organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­(2-amino-5-methyl­pyridinium) fumarate–fumaric acid (1/1)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 9 July 2010; accepted 14 July 2010; online 24 July 2010)

In the crystal structure of the title compound, C6H9N2+·0.5C4H2O42−·0.5C4H6O4, the fumarate dianion and fumaric acid mol­ecule are located on inversion centres. The 2-amino-5-methyl­pyrimidinium cation inter­acts with the carboxyl­ate group of the fumarate anion through a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. These motifs are centrosymmetrically paired via N—H⋯O hydrogen bonds, forming a complementary DDAA array. The carboxyl groups of the fumaric acid mol­ecules and the carboxyl­ate groups of the fumarate anions are hydrogen bonded through O—H⋯O hydrogen bonds, leading to a supra­molecular chain along [101]. The crystal structure is further stabilized by weak C—H⋯O hydrogen bonds.

Related literature

For details of fumaric acid, see: Batchelor et al. (2000[Batchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839-848.]). For related structures, see: Hemamalini & Fun (2010a[Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o621.],b[Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o623-o624.],c[Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o662.]); Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For DDAA arrays, see: Robert et al. (2001[Robert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206-o1208.]); Umadevi et al. (2002[Umadevi, B., Prabakaran, P. & Muthiah, P. T. (2002). Acta Cryst. C58, o510-o512.]); Thanigaimani et al. (2007[Thanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4555-o4556.]). For carbox­yl–carboxyl­ate inter­actions, see: Büyükgüngör & Odabaşoğlu (2002[Büyükgüngör, O. & Odabaşoğlu, M., M. (2002). Acta Cryst. C58, o691-o692.]); Büyükgüngör et al. (2004[Büyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. & Lönnecke, P. (2004). Acta Cryst. C60, o470-o472.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·0.5C4H4O42−·0.5C4H2O4

  • Mr = 224.22

  • Triclinic, [P \overline 1]

  • a = 4.0366 (4) Å

  • b = 9.3145 (10) Å

  • c = 14.0077 (14) Å

  • α = 94.030 (3)°

  • β = 95.060 (3)°

  • γ = 90.903 (3)°

  • V = 523.20 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.61 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.978

  • 19772 measured reflections

  • 5445 independent reflections

  • 4852 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.110

  • S = 1.05

  • 5445 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 1.89 2.7305 (7) 167
N2—H2A⋯O3 0.86 1.98 2.8334 (7) 175
N2—H2B⋯O3i 0.86 2.04 2.8329 (7) 154
O2—H2C⋯O4 0.82 1.75 2.5618 (7) 170
C5—H5⋯O1ii 0.93 2.46 3.3582 (9) 162
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently we have reported the crystal structures of 2-amino-5-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010a), 2-amino-5-methylpyridinium 3-aminobenzoate (Hemamalini & Fun, 2010c). and 2-amino-5-methylpyridinium nicotinate (Hemamalini & Fun, 2010b). Fumaric acid is of interest since it is known to form supramolecular assemblies with N-aromatic complexes (Batchelor et al., 2000). Herein we report the crystal structure and supramolecular patterns of the new compound containing pyridine derivative and fumaric acid components.

The title compound (I) is shown in Fig. 1. The asymmetric unit contains one 2-amino-5-methylpyridinium cation, a half of the fumarate anion and a half of the fumaric acid molecule. The dihedral angles between pyridinium ring and the planes formed by the fumarate anion and fumaric acid molecule are 10.53 (2)° and 55.21 (2)°, respectively. The planar fumarate and fumaric acid molecule is centrosymmetric with the mid-point of the CC double bond located at an inversion center. In the fumaric acid, the C7—O1 bond distance of 1.2118 (7) Å is much shorter than the C7—O2 bond distance of 1.3199 (7) Å suggesting that the carboxyl group is not deprotonated in the crystal structure. The 2-amino-5-methyl pyridinium cation is essentially planar with a maximum deviation of 0.011 (1) Å for atom N1. The 2-amino-5-methylpyridine is protonated at N1 which is evident from the increase in the internal angle at N1 (C1—N1—C5) from 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977) to 123.03 (5)° in the present study. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O3 and O4) via a pair of intermolecular N1—H1···O4 and N2—H2A···O3 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). These motifs are centrosymmetrically paired via N2—H2B···O3 hydrogen bonds to produce the DDAA (D = donor in hydrogen bonds, A = acceptor in hydrogen bonds) array of quadruple hydrogen bonds. This can be represented by the graph-set notation R22(8), R42(8) and R22(8) (Fig. 2). This type of array has also been identified in trimethoprim hydrogen glutarate (Robert et al., 2001), trimethoprim formate (Umadevi et al., 2002) and 2-amino-4,6-dimethoxypyridinium salicylate (Thanigaimani et al., 2007). The carboxyl groups of the fumaric acid molecules and the carboxylate groups of the fumarate anions are hydrogen bonded through O2—H2C···O4 hydrogen bonds leading to the formation of a one-dimensional hydrogen-bonded supramolecular chain along the [101] (Fig. 3). This type of carboxyl–carboxylate interaction has been reported in the crystal structures of 2-aminopyridinium–succinate –succinic acid (Büyükgüngör & Odabaşoğlu, 2002) and 2- aminopyridinium–fumarate–fumaric acid (Büyükgüngör et al., 2004). This chain can be designated by graph-set notation C22(14). The crystal structure is further stabilized by weak intermolecular C5—H5···O1 (Table 1) hydrogen bonds.

Related literature top

For details of fumaric acid, see: Batchelor et al. (2000). For related structures, see: Hemamalini & Fun (2010a,b,c); Nahringbauer & Kvick (1977). For hydrogen-bond motifs, see: Bernstein et al. (1995). For DDAA arrays, see: Robert et al. (2001); Umadevi et al. (2002); Thanigaimani et al. (2007). For carboxyl–carboxylate interactions, see: Büyükgüngör & Odabaşoğlu (2002); Büyükgüngör et al. (2004). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-methylpyridine (27 mg, Aldrich) and fumaric acid (29 mg, Merck) were mixed and warmed over a heating magnetic stirrer for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All hydrogen atoms were positioned geometrically (O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93 or 0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was used for the methyl group.

Structure description top

Recently we have reported the crystal structures of 2-amino-5-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010a), 2-amino-5-methylpyridinium 3-aminobenzoate (Hemamalini & Fun, 2010c). and 2-amino-5-methylpyridinium nicotinate (Hemamalini & Fun, 2010b). Fumaric acid is of interest since it is known to form supramolecular assemblies with N-aromatic complexes (Batchelor et al., 2000). Herein we report the crystal structure and supramolecular patterns of the new compound containing pyridine derivative and fumaric acid components.

The title compound (I) is shown in Fig. 1. The asymmetric unit contains one 2-amino-5-methylpyridinium cation, a half of the fumarate anion and a half of the fumaric acid molecule. The dihedral angles between pyridinium ring and the planes formed by the fumarate anion and fumaric acid molecule are 10.53 (2)° and 55.21 (2)°, respectively. The planar fumarate and fumaric acid molecule is centrosymmetric with the mid-point of the CC double bond located at an inversion center. In the fumaric acid, the C7—O1 bond distance of 1.2118 (7) Å is much shorter than the C7—O2 bond distance of 1.3199 (7) Å suggesting that the carboxyl group is not deprotonated in the crystal structure. The 2-amino-5-methyl pyridinium cation is essentially planar with a maximum deviation of 0.011 (1) Å for atom N1. The 2-amino-5-methylpyridine is protonated at N1 which is evident from the increase in the internal angle at N1 (C1—N1—C5) from 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977) to 123.03 (5)° in the present study. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O3 and O4) via a pair of intermolecular N1—H1···O4 and N2—H2A···O3 hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). These motifs are centrosymmetrically paired via N2—H2B···O3 hydrogen bonds to produce the DDAA (D = donor in hydrogen bonds, A = acceptor in hydrogen bonds) array of quadruple hydrogen bonds. This can be represented by the graph-set notation R22(8), R42(8) and R22(8) (Fig. 2). This type of array has also been identified in trimethoprim hydrogen glutarate (Robert et al., 2001), trimethoprim formate (Umadevi et al., 2002) and 2-amino-4,6-dimethoxypyridinium salicylate (Thanigaimani et al., 2007). The carboxyl groups of the fumaric acid molecules and the carboxylate groups of the fumarate anions are hydrogen bonded through O2—H2C···O4 hydrogen bonds leading to the formation of a one-dimensional hydrogen-bonded supramolecular chain along the [101] (Fig. 3). This type of carboxyl–carboxylate interaction has been reported in the crystal structures of 2-aminopyridinium–succinate –succinic acid (Büyükgüngör & Odabaşoğlu, 2002) and 2- aminopyridinium–fumarate–fumaric acid (Büyükgüngör et al., 2004). This chain can be designated by graph-set notation C22(14). The crystal structure is further stabilized by weak intermolecular C5—H5···O1 (Table 1) hydrogen bonds.

For details of fumaric acid, see: Batchelor et al. (2000). For related structures, see: Hemamalini & Fun (2010a,b,c); Nahringbauer & Kvick (1977). For hydrogen-bond motifs, see: Bernstein et al. (1995). For DDAA arrays, see: Robert et al. (2001); Umadevi et al. (2002); Thanigaimani et al. (2007). For carboxyl–carboxylate interactions, see: Büyükgüngör & Odabaşoğlu (2002); Büyükgüngör et al. (2004). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. O1A/O2A/C7A/C8A and O3A/O4A/C9A/C10A are generated by the symmetry codes -x + 1, -y, -z and -x, -y, -z, respectively.
[Figure 2] Fig. 2. The DDAA hydrogen-bonding pattern in (I). Dashed lines indicate hydrogen bonds. These 2D patterns are stacked along the a-axis.
[Figure 3] Fig. 3. The carboxyl-carboxylate interactions of the title compound (I), viewed down the a axis, forming a 1D supramolecular chain along [101].
bis(2-amino-5-methylpyridinium) fumarate–fumaric acid (1/1) top
Crystal data top
C6H9N2+·0.5C4H4O42·0.5C4H2O4Z = 2
Mr = 224.22F(000) = 236
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.0366 (4) ÅCell parameters from 9900 reflections
b = 9.3145 (10) Åθ = 2.7–37.6°
c = 14.0077 (14) ŵ = 0.11 mm1
α = 94.030 (3)°T = 100 K
β = 95.060 (3)°Block, colourless
γ = 90.903 (3)°0.61 × 0.22 × 0.20 mm
V = 523.20 (9) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5445 independent reflections
Radiation source: fine-focus sealed tube4852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 37.7°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.935, Tmax = 0.978k = 1515
19772 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.0878P]
where P = (Fo2 + 2Fc2)/3
5445 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C6H9N2+·0.5C4H4O42·0.5C4H2O4γ = 90.903 (3)°
Mr = 224.22V = 523.20 (9) Å3
Triclinic, P1Z = 2
a = 4.0366 (4) ÅMo Kα radiation
b = 9.3145 (10) ŵ = 0.11 mm1
c = 14.0077 (14) ÅT = 100 K
α = 94.030 (3)°0.61 × 0.22 × 0.20 mm
β = 95.060 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5445 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4852 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.978Rint = 0.019
19772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 0.60 e Å3
5445 reflectionsΔρmin = 0.34 e Å3
147 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.64925 (12)0.45378 (5)0.20997 (3)0.01315 (8)
H10.57640.37000.18700.016*
N20.31601 (12)0.55122 (5)0.09009 (3)0.01504 (9)
H2A0.24040.46620.07120.018*
H2B0.24510.62410.06050.018*
C10.54215 (13)0.56996 (5)0.16485 (4)0.01190 (8)
C20.67623 (13)0.70674 (5)0.20110 (4)0.01341 (9)
H20.61470.78900.17060.016*
C30.89669 (13)0.71642 (6)0.28125 (4)0.01392 (9)
H30.98450.80620.30480.017*
C40.99507 (13)0.59304 (6)0.32951 (4)0.01383 (9)
C50.86767 (13)0.46307 (6)0.29027 (4)0.01433 (9)
H50.93110.37950.31890.017*
C61.21690 (15)0.60555 (7)0.42149 (4)0.01903 (10)
H6A1.10010.65170.47160.029*
H6B1.41230.66170.41310.029*
H6C1.28030.51120.43880.029*
O10.27081 (16)0.19332 (6)0.39352 (4)0.02686 (12)
O20.49662 (14)0.03168 (5)0.29314 (3)0.02170 (10)
H2C0.42570.08490.25220.033*
C70.42204 (15)0.08387 (6)0.37847 (4)0.01544 (9)
C80.54504 (15)0.00956 (6)0.45556 (4)0.01586 (9)
H80.68890.08330.44100.019*
O30.10076 (14)0.26911 (5)0.02053 (3)0.02176 (10)
O40.34405 (13)0.19338 (5)0.15605 (3)0.02015 (10)
C90.17514 (14)0.17185 (6)0.07482 (4)0.01450 (9)
C100.06922 (15)0.01973 (6)0.04396 (4)0.01504 (9)
H100.10140.05010.08800.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.01540 (17)0.00928 (16)0.01454 (17)0.00050 (13)0.00023 (13)0.00127 (13)
N20.01861 (19)0.01217 (18)0.01362 (17)0.00003 (14)0.00253 (14)0.00090 (14)
C10.01360 (18)0.01021 (18)0.01198 (18)0.00080 (14)0.00146 (14)0.00086 (14)
C20.0165 (2)0.00966 (18)0.01402 (19)0.00031 (15)0.00102 (15)0.00067 (14)
C30.01491 (19)0.01202 (19)0.01459 (19)0.00112 (15)0.00159 (15)0.00077 (15)
C40.01274 (18)0.0149 (2)0.01376 (19)0.00020 (15)0.00090 (14)0.00098 (15)
C50.01445 (19)0.0131 (2)0.0155 (2)0.00149 (15)0.00004 (15)0.00273 (15)
C60.0157 (2)0.0245 (3)0.0163 (2)0.00173 (18)0.00234 (16)0.00247 (19)
O10.0431 (3)0.0210 (2)0.01696 (19)0.0171 (2)0.00033 (18)0.00395 (16)
O20.0396 (3)0.01464 (18)0.01119 (16)0.00699 (17)0.00121 (16)0.00307 (13)
C70.0220 (2)0.01199 (19)0.01201 (18)0.00230 (16)0.00174 (16)0.00234 (15)
C80.0221 (2)0.0134 (2)0.01226 (19)0.00444 (17)0.00012 (16)0.00316 (15)
O30.0348 (2)0.01109 (17)0.01746 (18)0.00270 (15)0.01071 (16)0.00485 (14)
O40.0338 (2)0.01254 (17)0.01229 (16)0.00547 (15)0.00885 (15)0.00302 (13)
C90.0213 (2)0.01004 (18)0.01138 (18)0.00190 (15)0.00325 (15)0.00168 (14)
C100.0219 (2)0.01007 (18)0.01231 (19)0.00229 (16)0.00368 (15)0.00215 (14)
Geometric parameters (Å, º) top
N1—C11.3492 (7)C6—H6A0.9600
N1—C51.3635 (7)C6—H6B0.9600
N1—H10.8600C6—H6C0.9600
N2—C11.3271 (7)O1—C71.2118 (7)
N2—H2A0.8600O2—C71.3199 (7)
N2—H2B0.8600O2—H2C0.8200
C1—C21.4188 (8)C7—C81.4903 (7)
C2—C31.3665 (7)C8—C8i1.3285 (11)
C2—H20.9300C8—H80.9300
C3—C41.4184 (8)O3—C91.2468 (7)
C3—H30.9300O4—C91.2754 (6)
C4—C51.3671 (8)C9—C101.4965 (8)
C4—C61.4992 (8)C10—C10ii1.3314 (10)
C5—H50.9300C10—H100.9300
C1—N1—C5123.03 (5)C4—C5—H5119.4
C1—N1—H1118.5C4—C6—H6A109.5
C5—N1—H1118.5C4—C6—H6B109.5
C1—N2—H2A120.0H6A—C6—H6B109.5
C1—N2—H2B120.0C4—C6—H6C109.5
H2A—N2—H2B120.0H6A—C6—H6C109.5
N2—C1—N1118.82 (5)H6B—C6—H6C109.5
N2—C1—C2123.44 (5)C7—O2—H2C109.5
N1—C1—C2117.73 (5)O1—C7—O2125.02 (5)
C3—C2—C1119.37 (5)O1—C7—C8123.42 (5)
C3—C2—H2120.3O2—C7—C8111.56 (5)
C1—C2—H2120.3C8i—C8—C7121.87 (6)
C2—C3—C4121.69 (5)C8i—C8—H8119.1
C2—C3—H3119.2C7—C8—H8119.1
C4—C3—H3119.2O3—C9—O4123.73 (5)
C5—C4—C3116.88 (5)O3—C9—C10119.39 (5)
C5—C4—C6121.66 (5)O4—C9—C10116.87 (4)
C3—C4—C6121.41 (5)C10ii—C10—C9122.67 (6)
N1—C5—C4121.22 (5)C10ii—C10—H10118.7
N1—C5—H5119.4C9—C10—H10118.7
C5—N1—C1—N2176.50 (5)C1—N1—C5—C40.74 (8)
C5—N1—C1—C22.78 (8)C3—C4—C5—N11.74 (8)
N2—C1—C2—C3176.95 (5)C6—C4—C5—N1175.74 (5)
N1—C1—C2—C32.29 (8)O1—C7—C8—C8i10.08 (12)
C1—C2—C3—C40.13 (8)O2—C7—C8—C8i169.47 (8)
C2—C3—C4—C52.14 (8)O3—C9—C10—C10ii7.89 (11)
C2—C3—C4—C6175.35 (5)O4—C9—C10—C10ii170.95 (8)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.892.7305 (7)167
N2—H2A···O30.861.982.8334 (7)175
N2—H2B···O3iii0.862.042.8329 (7)154
O2—H2C···O40.821.752.5618 (7)170
C5—H5···O1iv0.932.463.3582 (9)162
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H9N2+·0.5C4H4O42·0.5C4H2O4
Mr224.22
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.0366 (4), 9.3145 (10), 14.0077 (14)
α, β, γ (°)94.030 (3), 95.060 (3), 90.903 (3)
V3)523.20 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.61 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.935, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
19772, 5445, 4852
Rint0.019
(sin θ/λ)max1)0.860
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 1.05
No. of reflections5445
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.86001.89002.7305 (7)167.00
N2—H2A···O30.86001.98002.8334 (7)175.00
N2—H2B···O3i0.86002.04002.8329 (7)154.00
O2—H2C···O40.82001.75002.5618 (7)170.00
C5—H5···O1ii0.93002.46003.3582 (9)162.00
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBatchelor, E., Klinowski, J. & Jones, W. (2000). J. Mater. Chem. 10, 839–848.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBüyükgüngör, O. & Odabaşoğlu, M., M. (2002). Acta Cryst. C58, o691–o692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBüyükgüngör, O., Odabaşoğlu, M., Albayrak, Ç. & Lönnecke, P. (2004). Acta Cryst. C60, o470–o472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o623–o624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o662.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRobert, J. J., Raj, S. B. & Muthiah, P. T. (2001). Acta Cryst. E57, o1206–o1208.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Muthiah, P. T. & Lynch, D. E. (2007). Acta Cryst. E63, o4555–o4556.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUmadevi, B., Prabakaran, P. & Muthiah, P. T. (2002). Acta Cryst. C58, o510–o512.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds