organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-methyl­pyridinium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 14 July 2010; accepted 16 July 2010; online 24 July 2010)

In the crystal structure of the title salt, C6H9N2+·C7H5O6S·H2O, the water mol­ecule acts as an acceptor of bifurcated N—H⋯O hydrogen bonds from the pyridinium H atom and one H atom of the 2-amino group, forming an R21(6) ring. The 3-carb­oxy-4-hy­droxy­benzene­sulfonate anions self-assemble via O—H⋯O hydrogen bonds, leading to supra­molecular chains along the a axis. These chains and R21(6) motifs are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a layer parallel to the ac plane. There is also an intra­molecular O—H⋯O hydrogen bond in the 3-carb­oxy-4-hy­droxy­benzene­sulfonate anion, generating an S(6) ring motif.

Related literature

For details of sulfonates, see: Onoda et al. (2001[Onoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516-521.]); Baskar Raj et al. (2003[Baskar Raj, S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70-76.]); Ma et al. (2003a[Ma, J.-F., Yang, J. & Liu, J.-F. (2003a). Acta Cryst. E59, m478-m480.],b[Ma, J.-F., Yang, J. & Liu, J.-F. (2003b). Acta Cryst. E59, m481-m482.],c[Ma, J.-F., Yang, J. & Liu, J.-F. (2003c). Acta Cryst. E59, m483-m484.],d[Ma, J.-F., Yang, J. & Liu, J.-F. (2003d). Acta Cryst. E59, m485-m486.],e[Ma, J.-F., Yang, J. & Liu, J.-F. (2003e). Acta Cryst. E59, m487-m488.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H5O6S·H2O

  • Mr = 344.34

  • Monoclinic, P 21 /c

  • a = 8.3280 (9) Å

  • b = 24.122 (3) Å

  • c = 7.9355 (8) Å

  • β = 112.800 (3)°

  • V = 1469.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.22 × 0.13 × 0.04 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.989

  • 19925 measured reflections

  • 5266 independent reflections

  • 3749 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.120

  • S = 1.03

  • 5266 reflections

  • 272 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O4i 0.87 (2) 1.96 (2) 2.8108 (18) 168 (2)
O1W—H2W1⋯O2 0.86 (2) 2.04 (2) 2.8882 (18) 175 (2)
O1—H1O1⋯O2 0.89 (3) 1.84 (2) 2.6325 (18) 146 (2)
O3—H1O3⋯O6ii 0.84 (3) 1.76 (3) 2.5842 (18) 166 (2)
N1—H1N1⋯O1Wiii 0.92 (3) 1.96 (2) 2.808 (2) 153 (2)
N2—H1N2⋯O1Wiii 0.87 (3) 2.16 (3) 2.923 (2) 147.7 (19)
N2—H2N2⋯O5i 0.86 (3) 2.19 (3) 3.030 (2) 163 (3)
C2—H2A⋯O3iv 0.94 (2) 2.58 (2) 3.507 (2) 169.1 (17)
C4—H4A⋯O4i 0.96 (2) 2.56 (2) 3.449 (2) 155.4 (16)
C4—H4A⋯O5i 0.96 (2) 2.57 (2) 3.370 (2) 142 (2)
Symmetry codes: (i) x-1, y, z-1; (ii) x-1, y, z; (iii) x+1, y, z; (iv) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes are of current interest (Onoda et al., 2001). Such interactions can be utilized for designing supramolecular architectures (Baskar Raj et al., 2003). The crystal structure of transition metal (Mn, Co, Ni, Zn and Cu) complexes of the sulfosalicylate ion (3-carboxy-4-hydroxybenzenesulfonate) have been reported in the literature (Ma et al., 2003a,b,c,d,e). Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound (I) is presented here.

The asymmetric unit of (I) contains one 2-amino-4-methylpyridinium cation, one 3-carboxy-4-hydroxybenzenesulfonate anion and a water molecule (Fig. 1). The 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.005 (2) Å for atom C4. The protonated N1 atom has lead to a slight increase in the C1—N1—C5 angle to 122.70 (14)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), atom O1W of the water molecule act as acceptors of bifurcated N1—H1N1···O1W and N2—H1N2···O1W hydrogen bonds with the protonated nitrogen atom and one of the 2-amino group hydrogen atom (H1N2), forming a ring with graph-set notation R12(6). The 3-carboxy-4-hydroxybenzenesulfonate anions self-assemble via O3—H1O3···O6 hydrogen bonds, leading to a one-dimensional supramolecular chain along the a-axis. Furthermore, this chain and the R12(6) motif are cross-linked via O—H···O, N—H···O and C—H···O hydrogen bonds, forming a layer parallel to the ac plane. There is an intramolecular O1—H1O1···O2 hydrogen bond in the 3-carboxy-4-hydroxybenzenesulfonate anion, which generates an S(6) ring motif.

Related literature top

For details of sulfonates, see: Onoda et al. (2001); Baskar Raj et al. (2003); Ma et al. (2003a,b,c,d,e). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (27 mg, Aldrich) and sulfosalicylic acid (54 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

All the H atoms were located from a difference Fourier map and refined freely [C—H = 0.94 (3)–1.013 (19) Å; N—H = 0.86 (3)–0.91 (3) Å and O—H = 0.84 (3)–0.89 (2) Å].

Structure description top

Hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes are of current interest (Onoda et al., 2001). Such interactions can be utilized for designing supramolecular architectures (Baskar Raj et al., 2003). The crystal structure of transition metal (Mn, Co, Ni, Zn and Cu) complexes of the sulfosalicylate ion (3-carboxy-4-hydroxybenzenesulfonate) have been reported in the literature (Ma et al., 2003a,b,c,d,e). Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound (I) is presented here.

The asymmetric unit of (I) contains one 2-amino-4-methylpyridinium cation, one 3-carboxy-4-hydroxybenzenesulfonate anion and a water molecule (Fig. 1). The 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.005 (2) Å for atom C4. The protonated N1 atom has lead to a slight increase in the C1—N1—C5 angle to 122.70 (14)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), atom O1W of the water molecule act as acceptors of bifurcated N1—H1N1···O1W and N2—H1N2···O1W hydrogen bonds with the protonated nitrogen atom and one of the 2-amino group hydrogen atom (H1N2), forming a ring with graph-set notation R12(6). The 3-carboxy-4-hydroxybenzenesulfonate anions self-assemble via O3—H1O3···O6 hydrogen bonds, leading to a one-dimensional supramolecular chain along the a-axis. Furthermore, this chain and the R12(6) motif are cross-linked via O—H···O, N—H···O and C—H···O hydrogen bonds, forming a layer parallel to the ac plane. There is an intramolecular O1—H1O1···O2 hydrogen bond in the 3-carboxy-4-hydroxybenzenesulfonate anion, which generates an S(6) ring motif.

For details of sulfonates, see: Onoda et al. (2001); Baskar Raj et al. (2003); Ma et al. (2003a,b,c,d,e). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding patterns in compound (I).
2-Amino-4-methylpyridinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate top
Crystal data top
C6H9N2+·C7H5O6S·H2OF(000) = 720
Mr = 344.34Dx = 1.556 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3564 reflections
a = 8.3280 (9) Åθ = 2.9–31.3°
b = 24.122 (3) ŵ = 0.26 mm1
c = 7.9355 (8) ÅT = 100 K
β = 112.800 (3)°Plate, colourless
V = 1469.6 (3) Å30.22 × 0.13 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5266 independent reflections
Radiation source: fine-focus sealed tube3749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
φ and ω scansθmax = 32.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1211
Tmin = 0.945, Tmax = 0.989k = 3436
19925 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.056P)2 + 0.3252P]
where P = (Fo2 + 2Fc2)/3
5266 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C6H9N2+·C7H5O6S·H2OV = 1469.6 (3) Å3
Mr = 344.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3280 (9) ŵ = 0.26 mm1
b = 24.122 (3) ÅT = 100 K
c = 7.9355 (8) Å0.22 × 0.13 × 0.04 mm
β = 112.800 (3)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
5266 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3749 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.989Rint = 0.054
19925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.48 e Å3
5266 reflectionsΔρmin = 0.46 e Å3
272 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.72197 (18)0.06878 (6)0.66805 (18)0.0152 (3)
N20.5709 (2)0.13358 (6)0.4490 (2)0.0198 (3)
C10.7310 (2)0.02604 (7)0.7835 (2)0.0178 (3)
C20.5828 (2)0.00495 (7)0.7925 (2)0.0175 (3)
C30.4197 (2)0.02782 (6)0.6816 (2)0.0150 (3)
C40.4152 (2)0.07114 (7)0.5679 (2)0.0151 (3)
C50.5695 (2)0.09223 (6)0.5591 (2)0.0143 (3)
C60.2550 (2)0.00524 (8)0.6887 (2)0.0210 (3)
S11.05075 (5)0.122233 (15)1.12957 (5)0.01150 (9)
O10.45088 (16)0.26192 (5)0.70255 (16)0.0191 (2)
O20.25121 (14)0.18998 (5)0.77919 (15)0.0163 (2)
O30.38003 (15)0.11993 (5)0.96906 (15)0.0149 (2)
O40.99761 (15)0.08555 (5)1.24394 (14)0.0162 (2)
O51.19053 (14)0.15990 (5)1.23096 (15)0.0169 (2)
O61.08974 (14)0.09095 (4)0.99033 (14)0.0143 (2)
C70.5829 (2)0.22831 (6)0.8014 (2)0.0133 (3)
C80.7498 (2)0.24303 (7)0.8160 (2)0.0160 (3)
C90.8917 (2)0.21104 (6)0.9167 (2)0.0146 (3)
C100.86880 (19)0.16349 (6)1.00593 (19)0.0117 (3)
C110.70415 (19)0.14816 (6)0.99271 (19)0.0118 (3)
C120.55938 (19)0.18022 (6)0.88935 (19)0.0115 (3)
C130.3834 (2)0.16422 (6)0.87474 (19)0.0123 (3)
O1W0.05262 (17)0.12872 (5)0.54890 (17)0.0207 (3)
H1A0.850 (3)0.0128 (9)0.855 (3)0.031 (6)*
H2A0.592 (3)0.0256 (8)0.870 (3)0.020 (5)*
H4A0.309 (3)0.0871 (8)0.485 (3)0.018 (5)*
H6A0.161 (3)0.0148 (10)0.581 (3)0.044 (7)*
H6B0.239 (4)0.0168 (10)0.796 (4)0.051 (7)*
H6C0.259 (4)0.0352 (11)0.695 (4)0.054 (8)*
H9A1.007 (3)0.2204 (8)0.925 (3)0.019 (5)*
H8A0.766 (3)0.2767 (9)0.752 (3)0.027 (5)*
H11A0.683 (3)0.1137 (8)1.054 (3)0.017 (5)*
H1W10.027 (3)0.1193 (9)0.457 (3)0.030 (6)*
H2W10.034 (3)0.1488 (10)0.614 (3)0.035 (6)*
H1O10.353 (3)0.2485 (10)0.708 (3)0.038 (6)*
H1O30.280 (3)0.1160 (10)0.969 (3)0.040 (7)*
H1N10.822 (3)0.0824 (9)0.661 (3)0.039 (7)*
H1N20.671 (3)0.1437 (9)0.450 (3)0.031 (6)*
H2N20.471 (4)0.1469 (11)0.379 (3)0.047 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0115 (6)0.0191 (6)0.0148 (6)0.0004 (5)0.0047 (5)0.0003 (5)
N20.0177 (8)0.0222 (7)0.0193 (7)0.0003 (6)0.0070 (6)0.0056 (5)
C10.0166 (8)0.0182 (7)0.0160 (7)0.0020 (6)0.0035 (6)0.0001 (6)
C20.0201 (8)0.0166 (7)0.0150 (7)0.0018 (6)0.0060 (6)0.0015 (5)
C30.0159 (8)0.0173 (7)0.0120 (6)0.0027 (6)0.0057 (6)0.0030 (5)
C40.0129 (7)0.0191 (7)0.0127 (7)0.0005 (6)0.0044 (6)0.0004 (5)
C50.0148 (7)0.0169 (7)0.0115 (6)0.0004 (6)0.0053 (5)0.0006 (5)
C60.0204 (9)0.0242 (9)0.0205 (8)0.0073 (7)0.0100 (7)0.0015 (6)
S10.00831 (17)0.01437 (17)0.01216 (16)0.00001 (13)0.00434 (12)0.00150 (12)
O10.0124 (6)0.0204 (6)0.0239 (6)0.0034 (4)0.0062 (5)0.0083 (4)
O20.0093 (5)0.0196 (5)0.0186 (5)0.0009 (4)0.0038 (4)0.0017 (4)
O30.0100 (5)0.0166 (5)0.0204 (5)0.0003 (4)0.0085 (4)0.0033 (4)
O40.0124 (5)0.0206 (6)0.0162 (5)0.0007 (4)0.0062 (4)0.0057 (4)
O50.0108 (5)0.0196 (5)0.0175 (5)0.0035 (4)0.0023 (4)0.0011 (4)
O60.0118 (5)0.0169 (5)0.0166 (5)0.0012 (4)0.0079 (4)0.0000 (4)
C70.0114 (7)0.0147 (7)0.0134 (6)0.0018 (5)0.0044 (5)0.0023 (5)
C80.0132 (7)0.0172 (7)0.0188 (7)0.0005 (6)0.0075 (6)0.0044 (6)
C90.0110 (7)0.0168 (7)0.0169 (7)0.0012 (5)0.0066 (6)0.0017 (5)
C100.0109 (7)0.0142 (6)0.0105 (6)0.0000 (5)0.0046 (5)0.0012 (5)
C110.0119 (7)0.0130 (6)0.0119 (6)0.0002 (5)0.0063 (5)0.0010 (5)
C120.0099 (7)0.0137 (6)0.0116 (6)0.0004 (5)0.0050 (5)0.0001 (5)
C130.0119 (7)0.0139 (6)0.0121 (6)0.0002 (5)0.0059 (5)0.0016 (5)
O1W0.0168 (6)0.0282 (7)0.0184 (6)0.0051 (5)0.0083 (5)0.0024 (5)
Geometric parameters (Å, º) top
N1—C51.352 (2)S1—O61.4744 (10)
N1—C11.362 (2)S1—C101.7598 (15)
N1—H1N10.91 (3)O1—C71.3464 (18)
N2—C51.329 (2)O1—H1O10.89 (2)
N2—H1N20.87 (2)O2—C131.2354 (18)
N2—H2N20.86 (3)O3—C131.3108 (17)
C1—C21.362 (2)O3—H1O30.84 (3)
C1—H1A0.98 (2)C7—C81.396 (2)
C2—C31.413 (2)C7—C121.4059 (19)
C2—H2A0.946 (19)C8—C91.378 (2)
C3—C41.372 (2)C8—H8A0.99 (2)
C3—C61.496 (2)C9—C101.399 (2)
C4—C51.408 (2)C9—H9A0.96 (2)
C4—H4A0.95 (2)C10—C111.384 (2)
C6—H6A0.94 (3)C11—C121.399 (2)
C6—H6B0.96 (3)C11—H11A1.013 (19)
C6—H6C0.98 (3)C12—C131.476 (2)
S1—O51.4498 (12)O1W—H1W10.87 (2)
S1—O41.4539 (10)O1W—H2W10.86 (3)
C5—N1—C1122.70 (14)O4—S1—O6111.41 (6)
C5—N1—H1N1117.5 (15)O5—S1—C10106.72 (7)
C1—N1—H1N1119.8 (15)O4—S1—C10106.72 (7)
C5—N2—H1N2117.3 (15)O6—S1—C10105.29 (6)
C5—N2—H2N2117.0 (17)C7—O1—H1O1107.9 (15)
H1N2—N2—H2N2126 (2)C13—O3—H1O3109.5 (17)
N1—C1—C2120.18 (15)O1—C7—C8117.20 (13)
N1—C1—H1A114.5 (13)O1—C7—C12123.15 (13)
C2—C1—H1A125.3 (13)C8—C7—C12119.64 (14)
C1—C2—C3119.59 (15)C9—C8—C7120.56 (14)
C1—C2—H2A118.8 (12)C9—C8—H8A119.9 (13)
C3—C2—H2A121.5 (12)C7—C8—H8A119.5 (13)
C4—C3—C2118.76 (15)C8—C9—C10119.87 (14)
C4—C3—C6120.69 (15)C8—C9—H9A121.1 (12)
C2—C3—C6120.55 (14)C10—C9—H9A119.0 (12)
C3—C4—C5121.00 (15)C11—C10—C9120.40 (14)
C3—C4—H4A122.9 (12)C11—C10—S1120.31 (11)
C5—C4—H4A115.9 (12)C9—C10—S1119.26 (11)
N2—C5—N1119.28 (15)C10—C11—C12120.00 (13)
N2—C5—C4122.94 (15)C10—C11—H11A122.3 (11)
N1—C5—C4117.77 (14)C12—C11—H11A117.7 (11)
C3—C6—H6A109.5 (15)C11—C12—C7119.53 (13)
C3—C6—H6B112.1 (16)C11—C12—C13120.35 (13)
H6A—C6—H6B112 (2)C7—C12—C13120.11 (13)
C3—C6—H6C110.6 (17)O2—C13—O3123.31 (13)
H6A—C6—H6C107 (2)O2—C13—C12122.56 (13)
H6B—C6—H6C105 (2)O3—C13—C12114.11 (13)
O5—S1—O4114.09 (7)H1W1—O1W—H2W1103 (2)
O5—S1—O6111.96 (6)
C5—N1—C1—C20.2 (2)O6—S1—C10—C11101.97 (12)
N1—C1—C2—C30.2 (2)O5—S1—C10—C943.01 (13)
C1—C2—C3—C40.3 (2)O4—S1—C10—C9165.36 (11)
C1—C2—C3—C6179.81 (15)O6—S1—C10—C976.13 (12)
C2—C3—C4—C50.8 (2)C9—C10—C11—C120.1 (2)
C6—C3—C4—C5179.32 (14)S1—C10—C11—C12177.97 (10)
C1—N1—C5—N2179.53 (14)C10—C11—C12—C70.8 (2)
C1—N1—C5—C40.2 (2)C10—C11—C12—C13179.91 (13)
C3—C4—C5—N2179.01 (14)O1—C7—C12—C11178.68 (13)
C3—C4—C5—N10.8 (2)C8—C7—C12—C111.0 (2)
O1—C7—C8—C9179.25 (14)O1—C7—C12—C130.4 (2)
C12—C7—C8—C90.4 (2)C8—C7—C12—C13179.93 (13)
C7—C8—C9—C100.3 (2)C11—C12—C13—O2177.02 (13)
C8—C9—C10—C110.4 (2)C7—C12—C13—O23.9 (2)
C8—C9—C10—S1178.55 (12)C11—C12—C13—O31.81 (19)
O5—S1—C10—C11138.89 (12)C7—C12—C13—O3177.26 (12)
O4—S1—C10—C1116.54 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.87 (2)1.96 (2)2.8108 (18)168 (2)
O1W—H2W1···O20.86 (2)2.04 (2)2.8882 (18)175 (2)
O1—H1O1···O20.89 (3)1.84 (2)2.6325 (18)146 (2)
O3—H1O3···O6ii0.84 (3)1.76 (3)2.5842 (18)166 (2)
N1—H1N1···O1Wiii0.92 (3)1.96 (2)2.808 (2)153 (2)
N2—H1N2···O1Wiii0.87 (3)2.16 (3)2.923 (2)147.7 (19)
N2—H2N2···O5i0.86 (3)2.19 (3)3.030 (2)163 (3)
C2—H2A···O3iv0.94 (2)2.58 (2)3.507 (2)169.1 (17)
C4—H4A···O4i0.96 (2)2.56 (2)3.449 (2)155.4 (16)
C4—H4A···O5i0.96 (2)2.57 (2)3.370 (2)142 (2)
Symmetry codes: (i) x1, y, z1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H5O6S·H2O
Mr344.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.3280 (9), 24.122 (3), 7.9355 (8)
β (°) 112.800 (3)
V3)1469.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.22 × 0.13 × 0.04
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.945, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
19925, 5266, 3749
Rint0.054
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.03
No. of reflections5266
No. of parameters272
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.87 (2)1.96 (2)2.8108 (18)168 (2)
O1W—H2W1···O20.86 (2)2.04 (2)2.8882 (18)175 (2)
O1—H1O1···O20.89 (3)1.84 (2)2.6325 (18)146 (2)
O3—H1O3···O6ii0.84 (3)1.76 (3)2.5842 (18)166 (2)
N1—H1N1···O1Wiii0.92 (3)1.96 (2)2.808 (2)153 (2)
N2—H1N2···O1Wiii0.87 (3)2.16 (3)2.923 (2)147.7 (19)
N2—H2N2···O5i0.86 (3)2.19 (3)3.030 (2)163 (3)
C2—H2A···O3iv0.94 (2)2.58 (2)3.507 (2)169.1 (17)
C4—H4A···O4i0.96 (2)2.56 (2)3.449 (2)155.4 (16)
C4—H4A···O5i0.96 (2)2.57 (2)3.370 (2)142 (2)
Symmetry codes: (i) x1, y, z1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBaskar Raj, S., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003a). Acta Cryst. E59, m478–m480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003b). Acta Cryst. E59, m481–m482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003c). Acta Cryst. E59, m483–m484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003d). Acta Cryst. E59, m485–m486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, J.-F., Yang, J. & Liu, J.-F. (2003e). Acta Cryst. E59, m487–m488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOnoda, A., Yamada, Y., Doi, M., Okamura, T. & Ueyama, N. (2001). Inorg. Chem. 40, 516–521.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds