organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen-bonding patterns in pyrimethaminium pyridine-3-sulfonate

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: tommtrichy@yahoo.co.in

(Received 12 July 2010; accepted 21 July 2010; online 24 July 2010)

In the asymmetric unit of the title salt [systematic name: 2,4-diamino-5-(4-chloro­phen­yl)-6-ethyl­pyrimidin-1-ium pyri­dine-3-sulfonate], C12H14N4Cl+·C5H4NSO3, there are two independent pyrimethaminium cations and two 3-pyridine sulfonate anions. Each sulfonate group inter­acts with the corresponding protonated pyrimidine ring through two N—H⋯O hydrogen bonds, forming a cyclic hydrogen-bonded bimolecular R22(8) motif. Even though the primary mode of association is the same, the next higher level of supra­molecular architectures are different due to different hydrogen-bonded networks. In one of the independent molecules in the asymmetric unit, the pyrimethamine cation is paired centrosymmetrically through N—H⋯N hydrogen bonds, generating an R22(8) ring motif. In the other molecule, the pyrimethamine cation does not form any base pairs; instead it forms hydrogen bonds with the 3-pyridine sulfonate anion. The structure is further stabilized by C—H⋯O, C—H⋯N and ππ stacking [centroid–centroid distance = 3.9465 (13) Å] inter­actions.

Related literature

For background to crystal engineering and supra­molecular chemistry, see: Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering. The Design of Organic Solids. Amsterdam: Elsevier.]); Lehn (1995[Lehn, J. M. (1995). Supramolecular Chemistry, New York: VCH.]). For structures involving pyrimethamine carboxyl­ates, see: Sethuraman et al. (2003[Sethuraman, V., Stanley, N., Muthiah, P. T., Sheldrick, W. S., Winter, M., Luger, P. & Weber, M. (2003). Cryst. Growth Des. 3, 823-828.]); Stanley et al. (2002[Stanley, N., Sethuraman, V., Muthiah, P. T., Luger, P. & Weber, M. (2002). Cryst. Growth Des. 2, 631-635.]). For structures involving sulfonates, see: Hemamalini et al. (2005[Hemamalini, M., Muthiah, P. T., Sridhar, B. & Rajaram, R. K. (2005). Acta Cryst. E61, o1480-o1482.]); Balasubramani et al. (2007[Balasubramani, K., Muthiah, P. T. & Lynch, D. E. (2007). Chem. Cent. J. 1: 28.]); Baskar et al. (2003[Baskar, R. S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70-76.]). For a survey on hydrogen-bonding patterns involving sulfonate salts, see: Haynes et al. (2004[Haynes, D. A., Chisholm, J. A., Jones, W. & Motherwell, W. D. S. (2004). CrystEngComm, 6, 584-588.]). For the crystal structures of pyrimethamine and metoprine, see: Sethuraman & Thomas Muthiah (2002[Sethuraman, V. & Thomas Muthiah, P. (2002). Acta Cryst. E58, o817-o818.]); De et al. (1989[De, A., Basak, A. K. & Roychowdhury, P. (1989). Indian J. Phys. Sect. A 63 553-563.]). For modeling studies on DHFR–PMN complexes, see: Sansom et al. (1989[Sansom, C. E., Schwalbe, C. H., Lambert, P. A., Griffin, R. J. & Stevens, M. F. G. (1989). Biochim. Biophys. Acta, 995, 21-27.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M.-C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14ClN4+·C5H4NO3S

  • Mr = 407.88

  • Triclinic, [P \overline 1]

  • a = 10.4525 (17) Å

  • b = 12.200 (2) Å

  • c = 16.539 (3) Å

  • α = 81.130 (9)°

  • β = 83.580 (9)°

  • γ = 68.649 (8)°

  • V = 1937.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.22 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.952

  • 38297 measured reflections

  • 11491 independent reflections

  • 7509 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.142

  • S = 1.04

  • 11491 reflections

  • 489 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A2⋯O2Bi 0.86 2.15 2.978 (2) 162
N1A—H1A⋯O1Aii 0.86 1.92 2.764 (2) 166
N1B—H1B⋯O1Biii 0.86 1.97 2.805 (2) 164
N2A—H2A1⋯O2Aii 0.86 2.00 2.808 (2) 157
N4A—H4A1⋯N3Ai 0.86 2.17 3.027 (2) 178
N4A—H4A2⋯O2B 0.86 2.22 2.909 (2) 137
N2B—H2B2⋯O3Aiii 0.86 2.15 3.003 (3) 171
N2B—H2B1⋯O2Biii 0.86 2.16 3.005 (2) 167
N4B—H4B1⋯N17Aiii 0.86 2.19 3.033 (3) 168
C10B—H10B⋯O3A 0.93 2.51 3.299 (3) 143
C16A—H16A⋯N3Biii 0.93 2.44 3.128 (3) 131
C19B—H19B⋯O1Aiv 0.93 2.48 3.361 (3) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

A variety of strategies have been adopted by solid state chemist to tailor the physiochemical properties of an active pharmaceutical ingredient (API). One such strategy is to prepare salt forms of these API's using the concept of crystal engineering (Desiraju, 1989) and supramolecular chemistry (Lehn, 1995). We have reported from our laboratory, the crystal structure of pyrimethamine (PMN), (Sethuraman & Muthiah, 2002) an antifolate drug used in antimalarial chemotherapy and treatment of opportunistic infections in patients with AIDS. Investigations of a fairly large number of crystal structures of pyrimethamine salts involving carboxylates (Sethuraman et al., 2003; Stanley et al., 2002) and a few sulfonates (Hemamalini et al., 2005; Balasubramani et al., 2007) have shown an inclination towards the formation of certain robust motifs and a variety of supramolecular architectures. The CSD survey by Haynes et al. (2004) on the sulfonate salts, revealed various hydrogen bonding patterns and their preferences with specific functional groups.

It is therefore of interest, to investigate the packing preferences and supramolecular architectures of the title compound (Scheme 1). The compound crystallizes in the triclinic space group P1, with two molecules in the asymmetric unit (Figure 1). The crystallographically independent pyrimethamine molecules (A and B) are protonated at N1A and N1B positions as is evident from the increase in respective bond angle at C—N—C, when compared to its neutral form (Sethuraman & Thomas Muthiah, 2002). The bond lengths and angles between the two molecules are in good agreement, with those observed in computer modeling studies on dihydrofolate reductase DHFR–PMN complexes (Sansom et al., 1989) and the crystal structure of metoprine (De et al., 1989).

Each of the protonated pyrimethaminium (N1A and N1B) cations interacts with two oxygen atoms of the respective sulfonate anion through two N—H···O hydrogen bonds, forming an eight membered ring motif R22(8) (Etter, 1990; Bernstein et al., 1995). It is well known that sulfonates imitate carboxylates in forming such bidentate motifs (Baskar et al., 2003). Despite this analogy, what makes things interesting is the higher level of supramolecular organization assumed by the two independent molecules. The pyrimethaminium cation A is centrosymmetrically paired through N4—H···N3 hydrogen bonds involving the 4-amino group and the N3 atom of the pyrimidine to form the ring motif R22(8). In addition to the base pairing, one of the sulfonate oxygen atoms (O2B) bridges the 2-amino and the 4-amino groups on both sides. The combination of such base-pairing patterns and the further bridging of the oxygen atom, leads to the formation of a linear array of four hydrogen bonds. The corresponding graph-set notations are R32(8), R22(8) and R32(8). Occurrence of such an array is a characteristic feature observed in structures reported earlier (Stanley et al., 2002).

The pyrimethaminium cation B does not form any base pairs across its inversion related molecule, instead it forms hydrogen bonds with the 3-pyridine sulfonate(A) through N2B—H···O3A, C16A—H···N3B, N4B—H···N17A interactions to form motifs with R22(9) and R22(7) graph set notations (Figure 2). Combination of these motifs leads to the formation of a triplet hydrogen bond array. A previous report from our laboratory on a closely related system, pyrimethaminium benzene sulfonate salt did not yield such an array. This might be due to the absence of acceptor in the benzene ring (Balasubramani et al., 2007).

Other than these strong interactions, the crystal structure is stabilized by C—H···O, C—H···N interactions and ππ stacking interactions between the PMN (B) molecules, with a centroid-to-centroid distance of 3.9465 (13) Å, an interplanar spacing of 3.4332 (8) Å and a centroid offset of 1.946 Å.

From this analysis, it is evident that sulfonates, as usual has a penchant for the formation of bidentate motif and the intermolecular interactions involved in this structure paves way to the formation of two different hydrogen bonded arrays. Identification of such patterns will help in design and construction of preferred hydrogen bonding patterns on drug like molecules.

Related literature top

For background to crystal engineering and supramolecular chemistry, see: Desiraju (1989); Lehn (1995). For structures involving pyrimethamine carboxylates, see: Sethuraman et al. (2003); Stanley et al. (2002). For structures involving sulfonates, see: Hemamalini et al. (2005); Balasubramani et al. (2007); Baskar et al. (2003). For a survey on hydrogen-bonding patterns involving sulfonate salts, see: Haynes et al. (2004). For the crystal structures of pyrimethamine and metoprine, see: Sethuraman & Thomas Muthiah (2002); De et al. (1989). For modeling studies on DHFR–PMN complexes, see: Sansom et al. (1989). For hydrogen-bond motifs, see: Etter (1990); Bernstein et al. (1995).

Experimental top

To obtain crystals of compound (I) suitable for X-ray study, pyrimethamine (31 mg; Shah Pharma Chemicals, India) was dissolved in hot n-propanol (20 ml) and 3-pyridine sulf77onic acid (20 mg; Merck) was dissolved in hot n-propanol (20 ml). The two solutions were mixed and warmed for 20 minutes over a water bath. The solution was allowed to evaporate slowly. After a few days, colourless crystals were obtained.

Refinement top

All the hydrogen atoms were positioned geometrically and were refined using riding model. The N—H and C—H bond lengths are 0.86 and 0.93 Å, respectively [Uiso(H) = 1.2Ueq(parent atom)].

Structure description top

A variety of strategies have been adopted by solid state chemist to tailor the physiochemical properties of an active pharmaceutical ingredient (API). One such strategy is to prepare salt forms of these API's using the concept of crystal engineering (Desiraju, 1989) and supramolecular chemistry (Lehn, 1995). We have reported from our laboratory, the crystal structure of pyrimethamine (PMN), (Sethuraman & Muthiah, 2002) an antifolate drug used in antimalarial chemotherapy and treatment of opportunistic infections in patients with AIDS. Investigations of a fairly large number of crystal structures of pyrimethamine salts involving carboxylates (Sethuraman et al., 2003; Stanley et al., 2002) and a few sulfonates (Hemamalini et al., 2005; Balasubramani et al., 2007) have shown an inclination towards the formation of certain robust motifs and a variety of supramolecular architectures. The CSD survey by Haynes et al. (2004) on the sulfonate salts, revealed various hydrogen bonding patterns and their preferences with specific functional groups.

It is therefore of interest, to investigate the packing preferences and supramolecular architectures of the title compound (Scheme 1). The compound crystallizes in the triclinic space group P1, with two molecules in the asymmetric unit (Figure 1). The crystallographically independent pyrimethamine molecules (A and B) are protonated at N1A and N1B positions as is evident from the increase in respective bond angle at C—N—C, when compared to its neutral form (Sethuraman & Thomas Muthiah, 2002). The bond lengths and angles between the two molecules are in good agreement, with those observed in computer modeling studies on dihydrofolate reductase DHFR–PMN complexes (Sansom et al., 1989) and the crystal structure of metoprine (De et al., 1989).

Each of the protonated pyrimethaminium (N1A and N1B) cations interacts with two oxygen atoms of the respective sulfonate anion through two N—H···O hydrogen bonds, forming an eight membered ring motif R22(8) (Etter, 1990; Bernstein et al., 1995). It is well known that sulfonates imitate carboxylates in forming such bidentate motifs (Baskar et al., 2003). Despite this analogy, what makes things interesting is the higher level of supramolecular organization assumed by the two independent molecules. The pyrimethaminium cation A is centrosymmetrically paired through N4—H···N3 hydrogen bonds involving the 4-amino group and the N3 atom of the pyrimidine to form the ring motif R22(8). In addition to the base pairing, one of the sulfonate oxygen atoms (O2B) bridges the 2-amino and the 4-amino groups on both sides. The combination of such base-pairing patterns and the further bridging of the oxygen atom, leads to the formation of a linear array of four hydrogen bonds. The corresponding graph-set notations are R32(8), R22(8) and R32(8). Occurrence of such an array is a characteristic feature observed in structures reported earlier (Stanley et al., 2002).

The pyrimethaminium cation B does not form any base pairs across its inversion related molecule, instead it forms hydrogen bonds with the 3-pyridine sulfonate(A) through N2B—H···O3A, C16A—H···N3B, N4B—H···N17A interactions to form motifs with R22(9) and R22(7) graph set notations (Figure 2). Combination of these motifs leads to the formation of a triplet hydrogen bond array. A previous report from our laboratory on a closely related system, pyrimethaminium benzene sulfonate salt did not yield such an array. This might be due to the absence of acceptor in the benzene ring (Balasubramani et al., 2007).

Other than these strong interactions, the crystal structure is stabilized by C—H···O, C—H···N interactions and ππ stacking interactions between the PMN (B) molecules, with a centroid-to-centroid distance of 3.9465 (13) Å, an interplanar spacing of 3.4332 (8) Å and a centroid offset of 1.946 Å.

From this analysis, it is evident that sulfonates, as usual has a penchant for the formation of bidentate motif and the intermolecular interactions involved in this structure paves way to the formation of two different hydrogen bonded arrays. Identification of such patterns will help in design and construction of preferred hydrogen bonding patterns on drug like molecules.

For background to crystal engineering and supramolecular chemistry, see: Desiraju (1989); Lehn (1995). For structures involving pyrimethamine carboxylates, see: Sethuraman et al. (2003); Stanley et al. (2002). For structures involving sulfonates, see: Hemamalini et al. (2005); Balasubramani et al. (2007); Baskar et al. (2003). For a survey on hydrogen-bonding patterns involving sulfonate salts, see: Haynes et al. (2004). For the crystal structures of pyrimethamine and metoprine, see: Sethuraman & Thomas Muthiah (2002); De et al. (1989). For modeling studies on DHFR–PMN complexes, see: Sansom et al. (1989). For hydrogen-bond motifs, see: Etter (1990); Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit of the compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms not involved in the hydrogen-bonds have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram showing the interactions. H atoms not involved in the hydrogen-bonds have been omitted for clarity.
Pyrimethaminium pyridine-3-sulfonate top
Crystal data top
C12H14ClN4+·C5H4NO3SZ = 4
Mr = 407.88F(000) = 848
Triclinic, P1Dx = 1.398 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4525 (17) ÅCell parameters from 11491 reflections
b = 12.200 (2) Åθ = 1.8–31.3°
c = 16.539 (3) ŵ = 0.33 mm1
α = 81.130 (9)°T = 296 K
β = 83.580 (9)°Prism, colourless
γ = 68.649 (8)°0.22 × 0.17 × 0.15 mm
V = 1937.3 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7509 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 31.3°, θmin = 1.8°
Tmin = 0.930, Tmax = 0.952h = 1515
38297 measured reflectionsk = 1717
11491 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.3968P]
where P = (Fo2 + 2Fc2)/3
11491 reflections(Δ/σ)max < 0.001
489 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C12H14ClN4+·C5H4NO3Sγ = 68.649 (8)°
Mr = 407.88V = 1937.3 (6) Å3
Triclinic, P1Z = 4
a = 10.4525 (17) ÅMo Kα radiation
b = 12.200 (2) ŵ = 0.33 mm1
c = 16.539 (3) ÅT = 296 K
α = 81.130 (9)°0.22 × 0.17 × 0.15 mm
β = 83.580 (9)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
11491 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
7509 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.952Rint = 0.038
38297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
11491 reflectionsΔρmin = 0.39 e Å3
489 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.05343 (7)0.89280 (6)0.09532 (3)0.0782 (3)
N1A0.08451 (14)0.63858 (13)0.58329 (8)0.0410 (4)
N2A0.23893 (15)0.51659 (15)0.67551 (9)0.0482 (5)
N3A0.31757 (14)0.55476 (13)0.54244 (8)0.0412 (4)
N4A0.39218 (16)0.59433 (17)0.41159 (9)0.0579 (5)
C2A0.21517 (16)0.56952 (15)0.60000 (10)0.0381 (5)
C4A0.28738 (17)0.61007 (16)0.46654 (10)0.0404 (5)
C5A0.14942 (16)0.68001 (15)0.44467 (10)0.0381 (5)
C6A0.04881 (16)0.69257 (15)0.50596 (10)0.0384 (5)
C7A0.10156 (18)0.75762 (18)0.49834 (12)0.0497 (6)
C8A0.1822 (2)0.6740 (2)0.51015 (15)0.0714 (9)
C9A0.12152 (17)0.73574 (15)0.35859 (10)0.0394 (5)
C10A0.0526 (2)0.69537 (19)0.31033 (12)0.0566 (7)
C11A0.0286 (3)0.7442 (2)0.22982 (12)0.0626 (8)
C12A0.0762 (2)0.83365 (18)0.19790 (11)0.0491 (6)
C13A0.1449 (2)0.87560 (19)0.24377 (13)0.0581 (7)
C14A0.1670 (2)0.82680 (18)0.32428 (12)0.0529 (6)
Cl1B0.75619 (13)0.10989 (8)0.46283 (4)0.1200 (4)
N1B0.58495 (16)0.29629 (14)0.01927 (9)0.0464 (5)
N2B0.63275 (18)0.41465 (15)0.13246 (9)0.0541 (6)
N3B0.69002 (16)0.43241 (14)0.00694 (9)0.0466 (5)
N4B0.7508 (2)0.44828 (16)0.11694 (10)0.0606 (6)
C2B0.63649 (18)0.38129 (16)0.05257 (11)0.0432 (5)
C4B0.69761 (19)0.39431 (17)0.07335 (11)0.0451 (6)
C5B0.65112 (19)0.29990 (16)0.11129 (11)0.0445 (6)
C6B0.59195 (19)0.25441 (17)0.06234 (11)0.0453 (6)
C7B0.5359 (2)0.15697 (19)0.08912 (13)0.0589 (7)
C8B0.6301 (3)0.0416 (2)0.06264 (19)0.0887 (11)
C9B0.6738 (2)0.25302 (17)0.19933 (11)0.0473 (6)
C10B0.5798 (2)0.3005 (2)0.26134 (13)0.0619 (7)
C11B0.6061 (3)0.2556 (2)0.34251 (14)0.0724 (9)
C12B0.7232 (3)0.1654 (2)0.36127 (13)0.0703 (9)
C13B0.8169 (4)0.1170 (3)0.30171 (18)0.1075 (11)
C14B0.7925 (3)0.1609 (3)0.22042 (16)0.0897 (10)
S1A0.12542 (4)0.38315 (4)0.22968 (3)0.0454 (1)
O1A0.11857 (15)0.28908 (13)0.29387 (8)0.0619 (5)
O2A0.00169 (14)0.48731 (12)0.23174 (9)0.0592 (5)
O3A0.24940 (15)0.40950 (17)0.22690 (9)0.0706 (6)
N17A0.1545 (2)0.3676 (2)0.00909 (11)0.0774 (8)
C15A0.12956 (18)0.32917 (17)0.13658 (11)0.0440 (5)
C16A0.1441 (3)0.3989 (2)0.06510 (12)0.0635 (8)
C18A0.1467 (3)0.2638 (3)0.01309 (15)0.0816 (11)
C19A0.1299 (4)0.1884 (3)0.05338 (17)0.0943 (13)
C20A0.1217 (3)0.2214 (2)0.13088 (15)0.0734 (9)
S1B0.56043 (5)0.75098 (4)0.20892 (2)0.0410 (1)
O1B0.48714 (17)0.81153 (12)0.13616 (8)0.0612 (5)
O2B0.50786 (13)0.65999 (11)0.25133 (7)0.0459 (4)
O3B0.70717 (14)0.70587 (14)0.19638 (9)0.0615 (5)
N17B0.5612 (3)0.9012 (2)0.40602 (16)0.1179 (12)
C15B0.52136 (19)0.85892 (16)0.27683 (11)0.0446 (6)
C16B0.5830 (3)0.8278 (2)0.34985 (16)0.0970 (12)
C18B0.4734 (3)1.0104 (2)0.38887 (16)0.0842 (10)
C19B0.4067 (2)1.0492 (2)0.31906 (15)0.0657 (8)
C20B0.4310 (2)0.97223 (18)0.26126 (12)0.0530 (6)
H2A20.321100.472100.687800.0580*
H1A0.021600.649000.622600.0490*
H2A10.172200.526600.712400.0580*
H4A10.473900.550700.425400.0690*
H4A20.378800.627700.362000.0690*
H7A10.116600.803300.444600.0600*
H7A20.135500.812700.539000.0600*
H8A10.150700.620800.469100.1070*
H8A20.278300.719200.505300.1070*
H8A30.168400.629200.563600.1070*
H10A0.021600.634000.332400.0680*
H11A0.018800.717000.198000.0750*
H13A0.176400.936400.221000.0700*
H14A0.213100.855600.355900.0640*
H1B0.546900.268000.050200.0560*
H2B20.664700.468800.154300.0650*
H10B0.498400.362800.248800.0740*
H2B10.598300.382200.162600.0650*
H11B0.542300.288000.384200.0870*
H4B10.778100.504500.093300.0730*
H4B20.757900.427000.168800.0730*
H13B0.897500.054400.315200.1290*
H7B10.521900.148100.148400.0710*
H14B0.857400.127500.179500.1080*
H7B20.447300.178300.066300.0710*
H8B10.647700.050900.004200.1330*
H8B20.587800.017200.077800.1330*
H8B30.715200.016800.088900.1330*
H16A0.146900.473200.069200.0760*
H18A0.153100.240200.064700.0980*
H19A0.123900.116000.047000.1130*
H20A0.111300.171600.177600.0880*
H16B0.644000.750500.361000.1170*
H18B0.456701.063300.427100.1010*
H19B0.345101.126600.309900.0790*
H20B0.386500.997200.212500.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.1046 (5)0.0904 (5)0.0411 (3)0.0428 (4)0.0217 (3)0.0212 (3)
N1A0.0334 (7)0.0503 (8)0.0321 (7)0.0093 (6)0.0018 (5)0.0007 (6)
N2A0.0389 (7)0.0622 (10)0.0339 (7)0.0116 (7)0.0026 (6)0.0072 (7)
N3A0.0345 (7)0.0493 (8)0.0329 (7)0.0096 (6)0.0016 (5)0.0024 (6)
N4A0.0390 (8)0.0808 (12)0.0349 (8)0.0068 (8)0.0020 (6)0.0096 (8)
C2A0.0368 (8)0.0421 (9)0.0325 (8)0.0125 (7)0.0024 (6)0.0005 (6)
C4A0.0388 (8)0.0454 (9)0.0317 (8)0.0112 (7)0.0004 (6)0.0005 (7)
C5A0.0387 (8)0.0395 (9)0.0326 (8)0.0112 (7)0.0036 (6)0.0002 (6)
C6A0.0372 (8)0.0390 (9)0.0349 (8)0.0097 (7)0.0042 (6)0.0001 (7)
C7A0.0383 (9)0.0561 (11)0.0417 (9)0.0043 (8)0.0042 (7)0.0028 (8)
C8A0.0489 (12)0.0947 (18)0.0718 (15)0.0291 (12)0.0169 (10)0.0049 (13)
C9A0.0387 (8)0.0407 (9)0.0328 (8)0.0088 (7)0.0036 (6)0.0010 (7)
C10A0.0869 (15)0.0535 (12)0.0402 (10)0.0398 (11)0.0100 (9)0.0041 (8)
C11A0.0951 (16)0.0649 (13)0.0407 (10)0.0424 (13)0.0203 (10)0.0027 (9)
C12A0.0568 (11)0.0518 (11)0.0333 (9)0.0157 (9)0.0069 (7)0.0051 (7)
C13A0.0658 (12)0.0607 (13)0.0526 (11)0.0347 (11)0.0144 (9)0.0173 (9)
C14A0.0589 (11)0.0599 (12)0.0469 (10)0.0312 (10)0.0171 (8)0.0086 (9)
Cl1B0.2271 (11)0.0951 (6)0.0505 (4)0.0703 (7)0.0469 (5)0.0151 (3)
N1B0.0584 (9)0.0509 (9)0.0392 (8)0.0287 (8)0.0065 (6)0.0069 (6)
N2B0.0722 (11)0.0635 (11)0.0385 (8)0.0382 (9)0.0082 (7)0.0021 (7)
N3B0.0583 (9)0.0490 (9)0.0398 (8)0.0270 (8)0.0044 (6)0.0055 (6)
N4B0.0897 (13)0.0692 (11)0.0412 (9)0.0486 (10)0.0092 (8)0.0057 (8)
C2B0.0480 (9)0.0447 (10)0.0385 (9)0.0180 (8)0.0028 (7)0.0058 (7)
C4B0.0516 (10)0.0474 (10)0.0403 (9)0.0213 (8)0.0034 (7)0.0074 (7)
C5B0.0508 (10)0.0473 (10)0.0384 (9)0.0213 (8)0.0009 (7)0.0059 (7)
C6B0.0492 (10)0.0474 (10)0.0419 (9)0.0207 (8)0.0008 (7)0.0057 (7)
C7B0.0745 (14)0.0640 (13)0.0510 (11)0.0421 (12)0.0030 (10)0.0011 (9)
C8B0.112 (2)0.0606 (16)0.099 (2)0.0420 (16)0.0015 (17)0.0028 (14)
C9B0.0571 (11)0.0493 (10)0.0397 (9)0.0239 (9)0.0046 (8)0.0036 (8)
C10B0.0640 (13)0.0708 (14)0.0458 (11)0.0188 (11)0.0021 (9)0.0054 (10)
C11B0.0957 (18)0.0831 (17)0.0428 (11)0.0387 (15)0.0078 (11)0.0117 (11)
C12B0.114 (2)0.0620 (14)0.0438 (11)0.0413 (15)0.0214 (12)0.0047 (10)
C13B0.110 (2)0.106 (2)0.0650 (18)0.0125 (19)0.0283 (16)0.0023 (16)
C14B0.0827 (18)0.096 (2)0.0533 (14)0.0109 (15)0.0057 (12)0.0051 (13)
S1A0.0431 (2)0.0546 (3)0.0372 (2)0.0179 (2)0.0054 (2)0.0056 (2)
O1A0.0667 (9)0.0621 (9)0.0411 (7)0.0117 (7)0.0101 (6)0.0033 (6)
O2A0.0578 (8)0.0481 (8)0.0658 (9)0.0153 (7)0.0151 (7)0.0121 (7)
O3A0.0586 (9)0.1133 (14)0.0532 (9)0.0460 (9)0.0021 (7)0.0110 (8)
N17A0.1227 (18)0.0894 (15)0.0420 (10)0.0650 (14)0.0033 (10)0.0098 (9)
C15A0.0429 (9)0.0496 (10)0.0410 (9)0.0199 (8)0.0066 (7)0.0074 (7)
C16A0.0936 (16)0.0665 (14)0.0436 (11)0.0458 (13)0.0013 (10)0.0062 (9)
C18A0.115 (2)0.102 (2)0.0560 (14)0.0695 (18)0.0113 (13)0.0265 (13)
C19A0.153 (3)0.091 (2)0.0725 (17)0.082 (2)0.0202 (17)0.0313 (15)
C20A0.109 (2)0.0648 (14)0.0579 (13)0.0491 (14)0.0126 (12)0.0085 (11)
S1B0.0532 (3)0.0443 (2)0.0281 (2)0.0208 (2)0.0059 (2)0.0003 (2)
O1B0.1014 (11)0.0536 (8)0.0365 (7)0.0350 (8)0.0274 (7)0.0067 (6)
O2B0.0559 (7)0.0476 (7)0.0366 (6)0.0233 (6)0.0040 (5)0.0009 (5)
O3B0.0549 (8)0.0749 (10)0.0558 (8)0.0262 (8)0.0110 (6)0.0135 (7)
N17B0.177 (3)0.0741 (15)0.0801 (16)0.0096 (16)0.0707 (17)0.0327 (13)
C15B0.0531 (10)0.0440 (10)0.0369 (9)0.0155 (8)0.0119 (7)0.0030 (7)
C16B0.138 (3)0.0592 (15)0.0711 (16)0.0149 (15)0.0631 (17)0.0243 (12)
C18B0.123 (2)0.0581 (15)0.0658 (16)0.0144 (15)0.0211 (15)0.0235 (12)
C19B0.0717 (14)0.0449 (11)0.0721 (15)0.0082 (10)0.0084 (11)0.0109 (10)
C20B0.0568 (11)0.0505 (11)0.0500 (11)0.0169 (9)0.0138 (9)0.0014 (9)
Geometric parameters (Å, º) top
Cl1A—C12A1.7445 (19)C13A—C14A1.380 (3)
Cl1B—C12B1.734 (2)C7A—H7A10.9700
S1A—O2A1.4475 (15)C7A—H7A20.9700
S1A—O3A1.4389 (18)C8A—H8A30.9600
S1A—C15A1.7560 (19)C8A—H8A20.9600
S1A—O1A1.4548 (15)C8A—H8A10.9600
S1B—O1B1.4494 (15)C10A—H10A0.9300
S1B—O2B1.4643 (14)C11A—H11A0.9300
S1B—C15B1.7676 (19)C13A—H13A0.9300
S1B—O3B1.4310 (17)C14A—H14A0.9300
N1A—C6A1.370 (2)C4B—C5B1.440 (3)
N1A—C2A1.351 (2)C5B—C9B1.492 (3)
N2A—C2A1.320 (2)C5B—C6B1.359 (3)
N3A—C4A1.343 (2)C6B—C7B1.496 (3)
N3A—C2A1.330 (2)C7B—C8B1.492 (3)
N4A—C4A1.319 (2)C9B—C10B1.377 (3)
N1A—H1A0.8600C9B—C14B1.373 (4)
N2A—H2A10.8600C10B—C11B1.387 (3)
N2A—H2A20.8600C11B—C12B1.343 (4)
N4A—H4A10.8600C12B—C13B1.349 (4)
N4A—H4A20.8600C13B—C14B1.384 (4)
N1B—C6B1.368 (2)C7B—H7B20.9700
N1B—C2B1.354 (3)C7B—H7B10.9700
N2B—C2B1.322 (2)C8B—H8B10.9600
N3B—C4B1.339 (2)C8B—H8B30.9600
N3B—C2B1.329 (3)C8B—H8B20.9600
N4B—C4B1.329 (3)C10B—H10B0.9300
N1B—H1B0.8600C11B—H11B0.9300
N2B—H2B10.8600C13B—H13B0.9300
N2B—H2B20.8600C14B—H14B0.9300
N4B—H4B20.8600C15A—C16A1.374 (3)
N4B—H4B10.8600C15A—C20A1.365 (3)
N17A—C16A1.322 (3)C18A—C19A1.360 (4)
N17A—C18A1.310 (4)C19A—C20A1.386 (4)
N17B—C18B1.323 (3)C16A—H16A0.9300
N17B—C16B1.333 (4)C18A—H18A0.9300
C4A—C5A1.437 (3)C19A—H19A0.9300
C5A—C9A1.491 (2)C20A—H20A0.9300
C5A—C6A1.360 (2)C15B—C16B1.368 (3)
C6A—C7A1.490 (3)C15B—C20B1.365 (3)
C7A—C8A1.522 (3)C18B—C19B1.347 (4)
C9A—C14A1.383 (3)C19B—C20B1.382 (3)
C9A—C10A1.381 (3)C16B—H16B0.9300
C10A—C11A1.383 (3)C18B—H18B0.9300
C11A—C12A1.370 (3)C19B—H19B0.9300
C12A—C13A1.365 (3)C20B—H20B0.9300
Cl1B···C4Ai3.636 (2)N3B···C16Aiv3.128 (3)
Cl1B···C5Ai3.643 (2)N4A···O2B2.909 (2)
Cl1A···H19Aii3.0400N4A···C14A3.210 (3)
S1A···H2A1iii3.0000N4A···N3Ai3.027 (2)
S1A···H1Aiii2.7900N4B···N17Aiv3.033 (3)
S1B···H1Biv3.0400N17A···N4Biv3.033 (3)
S1B···H2A2i2.9100N1A···H8A32.7400
S1B···H2B1iv2.9300N1B···H8B12.8000
O1A···C19Bv3.361 (3)N2A···H4B2i2.7700
O1A···N1Aiii2.764 (2)N3A···H4A1i2.1700
O1A···C7Aiii3.391 (2)N3B···H16Aiv2.4400
O1B···N1Biv2.805 (2)N17A···H4B1iv2.1900
O2A···N2Aiii2.808 (2)N17B···H18Bvii2.8300
O2A···C11A3.242 (3)N17B···H8A2vi2.6900
O2A···C10A3.251 (3)C2A···C11Bi3.588 (3)
O2B···N2Biv3.005 (2)C2B···C4Biv3.581 (3)
O2B···N2Ai2.978 (2)C4A···Cl1Bi3.636 (2)
O2B···N4A2.909 (2)C4B···C2Biv3.581 (3)
O3A···C10B3.299 (3)C5A···Cl1Bi3.643 (2)
O3A···N2Biv3.003 (3)C7A···O1Aiii3.391 (2)
O3B···N2Ai3.091 (2)C7A···C10A3.400 (3)
O3B···C18Aiv3.270 (3)C10A···C7A3.400 (3)
O1A···H1Aiii1.9200C10A···O2A3.251 (3)
O1A···H20A2.5900C10B···O3A3.299 (3)
O1A···H19Bv2.4800C11A···O2A3.242 (3)
O1A···H8A3iii2.8600C11B···C2Ai3.588 (3)
O1A···H7A2iii2.8500C14A···N4A3.210 (3)
O1B···H8B1iv2.8300C16A···N3Biv3.128 (3)
O1B···H20B2.5800C18A···O3Biv3.270 (3)
O1B···H1Biv1.9700C19B···O1Aii3.361 (3)
O1B···H8B2ii2.6800C8A···H1A2.8900
O1B···H2B1iv2.7800C8B···H1B2.9800
O2A···H10A2.7000C9A···H7A12.6400
O2A···H11A2.7100C9A···H4A22.5300
O2A···H2A1iii2.0000C9B···H4B22.5400
O2A···H1Aiii2.7500C9B···H7B12.6400
O2B···H2A2i2.1500C10A···H7A12.8500
O2B···H2B1iv2.1600C10B···H4B22.9900
O2B···H4A22.2200C13A···H13Bviii2.9700
O3A···H10B2.5100C14A···H4A22.6700
O3A···H16A2.8200C16A···H4B1iv2.8600
O3A···H2B2iv2.1500C16B···H8A2vi2.9800
O3B···H2A1i2.9000C20B···H7B1ii2.9700
O3B···H2A2i2.7400H1A···H8A32.4100
O3B···H16B2.8200H1A···H2A12.2500
O3B···H11Avi2.9200H1A···H7A22.4200
O3B···H18Aiv2.6200H1B···H2B12.2800
N1A···O1Aiii2.764 (2)H1B···H7B22.3900
N1B···O1Biv2.805 (2)H1B···H8B12.5300
N2A···O2Aiii2.808 (2)H2A1···H4B2i2.3800
N2A···O3Bi3.091 (2)H2A1···H1A2.2500
N2A···O2Bi2.978 (2)H7A2···H1A2.4200
N2B···O3Aiv3.003 (3)H8A2···H16Bix2.5400
N2B···O2Biv3.005 (2)H2B2···H10Biv2.5700
N3A···N4Ai3.027 (2)H13A···H20B2.5500
O3A—S1A—C15A105.74 (10)C13A—C14A—H14A120.00
O1A—S1A—O3A113.82 (10)C9A—C14A—H14A120.00
O1A—S1A—C15A105.92 (9)N1B—C2B—N2B119.11 (18)
O1A—S1A—O2A111.57 (9)N2B—C2B—N3B119.20 (18)
O2A—S1A—C15A105.93 (9)N1B—C2B—N3B121.68 (16)
O2A—S1A—O3A113.08 (10)N3B—C4B—N4B116.46 (18)
O2B—S1B—O3B111.80 (9)N3B—C4B—C5B122.36 (18)
O1B—S1B—C15B105.88 (9)N4B—C4B—C5B121.18 (17)
O1B—S1B—O3B114.99 (9)C6B—C5B—C9B122.95 (18)
O2B—S1B—C15B105.67 (8)C4B—C5B—C9B120.27 (17)
O3B—S1B—C15B106.12 (10)C4B—C5B—C6B116.73 (17)
O1B—S1B—O2B111.61 (9)C5B—C6B—C7B125.56 (17)
C2A—N1A—C6A122.28 (15)N1B—C6B—C7B115.24 (17)
C2A—N3A—C4A118.01 (16)N1B—C6B—C5B119.17 (18)
C6A—N1A—H1A119.00C6B—C7B—C8B112.0 (2)
C2A—N1A—H1A119.00C5B—C9B—C10B122.07 (19)
H2A2—N2A—H2A1120.00C10B—C9B—C14B118.13 (19)
C2A—N2A—H2A1120.00C5B—C9B—C14B119.80 (19)
C2A—N2A—H2A2120.00C9B—C10B—C11B120.2 (2)
C4A—N4A—H4A2120.00C10B—C11B—C12B120.3 (2)
H4A1—N4A—H4A2120.00C11B—C12B—C13B120.7 (2)
C4A—N4A—H4A1120.00Cl1B—C12B—C11B120.23 (19)
C2B—N1B—C6B121.60 (17)Cl1B—C12B—C13B119.1 (2)
C2B—N3B—C4B118.31 (17)C12B—C13B—C14B119.7 (3)
C6B—N1B—H1B119.00C9B—C14B—C13B120.9 (3)
C2B—N1B—H1B119.00C8B—C7B—H7B2109.00
C2B—N2B—H2B1120.00C8B—C7B—H7B1109.00
H2B2—N2B—H2B1120.00C6B—C7B—H7B2109.00
C2B—N2B—H2B2120.00C6B—C7B—H7B1109.00
H4B1—N4B—H4B2120.00H7B1—C7B—H7B2108.00
C4B—N4B—H4B1120.00H8B1—C8B—H8B3110.00
C4B—N4B—H4B2120.00C7B—C8B—H8B1109.00
C16A—N17A—C18A116.4 (2)C7B—C8B—H8B2109.00
C16B—N17B—C18B116.7 (3)C7B—C8B—H8B3109.00
N1A—C2A—N3A121.39 (15)H8B1—C8B—H8B2109.00
N1A—C2A—N2A118.09 (16)H8B2—C8B—H8B3109.00
N2A—C2A—N3A120.52 (16)C9B—C10B—H10B120.00
N3A—C4A—N4A116.04 (17)C11B—C10B—H10B120.00
N4A—C4A—C5A121.14 (16)C12B—C11B—H11B120.00
N3A—C4A—C5A122.80 (16)C10B—C11B—H11B120.00
C4A—C5A—C9A120.40 (15)C12B—C13B—H13B120.00
C4A—C5A—C6A116.69 (15)C14B—C13B—H13B120.00
C6A—C5A—C9A122.91 (16)C13B—C14B—H14B120.00
N1A—C6A—C7A114.49 (15)C9B—C14B—H14B120.00
C5A—C6A—C7A126.76 (16)C16A—C15A—C20A118.02 (19)
N1A—C6A—C5A118.72 (16)S1A—C15A—C16A117.92 (16)
C6A—C7A—C8A112.06 (17)S1A—C15A—C20A124.05 (16)
C5A—C9A—C10A120.68 (16)N17A—C16A—C15A124.5 (2)
C10A—C9A—C14A118.25 (17)N17A—C18A—C19A124.2 (3)
C5A—C9A—C14A121.05 (17)C18A—C19A—C20A118.8 (3)
C9A—C10A—C11A121.5 (2)C15A—C20A—C19A118.1 (2)
C10A—C11A—C12A118.5 (2)N17A—C16A—H16A118.00
Cl1A—C12A—C11A119.49 (17)C15A—C16A—H16A118.00
Cl1A—C12A—C13A118.89 (16)N17A—C18A—H18A118.00
C11A—C12A—C13A121.59 (19)C19A—C18A—H18A118.00
C12A—C13A—C14A119.3 (2)C18A—C19A—H19A121.00
C9A—C14A—C13A120.91 (19)C20A—C19A—H19A121.00
C8A—C7A—H7A2109.00C15A—C20A—H20A121.00
C6A—C7A—H7A2109.00C19A—C20A—H20A121.00
C8A—C7A—H7A1109.00S1B—C15B—C16B118.77 (16)
C6A—C7A—H7A1109.00S1B—C15B—C20B123.70 (15)
H7A1—C7A—H7A2108.00C16B—C15B—C20B117.52 (18)
C7A—C8A—H8A3109.00N17B—C16B—C15B124.2 (2)
H8A1—C8A—H8A3109.00N17B—C18B—C19B123.5 (2)
C7A—C8A—H8A2109.00C18B—C19B—C20B119.0 (2)
H8A1—C8A—H8A2109.00C15B—C20B—C19B118.99 (19)
C7A—C8A—H8A1109.00N17B—C16B—H16B118.00
H8A2—C8A—H8A3109.00C15B—C16B—H16B118.00
C9A—C10A—H10A119.00N17B—C18B—H18B118.00
C11A—C10A—H10A119.00C19B—C18B—H18B118.00
C10A—C11A—H11A121.00C18B—C19B—H19B121.00
C12A—C11A—H11A121.00C20B—C19B—H19B120.00
C12A—C13A—H13A120.00C15B—C20B—H20B120.00
C14A—C13A—H13A120.00C19B—C20B—H20B121.00
O2A—S1A—C15A—C16A65.0 (2)C5A—C9A—C10A—C11A178.5 (2)
O1A—S1A—C15A—C16A176.4 (2)C10A—C9A—C14A—C13A0.4 (3)
O1A—S1A—C15A—C20A2.4 (2)C14A—C9A—C10A—C11A0.2 (3)
O3A—S1A—C15A—C20A123.5 (2)C5A—C9A—C14A—C13A177.88 (19)
O2A—S1A—C15A—C20A116.2 (2)C9A—C10A—C11A—C12A0.7 (4)
O3A—S1A—C15A—C16A55.3 (2)C10A—C11A—C12A—C13A0.6 (4)
O1B—S1B—C15B—C16B176.6 (2)C10A—C11A—C12A—Cl1A177.44 (18)
O2B—S1B—C15B—C16B64.8 (2)Cl1A—C12A—C13A—C14A178.06 (17)
O2B—S1B—C15B—C20B114.20 (19)C11A—C12A—C13A—C14A0.0 (3)
O1B—S1B—C15B—C20B4.3 (2)C12A—C13A—C14A—C9A0.5 (3)
O3B—S1B—C15B—C20B126.96 (19)N3B—C4B—C5B—C6B3.3 (3)
O3B—S1B—C15B—C16B54.0 (2)N4B—C4B—C5B—C9B5.7 (3)
C6A—N1A—C2A—N2A176.88 (16)N4B—C4B—C5B—C6B176.8 (2)
C2A—N1A—C6A—C7A175.61 (16)N3B—C4B—C5B—C9B174.24 (19)
C2A—N1A—C6A—C5A2.7 (3)C9B—C5B—C6B—N1B174.81 (18)
C6A—N1A—C2A—N3A3.1 (3)C4B—C5B—C6B—N1B2.6 (3)
C2A—N3A—C4A—N4A179.13 (17)C4B—C5B—C6B—C7B179.57 (19)
C2A—N3A—C4A—C5A2.5 (3)C9B—C5B—C6B—C7B3.0 (3)
C4A—N3A—C2A—N1A0.4 (3)C6B—C5B—C9B—C10B93.4 (3)
C4A—N3A—C2A—N2A179.56 (17)C4B—C5B—C9B—C10B89.3 (3)
C2B—N1B—C6B—C7B177.49 (18)C4B—C5B—C9B—C14B89.7 (3)
C6B—N1B—C2B—N2B176.88 (18)C6B—C5B—C9B—C14B87.7 (3)
C6B—N1B—C2B—N3B3.5 (3)C5B—C6B—C7B—C8B103.5 (3)
C2B—N1B—C6B—C5B0.5 (3)N1B—C6B—C7B—C8B74.4 (3)
C4B—N3B—C2B—N2B177.53 (19)C10B—C9B—C14B—C13B0.0 (4)
C2B—N3B—C4B—N4B179.51 (19)C5B—C9B—C14B—C13B179.0 (3)
C2B—N3B—C4B—C5B0.5 (3)C5B—C9B—C10B—C11B178.8 (2)
C4B—N3B—C2B—N1B2.8 (3)C14B—C9B—C10B—C11B0.1 (4)
C16A—N17A—C18A—C19A0.5 (5)C9B—C10B—C11B—C12B0.1 (4)
C18A—N17A—C16A—C15A1.8 (4)C10B—C11B—C12B—Cl1B179.7 (2)
C16B—N17B—C18B—C19B0.2 (5)C10B—C11B—C12B—C13B0.1 (5)
C18B—N17B—C16B—C15B0.4 (5)C11B—C12B—C13B—C14B0.2 (5)
N3A—C4A—C5A—C6A2.8 (3)Cl1B—C12B—C13B—C14B179.5 (3)
N3A—C4A—C5A—C9A177.73 (16)C12B—C13B—C14B—C9B0.2 (5)
N4A—C4A—C5A—C9A0.6 (3)C20A—C15A—C16A—N17A1.8 (4)
N4A—C4A—C5A—C6A178.94 (18)S1A—C15A—C20A—C19A178.3 (3)
C4A—C5A—C6A—C7A178.24 (17)S1A—C15A—C16A—N17A177.1 (2)
C4A—C5A—C9A—C10A110.3 (2)C16A—C15A—C20A—C19A0.5 (4)
C9A—C5A—C6A—N1A179.61 (16)N17A—C18A—C19A—C20A0.7 (6)
C4A—C5A—C6A—N1A0.1 (2)C18A—C19A—C20A—C15A0.7 (5)
C9A—C5A—C6A—C7A2.3 (3)S1B—C15B—C16B—N17B179.7 (2)
C6A—C5A—C9A—C10A70.2 (2)C20B—C15B—C16B—N17B0.6 (4)
C6A—C5A—C9A—C14A111.5 (2)S1B—C15B—C20B—C19B179.24 (17)
C4A—C5A—C9A—C14A68.0 (2)C16B—C15B—C20B—C19B0.2 (3)
N1A—C6A—C7A—C8A67.9 (2)N17B—C18B—C19B—C20B0.6 (4)
C5A—C6A—C7A—C8A110.3 (2)C18B—C19B—C20B—C15B0.4 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z; (v) x, y1, z; (vi) x+1, y, z; (vii) x+1, y+2, z+1; (viii) x1, y+1, z; (ix) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A2···O2Bi0.862.152.978 (2)162
N1A—H1A···O1Aiii0.861.922.764 (2)166
N1B—H1B···O1Biv0.861.972.805 (2)164
N2A—H2A1···O2Aiii0.862.002.808 (2)157
N4A—H4A1···N3Ai0.862.173.027 (2)178
N4A—H4A2···O2B0.862.222.909 (2)137
N2B—H2B2···O3Aiv0.862.153.003 (3)171
N2B—H2B1···O2Biv0.862.163.005 (2)167
N4B—H4B1···N17Aiv0.862.193.033 (3)168
C10B—H10B···O3A0.932.513.299 (3)143
C16A—H16A···N3Biv0.932.443.128 (3)131
C19B—H19B···O1Aii0.932.483.361 (3)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H14ClN4+·C5H4NO3S
Mr407.88
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.4525 (17), 12.200 (2), 16.539 (3)
α, β, γ (°)81.130 (9), 83.580 (9), 68.649 (8)
V3)1937.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.22 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.930, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
38297, 11491, 7509
Rint0.038
(sin θ/λ)max1)0.731
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.142, 1.04
No. of reflections11491
No. of parameters489
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.39

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A2···O2Bi0.862.152.978 (2)162
N1A—H1A···O1Aii0.861.922.764 (2)166
N1B—H1B···O1Biii0.861.972.805 (2)164
N2A—H2A1···O2Aii0.862.002.808 (2)157
N4A—H4A1···N3Ai0.862.173.027 (2)178
N4A—H4A2···O2B0.862.222.909 (2)137
N2B—H2B2···O3Aiii0.862.153.003 (3)171
N2B—H2B1···O2Biii0.862.163.005 (2)167
N4B—H4B1···N17Aiii0.862.193.033 (3)168
C10B—H10B···O3A0.932.513.299 (3)143
C16A—H16A···N3Biii0.932.443.128 (3)131
C19B—H19B···O1Aiv0.932.483.361 (3)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z.
 

Acknowledgements

JSN thanks the UGC– SAP, India, for the award of an RFSMS. The authors thank the DST India (FIST programme) for the use of the diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India

References

First citationBalasubramani, K., Muthiah, P. T. & Lynch, D. E. (2007). Chem. Cent. J. 1: 28.  Google Scholar
First citationBaskar, R. S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe, A., Basak, A. K. & Roychowdhury, P. (1989). Indian J. Phys. Sect. A 63 553–563.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering. The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationEtter, M.-C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHaynes, D. A., Chisholm, J. A., Jones, W. & Motherwell, W. D. S. (2004). CrystEngComm, 6, 584–588.  Web of Science CrossRef CAS Google Scholar
First citationHemamalini, M., Muthiah, P. T., Sridhar, B. & Rajaram, R. K. (2005). Acta Cryst. E61, o1480–o1482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLehn, J. M. (1995). Supramolecular Chemistry, New York: VCH.  Google Scholar
First citationSansom, C. E., Schwalbe, C. H., Lambert, P. A., Griffin, R. J. & Stevens, M. F. G. (1989). Biochim. Biophys. Acta, 995, 21–27.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSethuraman, V. & Thomas Muthiah, P. (2002). Acta Cryst. E58, o817–o818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSethuraman, V., Stanley, N., Muthiah, P. T., Sheldrick, W. S., Winter, M., Luger, P. & Weber, M. (2003). Cryst. Growth Des. 3, 823–828.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStanley, N., Sethuraman, V., Muthiah, P. T., Luger, P. & Weber, M. (2002). Cryst. Growth Des. 2, 631–635.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds