organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-bromo­pyridinium 4-carb­­oxy­butano­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 2 July 2010; accepted 4 July 2010; online 10 July 2010)

In the title salt, C5H6BrN2+·C5H7O4, the 2-amino-5-bromo­pyridinium cation is essentially planar, with a maximum deviation of 0.005 (3) Å. In the crystal structure, the proton­ated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The ion pairs are further connected via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane. In the network, the hydrogen glutarate (4-carb­oxy­butano­ate) anions self-assemble through O—H⋯O hydrogen bonds, forming a supra­molecular chain along the c axis.

Related literature

For applications of weak intermolecular inter­actions, see: Moghimi et al. (2002[Moghimi, A., Ranibar, M., Aghabozorg, H., Jalali, F., Shamsipur, M., Yap, G. P. A. & Rahbarnoohi, H. (2002). J. Mol. Struct. 605, 133-149.]); Aghabozorg et al. (2005[Aghabozorg, H., Akbari Saei, A. & Ramezanipour, F. (2005). Acta Cryst. E61, o3242-o3244.]); Lehn (1992[Lehn, J. M. (1992). J. Coord. Chem. 27, 3-6.]). For the conformation of glutaric acid, see: Saraswathi et al. (2001[Saraswathi, N. T., Manoj, N. & Vijayan, M. (2001). Acta Cryst. B57, 366-371.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6BrN2+·C5H7O4

  • Mr = 305.13

  • Orthorhombic, P 21 21 21

  • a = 5.1499 (12) Å

  • b = 14.858 (4) Å

  • c = 16.022 (4) Å

  • V = 1226.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.36 mm−1

  • T = 296 K

  • 0.72 × 0.31 × 0.15 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.195, Tmax = 0.628

  • 8937 measured reflections

  • 4149 independent reflections

  • 2911 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.02

  • 4149 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1734 Friedel pairs

  • Flack parameter: 0.024 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.94 (3) 1.73 (3) 2.666 (3) 177 (2)
N2—H1N2⋯O1i 0.83 (4) 1.99 (4) 2.806 (4) 170 (4)
N2—H2N2⋯O1ii 0.83 (3) 2.04 (3) 2.848 (3) 164 (3)
O4—H1O4⋯O2iii 0.69 (5) 1.93 (5) 2.601 (3) 166 (5)
C3—H3A⋯O3iv 0.93 2.57 3.382 (4) 146
C6—H6A⋯O3v 0.93 2.46 3.337 (4) 157
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (v) [-x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Weak interactions, such as hydrogen bonding and ππ stacking, have attracted much interest as a result of their significance in chemistry and biology, especially in the field of crystal engineering (Moghimi et al., 2002; Aghabozorg et al., 2005). The design of highly specific solid-state compounds is of considerable significance in organic chemistry due to the important applications of these compounds in the development of new optical, magnetic and electronic systems (Lehn, 1992). The present work is part of a structural study of complexes of 2-amino pyridinium systems with hydrogen-bond donors and we report here the structure of 2-amino-5-bromopyridinium hydrogen glutarate, (I).

The asymmetric unit (Fig. 1) contains a 2-amino-5-bromopyridinium cation and a hydrogen glutarate anion. The 2-amino-5-bromopyridinium cation is essentially planar, with a maximum deviation of 0.005 (3) Å for atom C5. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [C6—N1—C2 = 123.8 (2)°] is subtented at the protonated N1 atom. The backbone conformation of the hydrogen glutarate anion can be described by the two torsion angles C8-C9-C10-C11 of -178.0 (2)° and C7-C8-C9-C10 of -71.7 (3)°. As evident from the torsion angles, the backbone is in a fully extended conformation (Saraswathi et al., 2001) of the two carboxyl groups, one is deprotonated while the other is not. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing, the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O2 and N2–H1N2···O1 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via N2—H2N2···O1, O4—H1O4···O2 and C6—H6A···O3 (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the bc-plane (Fig. 2). The hydrogen glutarate anions self-assemble through O4—H1O4···O2 hydrogen bonds, forming one-dimensional supramolecular chains along the c-axis (Fig. 3). Furthermore, the ion pairs are stacked down along the a-axis, forming a three-dimensional network as shown in Fig. 4.

Related literature top

For applications of weak interactions, see: Moghimi et al. (2002); Aghabozorg et al. (2005); Lehn (1992). For the conformation of glutaric acid, see: Saraswathi et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (86 mg, Aldrich) and glutaric acid (66 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

Atoms H1N1, H1N2, H2N2 and H1O4 were located from a difference Fourier map and were refined freely [N—H= 0.83 (4)–0.94 (3) Å and O—H = 0.69 (5) Å]. The remaining hydrogen atoms were positioned geometrically [C—H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). 1734 Friedel pairs were used to determine the absolute configuration.

Structure description top

Weak interactions, such as hydrogen bonding and ππ stacking, have attracted much interest as a result of their significance in chemistry and biology, especially in the field of crystal engineering (Moghimi et al., 2002; Aghabozorg et al., 2005). The design of highly specific solid-state compounds is of considerable significance in organic chemistry due to the important applications of these compounds in the development of new optical, magnetic and electronic systems (Lehn, 1992). The present work is part of a structural study of complexes of 2-amino pyridinium systems with hydrogen-bond donors and we report here the structure of 2-amino-5-bromopyridinium hydrogen glutarate, (I).

The asymmetric unit (Fig. 1) contains a 2-amino-5-bromopyridinium cation and a hydrogen glutarate anion. The 2-amino-5-bromopyridinium cation is essentially planar, with a maximum deviation of 0.005 (3) Å for atom C5. In the 2-amino-5-bromopyridinium cation, a wider than normal angle [C6—N1—C2 = 123.8 (2)°] is subtented at the protonated N1 atom. The backbone conformation of the hydrogen glutarate anion can be described by the two torsion angles C8-C9-C10-C11 of -178.0 (2)° and C7-C8-C9-C10 of -71.7 (3)°. As evident from the torsion angles, the backbone is in a fully extended conformation (Saraswathi et al., 2001) of the two carboxyl groups, one is deprotonated while the other is not. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing, the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O2 and N2–H1N2···O1 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via N2—H2N2···O1, O4—H1O4···O2 and C6—H6A···O3 (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the bc-plane (Fig. 2). The hydrogen glutarate anions self-assemble through O4—H1O4···O2 hydrogen bonds, forming one-dimensional supramolecular chains along the c-axis (Fig. 3). Furthermore, the ion pairs are stacked down along the a-axis, forming a three-dimensional network as shown in Fig. 4.

For applications of weak interactions, see: Moghimi et al. (2002); Aghabozorg et al. (2005); Lehn (1992). For the conformation of glutaric acid, see: Saraswathi et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen-bonded (dashed lines) 2D networks parallel to to the bc-plane. H atoms not involved in the intermolecular interactions have been omitted for clarity.
[Figure 3] Fig. 3. Carboxyl-carboxylate interactions made up of hydrogen glutarate anion.
[Figure 4] Fig. 4. The crystal packing of the title compound (I), showing the stacking of the molecules down the a-axis. H atoms not involved in the intermolecular interactions have been omitted for clarity.
2-amino-5-bromopyridinium 4-carboxybutanoate top
Crystal data top
C5H6BrN2+·C5H7O4F(000) = 616
Mr = 305.13Dx = 1.653 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2942 reflections
a = 5.1499 (12) Åθ = 2.7–26.8°
b = 14.858 (4) ŵ = 3.36 mm1
c = 16.022 (4) ÅT = 296 K
V = 1226.0 (5) Å3Block, colourless
Z = 40.72 × 0.31 × 0.15 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4149 independent reflections
Radiation source: fine-focus sealed tube2911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 31.8°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.195, Tmax = 0.628k = 2221
8937 measured reflectionsl = 2123
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0414P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4149 reflectionsΔρmax = 0.59 e Å3
170 parametersΔρmin = 0.42 e Å3
0 restraintsAbsolute structure: Flack (1983), 1734 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (9)
Crystal data top
C5H6BrN2+·C5H7O4V = 1226.0 (5) Å3
Mr = 305.13Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1499 (12) ŵ = 3.36 mm1
b = 14.858 (4) ÅT = 296 K
c = 16.022 (4) Å0.72 × 0.31 × 0.15 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4149 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2911 reflections with I > 2σ(I)
Tmin = 0.195, Tmax = 0.628Rint = 0.035
8937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116Δρmax = 0.59 e Å3
S = 1.02Δρmin = 0.42 e Å3
4149 reflectionsAbsolute structure: Flack (1983), 1734 Friedel pairs
170 parametersAbsolute structure parameter: 0.024 (9)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.34848 (8)0.78522 (2)0.59104 (2)0.06364 (14)
N10.1456 (5)0.72632 (14)0.78238 (14)0.0388 (5)
N20.2377 (6)0.7831 (2)0.91338 (17)0.0548 (6)
C60.0182 (6)0.72501 (17)0.70949 (16)0.0400 (6)
H6A0.05630.68120.66990.048*
C50.1666 (6)0.78770 (17)0.69349 (17)0.0424 (5)
C40.2211 (6)0.8540 (2)0.7532 (2)0.0508 (7)
H4A0.34580.89770.74250.061*
C30.0906 (6)0.8540 (2)0.8269 (2)0.0506 (7)
H3A0.12710.89770.86680.061*
C20.1011 (6)0.78778 (19)0.84360 (16)0.0412 (6)
O10.3976 (5)0.64368 (15)0.92821 (11)0.0543 (6)
O20.5093 (4)0.59455 (14)0.80384 (11)0.0464 (5)
O30.1981 (4)0.44309 (18)1.10571 (14)0.0577 (6)
O40.1873 (5)0.46064 (19)1.16336 (14)0.0582 (6)
C70.3666 (5)0.59209 (17)0.86815 (13)0.0345 (5)
C80.1501 (6)0.52312 (18)0.86922 (15)0.0402 (5)
H8A0.22320.46480.85540.048*
H8B0.02670.53840.82570.048*
C90.0036 (6)0.5146 (2)0.95136 (17)0.0405 (6)
H9A0.04720.57400.97060.049*
H9B0.15290.47950.94270.049*
C100.1701 (6)0.46966 (19)1.01720 (16)0.0426 (6)
H10A0.22640.41150.99650.051*
H10B0.32390.50601.02660.051*
C110.0308 (5)0.45656 (16)1.09925 (16)0.0369 (5)
H1N10.270 (6)0.681 (2)0.7886 (19)0.037 (7)*
H1N20.335 (8)0.740 (3)0.923 (2)0.045 (9)*
H2N20.188 (8)0.813 (2)0.954 (2)0.054 (10)*
H1O40.132 (11)0.454 (3)1.202 (3)0.077 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0722 (2)0.05631 (18)0.0624 (2)0.00719 (18)0.02248 (18)0.00228 (16)
N10.0394 (12)0.0371 (10)0.0400 (11)0.0100 (11)0.0015 (9)0.0063 (8)
N20.0634 (16)0.0631 (15)0.0380 (12)0.0189 (14)0.0009 (11)0.0141 (14)
C60.0444 (15)0.0366 (12)0.0390 (12)0.0025 (12)0.0050 (11)0.0050 (10)
C50.0438 (14)0.0356 (11)0.0479 (13)0.0004 (14)0.0004 (12)0.0015 (11)
C40.0439 (16)0.0413 (14)0.067 (2)0.0096 (13)0.0036 (14)0.0033 (13)
C30.0520 (18)0.0437 (13)0.0562 (17)0.0128 (14)0.0056 (14)0.0111 (13)
C20.0463 (15)0.0392 (12)0.0380 (12)0.0033 (12)0.0070 (11)0.0055 (11)
O10.0721 (16)0.0581 (11)0.0327 (9)0.0205 (12)0.0154 (9)0.0153 (8)
O20.0526 (12)0.0619 (11)0.0247 (8)0.0177 (11)0.0048 (8)0.0074 (8)
O30.0367 (11)0.0894 (16)0.0470 (12)0.0027 (11)0.0051 (9)0.0139 (11)
O40.0492 (13)0.0935 (18)0.0320 (10)0.0119 (13)0.0026 (10)0.0173 (11)
C70.0397 (13)0.0409 (12)0.0229 (10)0.0022 (12)0.0023 (10)0.0006 (8)
C80.0458 (14)0.0450 (13)0.0299 (11)0.0065 (13)0.0016 (11)0.0015 (10)
C90.0369 (14)0.0496 (13)0.0349 (12)0.0016 (12)0.0020 (11)0.0095 (11)
C100.0399 (14)0.0534 (14)0.0344 (12)0.0064 (14)0.0079 (11)0.0096 (10)
C110.0432 (14)0.0351 (11)0.0324 (12)0.0038 (10)0.0077 (11)0.0064 (10)
Geometric parameters (Å, º) top
Br1—C51.890 (3)O2—C71.266 (3)
N1—C61.340 (4)O3—C111.201 (4)
N1—C21.360 (3)O4—C111.307 (4)
N1—H1N10.94 (3)O4—H1O40.69 (5)
N2—C21.323 (4)C7—C81.514 (4)
N2—H1N20.83 (4)C8—C91.522 (4)
N2—H2N20.83 (4)C8—H8A0.9700
C6—C51.356 (4)C8—H8B0.9700
C6—H6A0.9300C9—C101.515 (4)
C5—C41.402 (4)C9—H9A0.9700
C4—C31.359 (5)C9—H9B0.9700
C4—H4A0.9300C10—C111.510 (4)
C3—C21.419 (4)C10—H10A0.9700
C3—H3A0.9300C10—H10B0.9700
O1—C71.241 (3)
C6—N1—C2123.8 (2)O1—C7—C8120.3 (2)
C6—N1—H1N1114.6 (19)O2—C7—C8117.1 (2)
C2—N1—H1N1121.7 (19)C7—C8—C9115.5 (2)
C2—N2—H1N2122 (2)C7—C8—H8A108.4
C2—N2—H2N2119 (3)C9—C8—H8A108.4
H1N2—N2—H2N2116 (4)C7—C8—H8B108.4
N1—C6—C5119.9 (2)C9—C8—H8B108.4
N1—C6—H6A120.0H8A—C8—H8B107.5
C5—C6—H6A120.0C10—C9—C8111.0 (2)
C6—C5—C4119.6 (3)C10—C9—H9A109.4
C6—C5—Br1119.9 (2)C8—C9—H9A109.4
C4—C5—Br1120.5 (2)C10—C9—H9B109.4
C3—C4—C5119.6 (3)C8—C9—H9B109.4
C3—C4—H4A120.2H9A—C9—H9B108.0
C5—C4—H4A120.2C11—C10—C9113.2 (2)
C4—C3—C2120.5 (3)C11—C10—H10A108.9
C4—C3—H3A119.7C9—C10—H10A108.9
C2—C3—H3A119.7C11—C10—H10B108.9
N2—C2—N1119.0 (3)C9—C10—H10B108.9
N2—C2—C3124.4 (3)H10A—C10—H10B107.7
N1—C2—C3116.6 (3)O3—C11—O4123.1 (3)
C11—O4—H1O4117 (5)O3—C11—C10124.3 (3)
O1—C7—O2122.6 (3)O4—C11—C10112.7 (2)
C2—N1—C6—C50.2 (4)C4—C3—C2—N2179.7 (3)
N1—C6—C5—C40.6 (4)C4—C3—C2—N10.4 (4)
N1—C6—C5—Br1179.5 (2)O1—C7—C8—C97.5 (4)
C6—C5—C4—C30.8 (5)O2—C7—C8—C9173.0 (2)
Br1—C5—C4—C3179.2 (3)C7—C8—C9—C1071.7 (3)
C5—C4—C3—C20.3 (5)C8—C9—C10—C11178.0 (2)
C6—N1—C2—N2179.9 (3)C9—C10—C11—O332.0 (4)
C6—N1—C2—C30.7 (4)C9—C10—C11—O4148.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.94 (3)1.73 (3)2.666 (3)177 (2)
N2—H1N2···O1i0.83 (4)1.99 (4)2.806 (4)170 (4)
N2—H2N2···O1ii0.83 (3)2.04 (3)2.848 (3)164 (3)
O4—H1O4···O2iii0.69 (5)1.93 (5)2.601 (3)166 (5)
C3—H3A···O3iv0.932.573.382 (4)146
C6—H6A···O3v0.932.463.337 (4)157
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+2; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y+3/2, z+2; (v) x1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC5H6BrN2+·C5H7O4
Mr305.13
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.1499 (12), 14.858 (4), 16.022 (4)
V3)1226.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.36
Crystal size (mm)0.72 × 0.31 × 0.15
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.195, 0.628
No. of measured, independent and
observed [I > 2σ(I)] reflections
8937, 4149, 2911
Rint0.035
(sin θ/λ)max1)0.742
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.02
No. of reflections4149
No. of parameters170
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.42
Absolute structureFlack (1983), 1734 Friedel pairs
Absolute structure parameter0.024 (9)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.94 (3)1.73 (3)2.666 (3)177 (2)
N2—H1N2···O1i0.83 (4)1.99 (4)2.806 (4)170 (4)
N2—H2N2···O1ii0.83 (3)2.04 (3)2.848 (3)164 (3)
O4—H1O4···O2iii0.69 (5)1.93 (5)2.601 (3)166 (5)
C3—H3A···O3iv0.93002.57003.382 (4)146.00
C6—H6A···O3v0.93002.46003.337 (4)157.00
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+2; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y+3/2, z+2; (v) x1/2, y+1, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAghabozorg, H., Akbari Saei, A. & Ramezanipour, F. (2005). Acta Cryst. E61, o3242–o3244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLehn, J. M. (1992). J. Coord. Chem. 27, 3–6.  CrossRef Web of Science Google Scholar
First citationMoghimi, A., Ranibar, M., Aghabozorg, H., Jalali, F., Shamsipur, M., Yap, G. P. A. & Rahbarnoohi, H. (2002). J. Mol. Struct. 605, 133–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaraswathi, N. T., Manoj, N. & Vijayan, M. (2001). Acta Cryst. B57, 366–371.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds