organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-chloro­pyridinium 4-carb­­oxy­butano­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 5 July 2010; accepted 8 July 2010; online 14 July 2010)

In the title salt, C5H6ClN2+·C5H7O4, the 2-amino-5-chloro­pyridinium cation is essentially planar, with a maximum deviation of 0.010 (3) Å. In the crystal structure, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The ion pairs are further connected via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a layer parallel to the bc plane. In the layer, the hydrogen glutarate anions self-assemble via O—H⋯O hydrogen bonds, forming a supra­molecular chain along the c axis. Furthermore, the cations and anions are stacked down along the a axis, forming a three-dimensional network.

Related literature

For background to the chemistry of substituted pyridines, see: Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]); Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]). For related structures, see: Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1841-o1842.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1964.]). For the conformation of glutaric acid, see: Saraswathi et al. (2001[Saraswathi, N. T., Manoj, N. & Vijayan, M. (2001). Acta Cryst. B57, 366-371.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding: A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6ClN2+·C5H7O4

  • Mr = 260.67

  • Orthorhombic, P 21 21 21

  • a = 5.1970 (14) Å

  • b = 14.509 (4) Å

  • c = 15.970 (5) Å

  • V = 1204.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 296 K

  • 0.31 × 0.13 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.979

  • 8054 measured reflections

  • 3346 independent reflections

  • 2007 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.111

  • S = 1.01

  • 3346 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1288 Friedel pairs

  • Flack parameter: 0.00 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.80 2.659 (3) 173
O3—H1O3⋯O1ii 0.81 1.79 2.598 (2) 173
N2—H1N2⋯O2iii 0.87 (3) 2.00 (3) 2.848 (3) 163 (3)
N2—H2N2⋯O2i 0.89 (3) 1.92 (3) 2.808 (3) 173 (2)
C1—H1A⋯O4iv 0.93 2.44 3.315 (3) 156
C4—H4A⋯O4v 0.93 2.59 3.396 (3) 145
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [-x-{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). We have recently reported the crystal structures of 2-amino-5-methylpyridinium 4-carboxybutanoate (Hemamalini & Fun, 2010a) and 2-amino-5-bromopyridinium hydrogen glutarate (Hemamalini & Fun, 2010b). In continuation of our studies of pyridinium salts, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit (Fig. 1) contains a 2-amino-5-chloropyridinium cation and a hydrogen glutarate anion. The 2-amino-5-chloropyridinium cation is essentially planar, with a maximum deviation of 0.010 (3) Å for atom C2. The dihedral angle between the pyridine ring and the mean plane formed by the hydrogen glutarate anion is 35.55 (13)°. In the 2-amino-5-chloropyridinium cation, a wide angle [C1—N1—C5= 123.1 (2)°] is subtended at the protonated N1 atom. The backbone conformation of the hydrogen glutarate anion can be described by the two torsion angles C7-C8-C9-C10 of 179.51 (19)° and C6-C7-C8-C9 of 72.4 (3)°. As evident from the torsion angles, the backbone is in a fully extended conformation (Saraswathi et al., 2001) of the two carboxyl groups, one is deprotonated while the other is not.

In the crystal packing, the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1···O1 and N2—H1N2···O2 hydrogen bonds, forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via N2—H2N2···O2, O3—H1O3···O1 and C4—H4A···O4 (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the bc plane (Fig. 2). The hydrogen glutarate anions self-assemble through O3—H1O3···O1 hydrogen bonds, forming one-dimensional supramolecular chains along the c axis (Fig. 3). Furthermore, the cations and anions are stacked down along the a axis, forming a 3D-network as shown in Fig. 4. This crystal structure is isomorphous to the crystal structure of 2-amino-5-bromopyridinium hydrogen glutarate (Hemamalini & Fun, 2010b).

Related literature top

For background to the chemistry of substituted pyridines, see: Katritzky et al. (1996); Pozharski et al. (1997). For related structures, see: Hemamalini & Fun (2010a,b). For the conformation of glutaric acid, see: Saraswathi et al. (2001). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg, Aldrich) and glutaric acid (66 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and brown crystals of the title compound appeared after a few days.

Refinement top

Atoms H1N2 and H2N2 were located from a difference Fourier map and were refined freely. The remaining hydrogen atoms were positioned geometrically (N—H = 0.86, O—H = 0.81 and C—H = 0.93 or 0.97 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O). 1288 Friedel pairs were used to determine the absolute configuration.

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). We have recently reported the crystal structures of 2-amino-5-methylpyridinium 4-carboxybutanoate (Hemamalini & Fun, 2010a) and 2-amino-5-bromopyridinium hydrogen glutarate (Hemamalini & Fun, 2010b). In continuation of our studies of pyridinium salts, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit (Fig. 1) contains a 2-amino-5-chloropyridinium cation and a hydrogen glutarate anion. The 2-amino-5-chloropyridinium cation is essentially planar, with a maximum deviation of 0.010 (3) Å for atom C2. The dihedral angle between the pyridine ring and the mean plane formed by the hydrogen glutarate anion is 35.55 (13)°. In the 2-amino-5-chloropyridinium cation, a wide angle [C1—N1—C5= 123.1 (2)°] is subtended at the protonated N1 atom. The backbone conformation of the hydrogen glutarate anion can be described by the two torsion angles C7-C8-C9-C10 of 179.51 (19)° and C6-C7-C8-C9 of 72.4 (3)°. As evident from the torsion angles, the backbone is in a fully extended conformation (Saraswathi et al., 2001) of the two carboxyl groups, one is deprotonated while the other is not.

In the crystal packing, the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1···O1 and N2—H1N2···O2 hydrogen bonds, forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via N2—H2N2···O2, O3—H1O3···O1 and C4—H4A···O4 (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the bc plane (Fig. 2). The hydrogen glutarate anions self-assemble through O3—H1O3···O1 hydrogen bonds, forming one-dimensional supramolecular chains along the c axis (Fig. 3). Furthermore, the cations and anions are stacked down along the a axis, forming a 3D-network as shown in Fig. 4. This crystal structure is isomorphous to the crystal structure of 2-amino-5-bromopyridinium hydrogen glutarate (Hemamalini & Fun, 2010b).

For background to the chemistry of substituted pyridines, see: Katritzky et al. (1996); Pozharski et al. (1997). For related structures, see: Hemamalini & Fun (2010a,b). For the conformation of glutaric acid, see: Saraswathi et al. (2001). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen-bonded (dashed lines) 2D networks parallel to the bc-plane. H atoms not involved in the intermolecular interactions have been omitted for clarity.
[Figure 3] Fig. 3. Carboxyl–carboxylate interactions made up of hydrogen glutarate anion.
[Figure 4] Fig. 4. The crystal packing of the title compound (I), showing the stacking of the molecules down the a-axis.
2-Amino-5-chloropyridinium 4-carboxybutanoate top
Crystal data top
C5H6ClN2+·C5H7O4F(000) = 544
Mr = 260.67Dx = 1.438 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1567 reflections
a = 5.1970 (14) Åθ = 2.8–25.9°
b = 14.509 (4) ŵ = 0.32 mm1
c = 15.970 (5) ÅT = 296 K
V = 1204.2 (6) Å3Plate, brown
Z = 40.31 × 0.13 × 0.07 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3346 independent reflections
Radiation source: fine-focus sealed tube2007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 30.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.908, Tmax = 0.979k = 2017
8054 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0443P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3346 reflectionsΔρmax = 0.15 e Å3
162 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 1288 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (9)
Crystal data top
C5H6ClN2+·C5H7O4V = 1204.2 (6) Å3
Mr = 260.67Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1970 (14) ŵ = 0.32 mm1
b = 14.509 (4) ÅT = 296 K
c = 15.970 (5) Å0.31 × 0.13 × 0.07 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3346 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2007 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.979Rint = 0.036
8054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111Δρmax = 0.15 e Å3
S = 1.01Δρmin = 0.20 e Å3
3346 reflectionsAbsolute structure: Flack (1983), 1288 Friedel pairs
162 parametersAbsolute structure parameter: 0.00 (9)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34184 (19)0.28909 (5)0.39845 (5)0.0846 (3)
N10.1438 (4)0.22907 (12)0.21798 (11)0.0464 (5)
H10.26370.18900.21060.056*
N20.2316 (5)0.28468 (18)0.08678 (14)0.0633 (6)
C10.0138 (5)0.22829 (16)0.29108 (14)0.0493 (6)
H1A0.05320.18440.33150.059*
C20.1721 (5)0.29045 (15)0.30579 (15)0.0533 (6)
C30.2266 (6)0.35662 (17)0.24403 (18)0.0628 (7)
H3A0.35200.40110.25360.075*
C40.0971 (5)0.35565 (17)0.17106 (17)0.0590 (7)
H4A0.13520.39920.13020.071*
C50.0947 (5)0.28969 (15)0.15589 (14)0.0480 (6)
O10.5116 (3)0.09526 (11)0.19901 (9)0.0523 (4)
O20.4048 (4)0.14235 (12)0.07274 (9)0.0606 (5)
O30.1889 (4)0.04241 (12)0.15991 (10)0.0631 (5)
H1O30.12530.05410.20500.095*
O40.1908 (4)0.06355 (14)0.10194 (11)0.0672 (5)
C60.3720 (4)0.09123 (14)0.13352 (12)0.0401 (5)
C70.1567 (5)0.02110 (16)0.13408 (13)0.0465 (5)
H7A0.03460.03810.17730.056*
H7B0.22810.03840.14910.056*
C80.0127 (5)0.01093 (16)0.05204 (13)0.0476 (6)
H8A0.14450.02360.06170.057*
H8B0.03480.07150.03150.057*
C90.1709 (5)0.03760 (16)0.01336 (13)0.0501 (6)
H9A0.32750.00270.02290.060*
H9B0.21980.09780.00780.060*
C100.0341 (5)0.04956 (14)0.09493 (14)0.0442 (5)
H1N20.187 (7)0.3179 (19)0.0435 (19)0.076 (9)*
H2N20.353 (7)0.242 (2)0.0786 (17)0.082 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0957 (6)0.0674 (4)0.0908 (5)0.0065 (5)0.0402 (5)0.0032 (4)
N10.0463 (11)0.0449 (9)0.0481 (10)0.0088 (10)0.0025 (9)0.0045 (8)
N20.0720 (16)0.0697 (15)0.0482 (13)0.0195 (14)0.0022 (11)0.0144 (13)
C10.0560 (15)0.0430 (12)0.0488 (13)0.0006 (12)0.0008 (12)0.0034 (11)
C20.0518 (14)0.0437 (12)0.0642 (14)0.0028 (13)0.0088 (13)0.0028 (11)
C30.0545 (17)0.0447 (14)0.089 (2)0.0090 (13)0.0021 (15)0.0035 (14)
C40.0580 (17)0.0483 (13)0.0706 (17)0.0088 (13)0.0105 (14)0.0126 (13)
C50.0526 (15)0.0433 (12)0.0481 (13)0.0006 (12)0.0097 (11)0.0044 (11)
O10.0570 (10)0.0671 (10)0.0327 (7)0.0186 (9)0.0060 (7)0.0075 (7)
O20.0792 (13)0.0617 (10)0.0409 (8)0.0187 (10)0.0131 (8)0.0155 (8)
O30.0598 (11)0.0885 (12)0.0409 (9)0.0110 (11)0.0013 (9)0.0122 (8)
O40.0462 (10)0.1013 (14)0.0540 (10)0.0025 (11)0.0084 (9)0.0141 (10)
C60.0429 (13)0.0446 (11)0.0328 (10)0.0016 (11)0.0009 (10)0.0014 (9)
C70.0513 (13)0.0518 (12)0.0364 (10)0.0062 (12)0.0032 (10)0.0012 (9)
C80.0453 (13)0.0537 (13)0.0438 (12)0.0013 (12)0.0018 (10)0.0068 (10)
C90.0490 (13)0.0598 (15)0.0417 (12)0.0065 (13)0.0080 (11)0.0099 (10)
C100.0479 (15)0.0412 (11)0.0437 (12)0.0040 (10)0.0075 (11)0.0037 (10)
Geometric parameters (Å, º) top
Cl1—C21.723 (3)O2—C61.233 (2)
N1—C11.349 (3)O3—C101.317 (3)
N1—C51.350 (3)O3—H1O30.8102
N1—H10.8600O4—C101.192 (3)
N2—C51.315 (3)C6—C71.513 (3)
N2—H1N20.87 (3)C7—C81.516 (3)
N2—H2N20.89 (3)C7—H7A0.9700
C1—C21.342 (3)C7—H7B0.9700
C1—H1A0.9300C8—C91.504 (3)
C2—C31.405 (4)C8—H8A0.9700
C3—C41.346 (4)C8—H8B0.9700
C3—H3A0.9300C9—C101.494 (3)
C4—C51.403 (3)C9—H9A0.9700
C4—H4A0.9300C9—H9B0.9700
O1—C61.274 (2)
C1—N1—C5123.1 (2)O2—C6—C7120.75 (19)
C1—N1—H1118.4O1—C6—C7116.57 (18)
C5—N1—H1118.4C6—C7—C8115.19 (18)
C5—N2—H1N2119 (2)C6—C7—H7A108.5
C5—N2—H2N2123.0 (19)C8—C7—H7A108.5
H1N2—N2—H2N2117 (3)C6—C7—H7B108.5
C2—C1—N1120.4 (2)C8—C7—H7B108.5
C2—C1—H1A119.8H7A—C7—H7B107.5
N1—C1—H1A119.8C9—C8—C7112.1 (2)
C1—C2—C3118.8 (2)C9—C8—H8A109.2
C1—C2—Cl1120.74 (19)C7—C8—H8A109.2
C3—C2—Cl1120.5 (2)C9—C8—H8B109.2
C4—C3—C2120.0 (2)C7—C8—H8B109.2
C4—C3—H3A120.0H8A—C8—H8B107.9
C2—C3—H3A120.0C10—C9—C8113.5 (2)
C3—C4—C5120.8 (2)C10—C9—H9A108.9
C3—C4—H4A119.6C8—C9—H9A108.9
C5—C4—H4A119.6C10—C9—H9B108.9
N2—C5—N1118.6 (2)C8—C9—H9B108.9
N2—C5—C4124.5 (2)H9A—C9—H9B107.7
N1—C5—C4116.9 (2)O4—C10—O3122.6 (2)
C10—O3—H1O3115.7O4—C10—C9124.6 (2)
O2—C6—O1122.7 (2)O3—C10—C9112.8 (2)
C5—N1—C1—C21.1 (4)C3—C4—C5—N2179.2 (3)
N1—C1—C2—C30.6 (4)C3—C4—C5—N10.9 (4)
N1—C1—C2—Cl1179.20 (18)O2—C6—C7—C87.5 (3)
C1—C2—C3—C41.4 (4)O1—C6—C7—C8173.7 (2)
Cl1—C2—C3—C4178.4 (2)C6—C7—C8—C972.4 (3)
C2—C3—C4—C50.7 (4)C7—C8—C9—C10179.51 (19)
C1—N1—C5—N2179.8 (2)C8—C9—C10—O434.9 (3)
C1—N1—C5—C41.8 (3)C8—C9—C10—O3144.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.802.659 (3)173
O3—H1O3···O1ii0.811.792.598 (2)173
N2—H1N2···O2iii0.87 (3)2.00 (3)2.848 (3)163 (3)
N2—H2N2···O2i0.89 (3)1.92 (3)2.808 (3)173 (2)
C1—H1A···O4iv0.932.443.315 (3)156
C4—H4A···O4v0.932.593.396 (3)145
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y, z1/2; (iii) x1/2, y+1/2, z; (iv) x1/2, y, z+1/2; (v) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC5H6ClN2+·C5H7O4
Mr260.67
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.1970 (14), 14.509 (4), 15.970 (5)
V3)1204.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.31 × 0.13 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.908, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
8054, 3346, 2007
Rint0.036
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.01
No. of reflections3346
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.20
Absolute structureFlack (1983), 1288 Friedel pairs
Absolute structure parameter0.00 (9)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86001.80002.659 (3)173.00
O3—H1O3···O1ii0.81001.79002.598 (2)173.00
N2—H1N2···O2iii0.87 (3)2.00 (3)2.848 (3)163 (3)
N2—H2N2···O2i0.89 (3)1.92 (3)2.808 (3)173 (2)
C1—H1A···O4iv0.93002.44003.315 (3)156.00
C4—H4A···O4v0.93002.59003.396 (3)145.00
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y, z1/2; (iii) x1/2, y+1/2, z; (iv) x1/2, y, z+1/2; (v) x+1/2, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1841–o1842.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o1964.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationSaraswathi, N. T., Manoj, N. & Vijayan, M. (2001). Acta Cryst. B57, 366–371.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding: A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds