organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[5-(4-Nitro­phen­yl)furan-2-yl­methyl­­idene]-N,N-di­phenyl­hydrazine

aCentro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico, and bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
*Correspondence e-mail: angel.mendoza.m@gmail.com

(Received 1 July 2010; accepted 10 July 2010; online 17 July 2010)

The title compound, C23H17N3O3, has an E configuration with respect to the C=N bond. The dihedral angle between the two phenyl rings bonded to the hydrazine group is 86.45 (13)°. The furan ring makes dihedral angles of 3.4 (2) and 7.06 (13)°, respectively, with the methyl­idenehydrazine C=N—N plane and the benzene ring.

Related literature

For applications of hydrazones, see: Kobotayeva et al. (2001[Kobotayeva, N. S., Mikubayeva, E. V., Svarovskaya, N. V. & Sirotkina, E. (2001). KORUS 2001, 2, 146-149.]); Barlow et al. (2000[Barlow, G. K., Boyle, J. D., Cooley, N. A., Ghaffar, T. & Wass, D. F. (2000). Organometallics, 19, 1470-1476.]); Knight et al. (2000[Knight, J. G., Dohherty, S., Hariman, A., Robins, E. G., Betham, M., Eastham, G. R., Tooze, R. P., Elsegood, M. R. J., Champkin, P. & Clegg, W. (2000). Organometallics, 19, 4957-4967.]); Ros et al. (2008[Ros, A., Diez, E., Marques-López, E., Martín-Zamora, E., Vázquez, J., Iglesias-Siguenza, J., Pappalardo, R. R., Alvarez, E., Lassaletta, J. M. & Fernández, R. (2008). Tetrahedron Asymmetry, 19, 998-1004.]). For related structures, see: Clulow et al. (2008[Clulow, A. J., Selby, J. D., Cushion, M. G., Schwarz, A. D. & Mountford, P. (2008). Inorg. Chem. 47, 12049-12062.]); Motherwell & Ramsay (2007[Motherwell, W. D. S. & Ramsay, J. (2007). Acta Cryst. E63, o4043.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17N3O3

  • Mr = 383.4

  • Monoclinic, P 21 /c

  • a = 16.815 (3) Å

  • b = 8.602 (1) Å

  • c = 13.340 (2) Å

  • β = 95.64 (2)°

  • V = 1920.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.4 × 0.4 × 0.15 mm

Data collection
  • Bruker P4 diffractometer

  • 6417 measured reflections

  • 5099 independent reflections

  • 1970 reflections with I > 2σ(I)

  • Rint = 0.067

  • 3 standard reflections every 97 reflections intensity decay: 6%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.181

  • S = 0.97

  • 5099 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Several hydrazones, including diphenylhydrazones, can be used as hole carriers in thin film organic photoconductors applied to electrographic processes in printers and photocopiers, plasticizers, polymer stabilizers, antioxidants and polymer initiators (Kobotayeva et al., 2001; Barlow et al., 2000; Knight et al., 2000). Hydroxylated hydrazones are used as herbicides, insecticides and growth promoters in plants due to their biological activity (Ros et al., 2008).

The title compound, I, presents an E configuration with N,N-diphenyl group opposite to 5-(4-nitrophenyl) furane group from the N2=C1 double bond. The asymmetric unit of compound I shows a non-planar structure for a phenyl ring next to N—N group, with a torsion angle N2—N1—C18—C23 = 89.1 (3)°, which is similar to some related structures previously reported (Motherwell & Ramsay, 2007). The N—N distance [1.356 (3) Å] is shorter than found in free diphenylhydrazine [1.418 (2) Å] (Clulow et al., 2008) and similar to related structure with 2,4 dinitrophenyl hydrazone group [1.383 (4) Å] (Motherwell & Ramsay, 2007). Nitrophenyl ring present a torsion angle of 6.7 (3)° from the furane ring. The N2=C1 double bond distance [1.286 (3) Å] is longer than the N=C typical bond distance (Allen et al., 1987), probably due to π conjugation along all the molecule. The crystal packing shows van der Waals interactions, one of them between O1···H—C4 (2.62 Å) parallel to the [111] base vector (symmetry, -x + 2, y - 1/2, -z + 3/2), and two more interactions O2···H—C14 (2.66 Å) and O2···H—C19 (2.69 Å) parallel to the [1–11] base vector with symmetry operators -x + 2, y + 1/2, -z + 1/2 and -x + 2, -y + 1, -z + 1, respectively. These interactions are building up a cross-linked packing (Fig. 2).

Related literature top

For applications of hydrazones, see: Kobotayeva et al. (2001); Barlow et al. (2000); Knight et al. (2000); Ros et al. (2008). For related structures, see: Clulow et al. (2008); Motherwell & Ramsay (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

N,N-diphenylhydrazine (0.731 mg, 3.31 mmol) was dissolved in ethanol, then acetic acid (0.5 ml) was added slowly into this solution while stirring. 5-(4-Nitrophenyl)furan-2-carbaldehyde (600 mg, 2.76 mmol) was added drop by drop into the above solution with strong stirring and the resulting mixture was kept at atmospheric temperature until it became orange-red solution. After one hour the orange-red solution turns to be precipitated. The mixture was separated with filtration in vacuum system and the precipitate was washed three times with methanol. Recrystallization was performed three times with acetonitrile to obtain suitable red crystals for X-ray analysis. Yield: 860 mg (78%) at 25 °C, m.p. 166–168 °C. FT IR (film): (cm-1): 3119 ν(C—H), 1683, 1600 ν(C=N), 1667–2000 ν(Ph), 1513 ν(Ph—NO2), 1221 ν(=C—O), 851 ν(Ph—NO2). EI—MS: m/z 383 M+.

Refinement top

H atoms linked to C atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Several hydrazones, including diphenylhydrazones, can be used as hole carriers in thin film organic photoconductors applied to electrographic processes in printers and photocopiers, plasticizers, polymer stabilizers, antioxidants and polymer initiators (Kobotayeva et al., 2001; Barlow et al., 2000; Knight et al., 2000). Hydroxylated hydrazones are used as herbicides, insecticides and growth promoters in plants due to their biological activity (Ros et al., 2008).

The title compound, I, presents an E configuration with N,N-diphenyl group opposite to 5-(4-nitrophenyl) furane group from the N2=C1 double bond. The asymmetric unit of compound I shows a non-planar structure for a phenyl ring next to N—N group, with a torsion angle N2—N1—C18—C23 = 89.1 (3)°, which is similar to some related structures previously reported (Motherwell & Ramsay, 2007). The N—N distance [1.356 (3) Å] is shorter than found in free diphenylhydrazine [1.418 (2) Å] (Clulow et al., 2008) and similar to related structure with 2,4 dinitrophenyl hydrazone group [1.383 (4) Å] (Motherwell & Ramsay, 2007). Nitrophenyl ring present a torsion angle of 6.7 (3)° from the furane ring. The N2=C1 double bond distance [1.286 (3) Å] is longer than the N=C typical bond distance (Allen et al., 1987), probably due to π conjugation along all the molecule. The crystal packing shows van der Waals interactions, one of them between O1···H—C4 (2.62 Å) parallel to the [111] base vector (symmetry, -x + 2, y - 1/2, -z + 3/2), and two more interactions O2···H—C14 (2.66 Å) and O2···H—C19 (2.69 Å) parallel to the [1–11] base vector with symmetry operators -x + 2, y + 1/2, -z + 1/2 and -x + 2, -y + 1, -z + 1, respectively. These interactions are building up a cross-linked packing (Fig. 2).

For applications of hydrazones, see: Kobotayeva et al. (2001); Barlow et al. (2000); Knight et al. (2000); Ros et al. (2008). For related structures, see: Clulow et al. (2008); Motherwell & Ramsay (2007). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound I, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Molecular packing of compound I showing cross-linked paking.
N'-[5-(4-Nitrophenyl)furan-2-ylmethylidene]-N,N- diphenylhydrazine top
Crystal data top
C23H17N3O3F(000) = 800
Mr = 383.4Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.815 (3) ÅCell parameters from 48 reflections
b = 8.602 (1) Åθ = 4.9–24.8°
c = 13.340 (2) ŵ = 0.09 mm1
β = 95.64 (2)°T = 293 K
V = 1920.2 (6) Å3Prism, red
Z = 40.4 × 0.4 × 0.15 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.067
Radiation source: fine-focus sealed tubeθmax = 29°, θmin = 2.4°
Graphite monochromatorh = 2222
2θ/ω scansk = 111
6417 measured reflectionsl = 118
5099 independent reflections3 standard reflections every 97 reflections
1970 reflections with I > 2σ(I) intensity decay: 6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0736P)2]
where P = (Fo2 + 2Fc2)/3
5099 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C23H17N3O3V = 1920.2 (6) Å3
Mr = 383.4Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.815 (3) ŵ = 0.09 mm1
b = 8.602 (1) ÅT = 293 K
c = 13.340 (2) Å0.4 × 0.4 × 0.15 mm
β = 95.64 (2)°
Data collection top
Bruker P4
diffractometer
Rint = 0.067
6417 measured reflections3 standard reflections every 97 reflections
5099 independent reflections intensity decay: 6%
1970 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 0.97Δρmax = 0.18 e Å3
5099 reflectionsΔρmin = 0.20 e Å3
262 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.93074 (9)0.17913 (18)0.63960 (10)0.0517 (4)
N20.78159 (11)0.2996 (2)0.63257 (14)0.0538 (5)
C51.00087 (13)0.0981 (3)0.66001 (16)0.0493 (6)
C61.05966 (13)0.1186 (3)0.58891 (17)0.0501 (6)
C120.68625 (13)0.4575 (3)0.54061 (16)0.0497 (6)
N10.70726 (11)0.3624 (2)0.62469 (14)0.0570 (5)
N31.23249 (16)0.1772 (3)0.38172 (19)0.0764 (7)
C10.80526 (14)0.2131 (3)0.70836 (17)0.0525 (6)
H10.7720.19570.7590.063*
C91.17208 (15)0.1553 (3)0.45334 (18)0.0610 (7)
C170.61353 (14)0.5339 (3)0.53010 (17)0.0588 (7)
H170.57840.5230.57930.071*
C180.65427 (13)0.3410 (3)0.70192 (17)0.0511 (6)
C20.88302 (13)0.1437 (3)0.71450 (17)0.0512 (6)
C130.73808 (15)0.4766 (3)0.46598 (17)0.0586 (6)
H130.78720.4260.47130.07*
O21.21847 (15)0.2726 (3)0.31372 (17)0.0991 (8)
C71.12859 (15)0.0287 (3)0.59551 (19)0.0657 (7)
H71.1370.04470.64670.079*
C150.64403 (16)0.6445 (3)0.37354 (18)0.0629 (7)
H150.62990.7060.31730.076*
O31.29323 (14)0.1001 (3)0.39341 (17)0.1011 (8)
C40.99722 (14)0.0144 (3)0.74533 (18)0.0578 (7)
H41.03690.05060.77540.069*
C140.71625 (16)0.5701 (3)0.38482 (18)0.0644 (7)
H140.75150.58350.3360.077*
C160.59273 (15)0.6266 (3)0.44678 (19)0.0629 (7)
H160.54360.67730.44030.075*
C111.04867 (16)0.2261 (3)0.51146 (18)0.0645 (7)
H111.00270.28670.50520.077*
C101.10469 (18)0.2449 (3)0.44350 (19)0.0708 (8)
H101.09670.31750.39180.085*
C30.92220 (14)0.0439 (3)0.78013 (18)0.0597 (7)
H30.90320.00230.83760.072*
C230.60325 (16)0.2166 (3)0.6983 (2)0.0636 (7)
H230.60240.14590.64550.076*
C220.55305 (16)0.1962 (4)0.7731 (2)0.0742 (8)
H220.51830.11180.77070.089*
C200.60633 (17)0.4242 (4)0.8553 (2)0.0742 (8)
H200.60780.4940.90870.089*
C81.18501 (15)0.0460 (4)0.5276 (2)0.0694 (7)
H81.23070.01540.53230.083*
C190.65619 (15)0.4447 (3)0.78046 (18)0.0626 (7)
H190.69110.52870.78310.075*
C210.55436 (17)0.3006 (4)0.8511 (2)0.0774 (9)
H210.52010.28760.90110.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0515 (9)0.0541 (10)0.0499 (9)0.0036 (8)0.0077 (7)0.0032 (8)
N20.0509 (12)0.0572 (12)0.0548 (12)0.0066 (10)0.0122 (9)0.0004 (10)
C50.0488 (13)0.0509 (14)0.0478 (13)0.0056 (11)0.0033 (11)0.0031 (11)
C60.0510 (13)0.0535 (15)0.0459 (13)0.0033 (12)0.0051 (10)0.0040 (12)
C120.0532 (14)0.0521 (14)0.0448 (12)0.0028 (12)0.0095 (10)0.0012 (11)
N10.0516 (12)0.0699 (14)0.0521 (12)0.0095 (11)0.0176 (9)0.0104 (11)
N30.0814 (18)0.0832 (19)0.0685 (16)0.0238 (16)0.0271 (14)0.0264 (14)
C10.0529 (15)0.0547 (14)0.0512 (14)0.0012 (12)0.0118 (11)0.0027 (12)
C90.0623 (16)0.0718 (18)0.0507 (14)0.0152 (14)0.0146 (12)0.0119 (14)
C170.0580 (15)0.0658 (17)0.0546 (14)0.0075 (13)0.0152 (11)0.0059 (13)
C180.0500 (13)0.0559 (15)0.0490 (13)0.0054 (12)0.0134 (11)0.0083 (12)
C20.0530 (14)0.0534 (14)0.0484 (13)0.0013 (12)0.0109 (11)0.0007 (12)
C130.0570 (14)0.0664 (16)0.0546 (14)0.0056 (13)0.0167 (11)0.0031 (13)
O20.123 (2)0.1055 (18)0.0745 (13)0.0286 (15)0.0401 (13)0.0019 (14)
C70.0621 (16)0.0748 (18)0.0616 (15)0.0094 (14)0.0135 (13)0.0059 (14)
C150.0786 (19)0.0553 (16)0.0551 (15)0.0026 (14)0.0074 (13)0.0089 (13)
O30.0833 (15)0.117 (2)0.1109 (17)0.0053 (15)0.0475 (13)0.0214 (15)
C40.0601 (16)0.0603 (16)0.0531 (14)0.0098 (13)0.0060 (11)0.0073 (13)
C140.0769 (18)0.0642 (17)0.0547 (15)0.0022 (15)0.0199 (13)0.0056 (14)
C160.0627 (16)0.0632 (17)0.0633 (16)0.0091 (13)0.0092 (13)0.0041 (14)
C110.0609 (17)0.0750 (18)0.0584 (15)0.0047 (14)0.0098 (13)0.0042 (15)
C100.075 (2)0.080 (2)0.0583 (16)0.0018 (16)0.0121 (14)0.0087 (15)
C30.0635 (16)0.0640 (16)0.0530 (14)0.0060 (14)0.0125 (12)0.0076 (13)
C230.0609 (16)0.0618 (16)0.0685 (16)0.0028 (14)0.0087 (13)0.0040 (14)
C220.0643 (18)0.0710 (19)0.088 (2)0.0119 (15)0.0121 (15)0.0219 (18)
C200.0856 (19)0.079 (2)0.0629 (17)0.0042 (18)0.0319 (14)0.0024 (15)
C80.0588 (16)0.083 (2)0.0682 (17)0.0069 (15)0.0147 (13)0.0083 (16)
C190.0633 (16)0.0639 (17)0.0635 (16)0.0050 (14)0.0205 (13)0.0045 (14)
C210.0719 (19)0.091 (2)0.0750 (19)0.0033 (18)0.0346 (15)0.0269 (18)
Geometric parameters (Å, º) top
O1—C51.374 (2)C13—H130.93
O1—C21.376 (3)C7—C81.383 (3)
N2—C11.286 (3)C7—H70.93
N2—N11.356 (3)C15—C141.368 (3)
C5—C41.353 (3)C15—C161.374 (3)
C5—C61.446 (3)C15—H150.93
C6—C111.385 (3)C4—C31.409 (3)
C6—C71.389 (3)C4—H40.93
C12—C171.383 (3)C14—H140.93
C12—C131.396 (3)C16—H160.93
C12—N11.405 (3)C11—C101.380 (4)
N1—C181.439 (3)C11—H110.93
N3—O31.215 (3)C10—H100.93
N3—O21.229 (3)C3—H30.93
N3—C91.473 (3)C23—C221.380 (4)
C1—C21.432 (3)C23—H230.93
C1—H10.93C22—C211.373 (4)
C9—C101.366 (4)C22—H220.93
C9—C81.368 (4)C20—C211.374 (4)
C17—C161.385 (3)C20—C191.377 (3)
C17—H170.93C20—H200.93
C18—C231.370 (3)C8—H80.93
C18—C191.374 (3)C19—H190.93
C2—C31.351 (3)C21—H210.93
C13—C141.370 (3)
C5—O1—C2107.12 (17)C14—C15—H15120.6
C1—N2—N1120.19 (18)C16—C15—H15120.6
C4—C5—O1109.13 (19)C5—C4—C3107.3 (2)
C4—C5—C6135.0 (2)C5—C4—H4126.4
O1—C5—C6115.92 (19)C3—C4—H4126.4
C11—C6—C7117.9 (2)C15—C14—C13121.9 (2)
C11—C6—C5121.4 (2)C15—C14—H14119.1
C7—C6—C5120.7 (2)C13—C14—H14119.1
C17—C12—C13118.7 (2)C15—C16—C17120.6 (2)
C17—C12—N1120.5 (2)C15—C16—H16119.7
C13—C12—N1120.8 (2)C17—C16—H16119.7
N2—N1—C12116.83 (17)C10—C11—C6121.3 (3)
N2—N1—C18121.64 (18)C10—C11—H11119.4
C12—N1—C18121.41 (19)C6—C11—H11119.4
O3—N3—O2123.9 (3)C9—C10—C11118.9 (3)
O3—N3—C9118.1 (3)C9—C10—H10120.5
O2—N3—C9118.0 (3)C11—C10—H10120.5
N2—C1—C2119.7 (2)C2—C3—C4107.2 (2)
N2—C1—H1120.1C2—C3—H3126.4
C2—C1—H1120.1C4—C3—H3126.4
C10—C9—C8121.9 (2)C18—C23—C22119.9 (3)
C10—C9—N3118.9 (3)C18—C23—H23120
C8—C9—N3119.1 (3)C22—C23—H23120
C12—C17—C16120.4 (2)C21—C22—C23120.0 (3)
C12—C17—H17119.8C21—C22—H22120
C16—C17—H17119.8C23—C22—H22120
C23—C18—C19120.1 (2)C21—C20—C19120.0 (3)
C23—C18—N1120.3 (2)C21—C20—H20120
C19—C18—N1119.6 (2)C19—C20—H20120
C3—C2—O1109.2 (2)C9—C8—C7118.6 (3)
C3—C2—C1133.3 (2)C9—C8—H8120.7
O1—C2—C1117.4 (2)C7—C8—H8120.7
C14—C13—C12119.7 (2)C18—C19—C20120.0 (3)
C14—C13—H13120.2C18—C19—H19120
C12—C13—H13120.2C20—C19—H19120
C8—C7—C6121.4 (3)C22—C21—C20120.0 (3)
C8—C7—H7119.3C22—C21—H21120
C6—C7—H7119.3C20—C21—H21120
C14—C15—C16118.8 (2)
C2—O1—C5—C40.0 (2)N1—C12—C13—C14179.9 (2)
C2—O1—C5—C6179.54 (19)C11—C6—C7—C80.4 (4)
C4—C5—C6—C11174.0 (3)C5—C6—C7—C8179.5 (2)
O1—C5—C6—C116.6 (3)O1—C5—C4—C30.2 (3)
C4—C5—C6—C77.0 (4)C6—C5—C4—C3179.6 (3)
O1—C5—C6—C7172.4 (2)C16—C15—C14—C131.2 (4)
C1—N2—N1—C12179.0 (2)C12—C13—C14—C151.0 (4)
C1—N2—N1—C182.9 (3)C14—C15—C16—C170.6 (4)
C17—C12—N1—N2175.9 (2)C12—C17—C16—C150.2 (4)
C13—C12—N1—N24.2 (3)C7—C6—C11—C100.7 (4)
C17—C12—N1—C180.2 (3)C5—C6—C11—C10179.8 (2)
C13—C12—N1—C18179.7 (2)C8—C9—C10—C111.0 (4)
N1—N2—C1—C2178.2 (2)N3—C9—C10—C11179.1 (2)
O3—N3—C9—C10177.7 (2)C6—C11—C10—C90.0 (4)
O2—N3—C9—C102.2 (4)O1—C2—C3—C40.3 (3)
O3—N3—C9—C82.4 (4)C1—C2—C3—C4178.6 (3)
O2—N3—C9—C8177.7 (2)C5—C4—C3—C20.3 (3)
C13—C12—C17—C160.4 (4)C19—C18—C23—C220.7 (4)
N1—C12—C17—C16179.5 (2)N1—C18—C23—C22179.5 (2)
N2—N1—C18—C2389.7 (3)C18—C23—C22—C210.1 (4)
C12—N1—C18—C2394.4 (3)C10—C9—C8—C71.3 (4)
N2—N1—C18—C1989.1 (3)N3—C9—C8—C7178.8 (2)
C12—N1—C18—C1986.8 (3)C6—C7—C8—C90.6 (4)
C5—O1—C2—C30.2 (2)C23—C18—C19—C200.5 (4)
C5—O1—C2—C1178.92 (19)N1—C18—C19—C20179.3 (2)
N2—C1—C2—C3176.1 (3)C21—C20—C19—C180.4 (4)
N2—C1—C2—O12.7 (3)C23—C22—C21—C200.8 (4)
C17—C12—C13—C140.2 (4)C19—C20—C21—C221.0 (4)

Experimental details

Crystal data
Chemical formulaC23H17N3O3
Mr383.4
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.815 (3), 8.602 (1), 13.340 (2)
β (°) 95.64 (2)
V3)1920.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.4 × 0.4 × 0.15
Data collection
DiffractometerBruker P4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6417, 5099, 1970
Rint0.067
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.181, 0.97
No. of reflections5099
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: XSCANS (Siemens, 1994), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We gratefully acknowledge financial support from the Facultad de Ciencias Químicas (BUAP). Special thanks go to Dr Marcos Flores-Alamo (USAI-FQ-UNAM) for useful comments.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2 pp. S1–19.  Google Scholar
First citationBarlow, G. K., Boyle, J. D., Cooley, N. A., Ghaffar, T. & Wass, D. F. (2000). Organometallics, 19, 1470–1476.  Web of Science CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClulow, A. J., Selby, J. D., Cushion, M. G., Schwarz, A. D. & Mountford, P. (2008). Inorg. Chem. 47, 12049–12062.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKnight, J. G., Dohherty, S., Hariman, A., Robins, E. G., Betham, M., Eastham, G. R., Tooze, R. P., Elsegood, M. R. J., Champkin, P. & Clegg, W. (2000). Organometallics, 19, 4957–4967.  Web of Science CSD CrossRef CAS Google Scholar
First citationKobotayeva, N. S., Mikubayeva, E. V., Svarovskaya, N. V. & Sirotkina, E. (2001). KORUS 2001, 2, 146–149.  Google Scholar
First citationMotherwell, W. D. S. & Ramsay, J. (2007). Acta Cryst. E63, o4043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRos, A., Diez, E., Marques-López, E., Martín-Zamora, E., Vázquez, J., Iglesias-Siguenza, J., Pappalardo, R. R., Alvarez, E., Lassaletta, J. M. & Fernández, R. (2008). Tetrahedron Asymmetry, 19, 998–1004.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds