (8)1.5982 (5)0.0833 (11)
H231.09060.13491.73070.100*
C241.1959 (4)0.11507 (7)1.5296 (7)0.0837 (11)
H241.26940.10541.61500.100*
C251.1942 (4)0.11190 (7)1.3350 (7)0.0903 (12)
H251.26730.10021.28710.108*
C261.0847 (4)0.12598 (7)1.2107 (5)0.0737 (10)
H261.08490.12371.07830.088*
C270.6131 (3)0.18359 (6)1.2020 (4)0.0494 (8)
C280.5985 (4)0.21167 (7)1.1858 (4)0.0658 (9)
H280.66710.22131.11490.079*
C290.4843 (5)0.22580 (7)1.2725 (5)0.0891 (12)
H290.47540.24471.25850.107*
C300.3850 (4)0.21211 (9)1.3783 (5)0.0871 (12)
H300.30840.22171.43710.105*
C310.3965 (4)0.18456 (9)1.3989 (5)0.0833 (11)
H310.32790.17531.47140.100*
C320.5107 (4)0.17018 (6)1.3119 (5)0.0695 (10)
H320.51870.15131.32750.083*
N10.4264 (3)0.03633 (5)0.3724 (3)0.0567 (7)
N20.3234 (3)0.01978 (5)0.4159 (4)0.0568 (7)
O10.6276 (3)0.11589 (4)1.0984 (3)0.0693 (6)
O20.7321 (2)0.13706 (4)0.8634 (3)0.0578 (6)
O30.0779 (3)0.05032 (5)0.1753 (3)0.0941 (8)
H30.01890.06190.13560.141*
O40.0820 (3)0.07322 (5)0.0854 (4)0.1118 (10)
Sn10.80328 (2)0.164169 (4)1.08190 (3)0.04767 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.044 (2)0.050 (2)0.059 (3)0.0018 (16)0.0031 (19)0.002 (2)
C20.046 (2)0.0366 (19)0.049 (2)0.0018 (15)0.0014 (16)0.0044 (16)
C30.057 (2)0.055 (2)0.042 (2)0.0031 (17)0.0033 (16)0.0057 (17)
C40.058 (2)0.046 (2)0.052 (2)0.0107 (16)0.0021 (18)0.0089 (17)
C50.048 (2)0.0394 (19)0.050 (2)0.0012 (15)0.0026 (17)0.0036 (17)
C60.065 (2)0.059 (2)0.047 (2)0.0092 (19)0.0096 (17)0.0032 (18)
C70.054 (2)0.049 (2)0.059 (2)0.0102 (16)0.0058 (18)0.0061 (18)
C80.057 (2)0.042 (2)0.055 (2)0.0002 (17)0.0016 (19)0.0031 (17)
C90.059 (2)0.058 (2)0.070 (3)0.0023 (19)0.0064 (19)0.005 (2)
C100.050 (2)0.050 (2)0.076 (3)0.0053 (17)0.008 (2)0.003 (2)
C110.058 (2)0.050 (2)0.076 (3)0.0007 (18)0.002 (2)0.007 (2)
C120.089 (3)0.071 (3)0.061 (3)0.011 (2)0.008 (2)0.001 (2)
C130.082 (3)0.055 (2)0.062 (3)0.0125 (19)0.001 (2)0.001 (2)
C140.090 (3)0.087 (3)0.104 (3)0.022 (2)0.026 (3)0.025 (3)
C150.052 (2)0.0361 (18)0.048 (2)0.0001 (16)0.0041 (17)0.0045 (15)
C160.059 (2)0.063 (2)0.063 (2)0.0098 (19)0.0104 (19)0.0009 (18)
C170.084 (3)0.080 (3)0.098 (3)0.029 (2)0.037 (3)0.006 (2)
C180.138 (4)0.060 (3)0.088 (3)0.009 (3)0.065 (3)0.007 (2)
C190.125 (4)0.061 (3)0.064 (3)0.025 (3)0.030 (3)0.020 (2)
C200.071 (2)0.052 (2)0.063 (2)0.0065 (19)0.006 (2)0.0019 (19)
C210.049 (2)0.0357 (18)0.050 (2)0.0020 (15)0.0092 (17)0.0011 (15)
C220.058 (2)0.073 (2)0.060 (3)0.0152 (19)0.014 (2)0.000 (2)
C230.092 (3)0.106 (3)0.050 (3)0.017 (3)0.001 (2)0.013 (2)
C240.077 (3)0.075 (3)0.093 (4)0.013 (2)0.014 (3)0.022 (2)
C250.093 (3)0.084 (3)0.092 (3)0.039 (2)0.001 (3)0.002 (3)
C260.086 (3)0.078 (3)0.055 (2)0.029 (2)0.000 (2)0.007 (2)
C270.042 (2)0.049 (2)0.056 (2)0.0015 (16)0.0061 (16)0.0010 (16)
C280.067 (2)0.057 (2)0.076 (3)0.0048 (19)0.0214 (19)0.0021 (19)
C290.099 (3)0.064 (3)0.110 (3)0.025 (2)0.038 (3)0.004 (2)
C300.068 (3)0.100 (3)0.098 (3)0.022 (3)0.027 (2)0.011 (3)
C310.069 (3)0.089 (3)0.100 (3)0.007 (2)0.041 (2)0.001 (2)
C320.064 (2)0.059 (2)0.089 (3)0.0028 (19)0.025 (2)0.0030 (19)
N10.0621 (19)0.0483 (17)0.0575 (19)0.0017 (14)0.0014 (15)0.0015 (14)
N20.0601 (19)0.0444 (17)0.063 (2)0.0096 (14)0.0039 (15)0.0016 (14)
O10.0905 (17)0.0604 (14)0.0577 (16)0.0191 (12)0.0120 (14)0.0072 (12)
O20.0657 (14)0.0455 (13)0.0619 (14)0.0161 (11)0.0072 (11)0.0026 (10)
O30.104 (2)0.0837 (19)0.0918 (19)0.0214 (15)0.0032 (15)0.0350 (16)
O40.114 (2)0.100 (2)0.124 (2)0.0463 (17)0.0239 (18)0.0431 (18)
Sn10.04686 (15)0.04285 (14)0.05363 (16)0.00166 (11)0.00767 (10)0.00238 (11)
Geometric parameters (Å, º) top
C1—O11.222 (3)C17—H170.9300
C1—O21.310 (3)C18—C191.360 (4)
C1—C21.486 (4)C18—H180.9300
C2—C71.382 (3)C19—C201.382 (4)
C2—C31.393 (3)C19—H190.9300
C3—C41.373 (3)C20—H200.9300
C3—H3A0.9300C21—C261.370 (4)
C4—C51.377 (4)C21—C221.374 (4)
C4—H40.9300C21—Sn12.104 (3)
C5—C61.375 (3)C22—C231.371 (4)
C5—N11.437 (3)C22—H220.9300
C6—C71.381 (3)C23—C241.366 (4)
C6—H60.9300C23—H230.9300
C7—H70.9300C24—C251.364 (4)
C8—C91.367 (4)C24—H240.9300
C8—C131.393 (4)C25—C261.366 (4)
C8—N21.425 (3)C25—H250.9300
C9—C101.404 (4)C26—H260.9300
C9—H90.9300C27—C281.381 (3)
C10—C111.392 (4)C27—C321.384 (4)
C10—C141.422 (4)C27—Sn12.116 (3)
C11—O31.360 (3)C28—C291.380 (4)
C11—C121.374 (4)C28—H280.9300
C12—C131.371 (4)C29—C301.355 (4)
C12—H120.9300C29—H290.9300
C13—H130.9300C30—C311.356 (4)
C14—O41.230 (4)C30—H300.9300
C14—H140.9300C31—C321.387 (4)
C15—C161.384 (4)C31—H310.9300
C15—C201.391 (4)C32—H320.9300
C15—Sn12.119 (3)N1—N21.248 (3)
C16—C171.371 (4)O2—Sn12.0498 (18)
C16—H160.9300O3—H30.8200
C17—C181.360 (5)
O1—C1—O2121.5 (3)C19—C18—H18120.0
O1—C1—C2122.8 (3)C18—C19—C20119.8 (4)
O2—C1—C2115.7 (3)C18—C19—H19120.1
C7—C2—C3118.8 (3)C20—C19—H19120.1
C7—C2—C1121.4 (3)C19—C20—C15121.4 (3)
C3—C2—C1119.7 (3)C19—C20—H20119.3
C4—C3—C2120.6 (3)C15—C20—H20119.3
C4—C3—H3A119.7C26—C21—C22117.4 (3)
C2—C3—H3A119.7C26—C21—Sn1121.4 (2)
C3—C4—C5119.8 (3)C22—C21—Sn1121.2 (2)
C3—C4—H4120.1C23—C22—C21121.3 (3)
C5—C4—H4120.1C23—C22—H22119.4
C6—C5—C4120.3 (3)C21—C22—H22119.4
C6—C5—N1115.6 (3)C24—C23—C22120.0 (3)
C4—C5—N1124.0 (3)C24—C23—H23120.0
C5—C6—C7119.8 (3)C22—C23—H23120.0
C5—C6—H6120.1C25—C24—C23119.6 (3)
C7—C6—H6120.1C25—C24—H24120.2
C6—C7—C2120.5 (3)C23—C24—H24120.2
C6—C7—H7119.7C24—C25—C26119.7 (4)
C2—C7—H7119.7C24—C25—H25120.1
C9—C8—C13119.6 (3)C26—C25—H25120.1
C9—C8—N2116.6 (3)C25—C26—C21121.9 (3)
C13—C8—N2123.8 (3)C25—C26—H26119.0
C8—C9—C10120.5 (3)C21—C26—H26119.0
C8—C9—H9119.8C28—C27—C32117.4 (3)
C10—C9—H9119.8C28—C27—Sn1118.4 (2)
C11—C10—C9118.8 (3)C32—C27—Sn1123.8 (2)
C11—C10—C14121.6 (3)C29—C28—C27121.3 (3)
C9—C10—C14119.6 (3)C29—C28—H28119.3
O3—C11—C12117.0 (3)C27—C28—H28119.3
O3—C11—C10122.4 (3)C30—C29—C28120.0 (3)
C12—C11—C10120.6 (3)C30—C29—H29120.0
C13—C12—C11119.9 (3)C28—C29—H29120.0
C13—C12—H12120.0C29—C30—C31120.4 (3)
C11—C12—H12120.0C29—C30—H30119.8
C12—C13—C8120.7 (3)C31—C30—H30119.8
C12—C13—H13119.7C30—C31—C32120.0 (3)
C8—C13—H13119.7C30—C31—H31120.0
O4—C14—C10124.0 (4)C32—C31—H31120.0
O4—C14—H14118.0C27—C32—C31120.8 (3)
C10—C14—H14118.0C27—C32—H32119.6
C16—C15—C20116.9 (3)C31—C32—H32119.6
C16—C15—Sn1120.7 (2)N2—N1—C5115.1 (2)
C20—C15—Sn1122.5 (2)N1—N2—C8113.4 (3)
C17—C16—C15121.4 (3)C1—O2—Sn1109.81 (19)
C17—C16—H16119.3C11—O3—H3109.5
C15—C16—H16119.3O2—Sn1—C21105.94 (9)
C18—C17—C16120.5 (4)O2—Sn1—C27114.91 (9)
C18—C17—H17119.8C21—Sn1—C27116.72 (11)
C16—C17—H17119.8O2—Sn1—C1595.37 (9)
C17—C18—C19120.0 (4)C21—Sn1—C15112.52 (12)
C17—C18—H18120.0C27—Sn1—C15109.42 (11)
O1—C1—C2—C7175.7 (3)C23—C24—C25—C260.7 (6)
O2—C1—C2—C74.0 (4)C24—C25—C26—C210.3 (5)
O1—C1—C2—C37.1 (4)C22—C21—C26—C251.5 (5)
O2—C1—C2—C3173.2 (2)Sn1—C21—C26—C25178.6 (3)
C7—C2—C3—C42.1 (4)C32—C27—C28—C291.2 (5)
C1—C2—C3—C4175.2 (3)Sn1—C27—C28—C29175.4 (2)
C2—C3—C4—C50.6 (4)C27—C28—C29—C300.9 (5)
C3—C4—C5—C62.0 (4)C28—C29—C30—C310.3 (6)
C3—C4—C5—N1177.0 (2)C29—C30—C31—C320.1 (6)
C4—C5—C6—C73.0 (4)C28—C27—C32—C311.1 (5)
N1—C5—C6—C7176.0 (2)Sn1—C27—C32—C31174.9 (2)
C5—C6—C7—C21.5 (4)C30—C31—C32—C270.6 (5)
C3—C2—C7—C61.1 (4)C6—C5—N1—N2173.7 (2)
C1—C2—C7—C6176.2 (3)C4—C5—N1—N25.3 (4)
C13—C8—C9—C100.0 (4)C5—N1—N2—C8178.3 (2)
N2—C8—C9—C10179.7 (3)C9—C8—N2—N1175.0 (2)
C8—C9—C10—C110.4 (4)C13—C8—N2—N14.6 (4)
C8—C9—C10—C14179.2 (3)O1—C1—O2—Sn13.0 (3)
C9—C10—C11—O3179.5 (3)C2—C1—O2—Sn1176.74 (18)
C14—C10—C11—O30.8 (5)C1—O2—Sn1—C2166.29 (19)
C9—C10—C11—C120.7 (5)C1—O2—Sn1—C2764.1 (2)
C14—C10—C11—C12179.4 (3)C1—O2—Sn1—C15178.44 (19)
O3—C11—C12—C13179.7 (3)C26—C21—Sn1—O238.5 (2)
C10—C11—C12—C130.5 (5)C22—C21—Sn1—O2141.6 (2)
C11—C12—C13—C80.1 (5)C26—C21—Sn1—C27167.8 (2)
C9—C8—C13—C120.2 (5)C22—C21—Sn1—C2712.2 (3)
N2—C8—C13—C12179.8 (3)C26—C21—Sn1—C1564.5 (3)
C11—C10—C14—O40.7 (6)C22—C21—Sn1—C15115.5 (2)
C9—C10—C14—O4178.0 (3)C28—C27—Sn1—O2117.3 (2)
C20—C15—C16—C170.1 (4)C32—C27—Sn1—O268.9 (3)
Sn1—C15—C16—C17179.8 (2)C28—C27—Sn1—C21117.7 (2)
C15—C16—C17—C181.0 (5)C32—C27—Sn1—C2156.0 (3)
C16—C17—C18—C191.2 (5)C28—C27—Sn1—C1511.5 (3)
C17—C18—C19—C200.3 (5)C32—C27—Sn1—C15174.8 (2)
C18—C19—C20—C150.6 (5)C16—C15—Sn1—O2115.4 (2)
C16—C15—C20—C190.8 (4)C20—C15—Sn1—O264.9 (2)
Sn1—C15—C20—C19179.0 (2)C16—C15—Sn1—C215.7 (3)
C26—C21—C22—C231.6 (5)C20—C15—Sn1—C21174.6 (2)
Sn1—C21—C22—C23178.5 (2)C16—C15—Sn1—C27125.8 (2)
C21—C22—C23—C240.6 (5)C20—C15—Sn1—C2753.9 (2)
C22—C23—C24—C250.6 (5)

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C14H9N2O4)]
Mr619.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.3751 (2), 48.8458 (11), 6.9742 (2)
β (°) 97.262 (1)
V3)2830.18 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.25 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29857, 4891, 3415
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.058, 0.95
No. of reflections4891
No. of parameters353
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.44

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The financial support of the UGC, New Delhi, India (grant No. F.42–2/Acad/UGC-SAP/Chem/2007–1113) is gratefully acknowledged.

References

First citationBasu Baul, T. S., Pyke, S., Sarma, K. K. & Tiekink, E. R. T. (1996). Main Group Met. Chem. 19, 807–814.  CAS Google Scholar
First citationBasu Baul, T. S., Singh, K. S., Linden, A., Song, X., Zapata, A., Eng, G., Lycka, A. & Linden, A. (2004). J. Organomet. Chem. 689, 4702–4711.  Web of Science CrossRef CAS Google Scholar
First citationBasu Baul, T. S., Singh, K. S., Lycka, A., Linden, A., Song, X., Zapata, A. & Eng, G. (2006). Appl. Organomet. Chem. 20, 788–797.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds