organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Absolute configuration of vouaca­pen-5α-ol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 22 July 2010; accepted 25 July 2010; online 31 July 2010)

The title compound, C20H30O2, {systematic name: (4aR,6aS,7R,11aS,11bR)-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-4a-ol}, is a cas­sane furan­oditerpene which was isolated from the roots of Caesalpinia pulcherrima. The absolute configurations at positions 4a, 6a, 7, 11a and 11b are R, S, R, S and R, respectively. The mol­ecule has four-fused rings consisting of three cyclo­hexane rings and one furan ring. The three cyclo­hexane rings are trans-fused. Two cyclo­hexane rings are in chair conformations, while the third is in an envelope conformation. In the crystal structure, the mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds into a zigzag chain along the a axis. A short O⋯O contact [3.0398 (14) Å] is also present.

Related literature

For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to cassane furan­oditerpenes and their biological activities, see: Che et al. (1986[Che, C. T., McPherson, D. D., Cordell, G. A. & Fong, H. H. (1986). J. Nat. Prod. 49, 561-566.]); Jiang et al. (2001[Jiang, R.-W., Ma, S.-C., But, P. P.-H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266-1272.]); McPherson et al. (1986[McPherson, D. D., Che, C. T., Cordell, G. A., Soejarto, D. D., Pezzuto, J. M. & Fong, H. H. S. (1986). Phytochemistry, 25, 167-170.]); Promsawan et al. (2003[Promsawan, N., Kittakoop, P., Boonphong, S. & Nongkunsarn, P. (2003). Planta Med. 69, 776-777.]); Ragasa et al. (2002[Ragasa, C. Y., Hofilena, J. G. & Rideout, J. A. (2002). J. Nat. Prod. 65, 1107-1110.]); Smitinand & Larson (2001[Smitinand, T. & Larson, K. (2001). Flora of Thailand. Bangkok: ASRCT Press.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S. & Rattanasuwan, P. (2003). Songklanakarin J. Sci. Technol. 25, 509-514.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010). Acta Cryst. E66, o2059-o2060.]); Jiang et al. (2001[Jiang, R.-W., Ma, S.-C., But, P. P.-H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266-1272.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30O2

  • Mr = 302.44

  • Orthorhombic, P 21 21 21

  • a = 6.7367 (2) Å

  • b = 12.7818 (3) Å

  • c = 19.3472 (5) Å

  • V = 1665.93 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 100 K

  • 0.29 × 0.22 × 0.17 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.851, Tmax = 0.908

  • 30751 measured reflections

  • 2880 independent reflections

  • 2856 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.088

  • S = 1.16

  • 2880 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1202 Friedel pairs

  • Flack parameter: 0.0 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1i 0.854 (19) 2.246 (19) 3.0398 (14) 154.7 (18)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cassane furanoditerpenes have been found from the plants in the family Caesalpiniaceae. The isolated compounds from plants in this family have been reported to show various of bioactivities such as antitumor (Che et al., 1986), antifungal (Ragasa et al., 2002), anti-tubercular (Promsawan et al., 2003), antiviral (Jiang et al., 2001) and HIV-1 protease inhibitory (Tewtrakul et al., 2003) activities. During the course of our research on bioactive compounds from natural-occuring sources, the title cassane furanoditerpene (I) which known as vouacapen-5α-ol (McPherson et al., 1986) was isolated from Caesalpinia pulcherrima (L.) Swartz, a small tree which has been used as ornamental (Smitinand & Larson, 2001), abortifacient and emmenagogue purposes. We previously reported the absolute configuration of a cassane furanoditerpene namely isovouacapenol C (Fun et al., 2010) which was isolated from the same plant. Herein the absolute configuration of another cassane furanoditerpene was determined by making use of the anomalous scattering of Cu Kα radiation with the Flack parameter being refined to 0.0 (2) and its crystal structure is reported.

The molecule of the title compound (Fig. 1) is constructed from the fusion of three cyclohexane rings and a furan ring. The three cyclohexane rings which have different conformations are trans-fused. Two cyclohexane rings A and B are in chair conformations whereas the third (ring C) adopts an envelope conformation with the puckered C8 atom having the maximum deviation of 0.3012 (14) Å from the best plane of the remaining five atoms (C9/C11–C14) and with the puckering parameters Q = 0.4287 (14) Å and θ = 49.88 (19)° and φ = 5.6 (3)° (Cremer & Pople, 1975). The furan ring (C12/C13/C15/C16/O1) is planar (rms 0.0023 (2) Å). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable with the related structures which are caesalmin C, D, E, F and G (Jiang et al., 2001) and isovouacapenol C (Fun et al., 2010). The absolute configurations at positions 4a, 6a, 7, 11a and 11b of the vouacapen-5α-ol or atoms C5, C8, C14, C9 and C10 are R,S,R,S,R configurations.

The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds (Table 1). The molecules are linked into infinite one dimensional chains along the [100] through O2—H1O2···O1 hydrogen bonds (Fig. 2 and Table 1). O···O [3.0398 (14) Å; symmetry codes -1/2+x, 3/2-y, -z and 1/2+x, 3/2-y, -z] short contacts were observed.

Related literature top

For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to cassane furanoditerpenes and their biological activity, see: Che et al. (1986); Jiang et al. (2001); McPherson et al. (1986); Promsawan et al. (2003); Ragasa et al. (2002); Smitinand & Larson (2001); Tewtrakul et al. (2003). For related structures, see: Fun et al. (2010); Jiang et al. (2001). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The air-dried roots of C. pulcherrima (6.3 kg) were extracted with CH2Cl2 (2 × 2.5 L) for 5 days at room temperature. The combined extracts were concentrated under reduced pressure to afford a dark brownish extract (75.3 g) which was further purified by quick column chromatography (QCC) over silica gel using hexane as eluent and increasing polarity with EtOAc and MeOH to afford 16 fractions (F1-F16). Fraction F2 (5.9 g) was further purified by QCC with hexane-CH2Cl2 (1:4), yielding the title compound as white solid (50.2 g). Colorless block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from CH2Cl2 by the slow evaporation of the solvent at room temperature after several days (m.p. 371-373 K).

Refinement top

Hydroxy H atoms were located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions with (C—H) = 0.98 for CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.73 Å from C4 and the deepest hole is located at 1.32 Å from C17. 1202 Friedel pairs were used to determine the absolute configuration.

Structure description top

Cassane furanoditerpenes have been found from the plants in the family Caesalpiniaceae. The isolated compounds from plants in this family have been reported to show various of bioactivities such as antitumor (Che et al., 1986), antifungal (Ragasa et al., 2002), anti-tubercular (Promsawan et al., 2003), antiviral (Jiang et al., 2001) and HIV-1 protease inhibitory (Tewtrakul et al., 2003) activities. During the course of our research on bioactive compounds from natural-occuring sources, the title cassane furanoditerpene (I) which known as vouacapen-5α-ol (McPherson et al., 1986) was isolated from Caesalpinia pulcherrima (L.) Swartz, a small tree which has been used as ornamental (Smitinand & Larson, 2001), abortifacient and emmenagogue purposes. We previously reported the absolute configuration of a cassane furanoditerpene namely isovouacapenol C (Fun et al., 2010) which was isolated from the same plant. Herein the absolute configuration of another cassane furanoditerpene was determined by making use of the anomalous scattering of Cu Kα radiation with the Flack parameter being refined to 0.0 (2) and its crystal structure is reported.

The molecule of the title compound (Fig. 1) is constructed from the fusion of three cyclohexane rings and a furan ring. The three cyclohexane rings which have different conformations are trans-fused. Two cyclohexane rings A and B are in chair conformations whereas the third (ring C) adopts an envelope conformation with the puckered C8 atom having the maximum deviation of 0.3012 (14) Å from the best plane of the remaining five atoms (C9/C11–C14) and with the puckering parameters Q = 0.4287 (14) Å and θ = 49.88 (19)° and φ = 5.6 (3)° (Cremer & Pople, 1975). The furan ring (C12/C13/C15/C16/O1) is planar (rms 0.0023 (2) Å). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable with the related structures which are caesalmin C, D, E, F and G (Jiang et al., 2001) and isovouacapenol C (Fun et al., 2010). The absolute configurations at positions 4a, 6a, 7, 11a and 11b of the vouacapen-5α-ol or atoms C5, C8, C14, C9 and C10 are R,S,R,S,R configurations.

The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds (Table 1). The molecules are linked into infinite one dimensional chains along the [100] through O2—H1O2···O1 hydrogen bonds (Fig. 2 and Table 1). O···O [3.0398 (14) Å; symmetry codes -1/2+x, 3/2-y, -z and 1/2+x, 3/2-y, -z] short contacts were observed.

For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to cassane furanoditerpenes and their biological activity, see: Che et al. (1986); Jiang et al. (2001); McPherson et al. (1986); Promsawan et al. (2003); Ragasa et al. (2002); Smitinand & Larson (2001); Tewtrakul et al. (2003). For related structures, see: Fun et al. (2010); Jiang et al. (2001). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the b axis, showing one dimensional chains along the [100]. O—H···O hydrogen bonds are shown as dashed lines.
(4aR,6aS,7R,11aS,11bR)-4,4,7,11b- tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b- dodecahydrophenanthro[3,2-b]furan-4a-ol top
Crystal data top
C20H30O2Dx = 1.206 Mg m3
Mr = 302.44Melting point = 371–373 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 2880 reflections
a = 6.7367 (2) Åθ = 4.6–66.0°
b = 12.7818 (3) ŵ = 0.58 mm1
c = 19.3472 (5) ÅT = 100 K
V = 1665.93 (8) Å3Block, colorless
Z = 40.29 × 0.22 × 0.17 mm
F(000) = 664
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2880 independent reflections
Radiation source: sealed tube2856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 66.0°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.851, Tmax = 0.908k = 1515
30751 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.2119P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
2880 reflectionsΔρmax = 0.21 e Å3
207 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 1202 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (2)
Crystal data top
C20H30O2V = 1665.93 (8) Å3
Mr = 302.44Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.7367 (2) ŵ = 0.58 mm1
b = 12.7818 (3) ÅT = 100 K
c = 19.3472 (5) Å0.29 × 0.22 × 0.17 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2880 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2856 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.908Rint = 0.028
30751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088Δρmax = 0.21 e Å3
S = 1.16Δρmin = 0.25 e Å3
2880 reflectionsAbsolute structure: Flack (1983), 1202 Friedel pairs
207 parametersAbsolute structure parameter: 0.0 (2)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.03886 (16)0.52792 (8)0.07346 (5)0.0334 (2)
O20.57276 (13)0.96871 (7)0.08320 (5)0.0258 (2)
C10.9773 (2)0.93648 (11)0.02533 (7)0.0275 (3)
H1A1.08860.89240.01270.033*
H1B0.86770.91950.00520.033*
C21.0353 (2)1.05118 (11)0.01446 (8)0.0328 (3)
H2A1.15521.06620.04040.039*
H2B1.06361.06280.03410.039*
C30.8709 (2)1.12537 (11)0.03751 (8)0.0304 (3)
H3A0.75751.11630.00720.036*
H3B0.91721.19680.03230.036*
C40.8027 (2)1.10897 (11)0.11288 (7)0.0273 (3)
C50.7496 (2)0.98994 (10)0.12352 (7)0.0235 (3)
C60.6857 (2)0.96538 (11)0.19790 (7)0.0265 (3)
H6A0.79610.97860.22890.032*
H6B0.57791.01160.21090.032*
C70.6185 (2)0.85208 (11)0.20597 (7)0.0264 (3)
H7A0.49320.84340.18190.032*
H7B0.59480.83850.25460.032*
C80.76551 (19)0.77021 (11)0.17865 (6)0.0235 (3)
H8A0.88490.77420.20750.028*
C90.8275 (2)0.79830 (10)0.10381 (6)0.0231 (3)
H9A0.70590.79880.07600.028*
C100.91614 (19)0.91155 (10)0.10034 (7)0.0233 (3)
C110.9692 (2)0.71734 (11)0.07021 (7)0.0295 (3)
H11A0.94710.71570.02070.035*
H11B1.10580.73810.07830.035*
C120.9355 (2)0.61239 (11)0.09923 (7)0.0274 (3)
C130.8133 (2)0.58241 (11)0.15075 (7)0.0261 (3)
C140.6792 (2)0.65857 (11)0.18679 (6)0.0249 (3)
H14A0.67970.64130.23620.030*
C150.8399 (2)0.47142 (12)0.15815 (7)0.0316 (3)
H15A0.77510.42780.18930.038*
C160.9764 (3)0.44313 (11)0.11136 (7)0.0349 (3)
H16A1.02270.37520.10530.042*
C170.4653 (2)0.64563 (12)0.16019 (7)0.0301 (3)
H17A0.43120.57270.15950.045*
H17B0.45550.67380.11430.045*
H17C0.37580.68240.19020.045*
C180.6175 (2)1.17717 (12)0.12459 (8)0.0370 (4)
H18A0.64591.24800.11130.056*
H18B0.58151.17530.17260.056*
H18C0.50971.15080.09720.056*
C190.9636 (3)1.14968 (12)0.16241 (8)0.0376 (4)
H19A0.96891.22460.16000.056*
H19B1.09001.12110.14940.056*
H19C0.93241.12870.20880.056*
C201.1033 (2)0.91693 (12)0.14665 (8)0.0308 (3)
H20A1.16790.85000.14700.046*
H20B1.06540.93540.19290.046*
H20C1.19280.96880.12880.046*
H1O20.602 (3)0.9757 (14)0.0405 (10)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0389 (6)0.0318 (5)0.0295 (5)0.0068 (5)0.0075 (4)0.0007 (4)
O20.0193 (5)0.0341 (5)0.0239 (5)0.0007 (4)0.0017 (4)0.0012 (4)
C10.0247 (7)0.0333 (7)0.0245 (7)0.0005 (6)0.0057 (5)0.0007 (5)
C20.0313 (8)0.0389 (8)0.0283 (7)0.0058 (6)0.0075 (6)0.0034 (6)
C30.0345 (8)0.0288 (7)0.0278 (7)0.0061 (6)0.0020 (6)0.0016 (5)
C40.0290 (7)0.0296 (7)0.0232 (7)0.0039 (6)0.0000 (6)0.0007 (5)
C50.0192 (6)0.0302 (7)0.0212 (6)0.0002 (5)0.0002 (5)0.0000 (5)
C60.0258 (6)0.0328 (7)0.0210 (6)0.0017 (6)0.0025 (5)0.0028 (5)
C70.0242 (6)0.0342 (7)0.0207 (6)0.0013 (6)0.0058 (5)0.0015 (5)
C80.0195 (6)0.0324 (7)0.0184 (6)0.0010 (6)0.0001 (5)0.0016 (5)
C90.0192 (6)0.0306 (7)0.0196 (6)0.0015 (5)0.0015 (5)0.0009 (5)
C100.0184 (6)0.0299 (7)0.0216 (6)0.0009 (5)0.0005 (5)0.0004 (5)
C110.0285 (7)0.0334 (7)0.0267 (7)0.0032 (6)0.0075 (6)0.0019 (6)
C120.0284 (7)0.0314 (7)0.0224 (7)0.0064 (6)0.0001 (5)0.0029 (5)
C130.0265 (7)0.0306 (7)0.0213 (6)0.0006 (5)0.0032 (5)0.0011 (5)
C140.0248 (6)0.0330 (7)0.0169 (6)0.0005 (6)0.0019 (5)0.0020 (5)
C150.0380 (8)0.0323 (7)0.0244 (7)0.0020 (7)0.0005 (6)0.0029 (6)
C160.0480 (9)0.0277 (7)0.0290 (7)0.0059 (7)0.0004 (7)0.0022 (6)
C170.0267 (7)0.0376 (7)0.0260 (7)0.0036 (6)0.0012 (6)0.0025 (6)
C180.0438 (9)0.0311 (7)0.0363 (8)0.0042 (7)0.0063 (7)0.0006 (6)
C190.0437 (9)0.0375 (8)0.0315 (8)0.0123 (7)0.0046 (7)0.0035 (6)
C200.0191 (6)0.0412 (8)0.0321 (7)0.0023 (6)0.0034 (6)0.0025 (6)
Geometric parameters (Å, º) top
O1—C161.3745 (17)C9—C111.5507 (18)
O1—C121.3780 (16)C9—C101.5673 (18)
O2—C51.4494 (16)C9—H9A0.9800
O2—H1O20.85 (2)C10—C201.5486 (18)
C1—C21.5319 (19)C11—C121.4719 (19)
C1—C101.5417 (18)C11—H11A0.9700
C1—H1A0.9700C11—H11B0.9700
C1—H1B0.9700C12—C131.348 (2)
C2—C31.525 (2)C13—C151.437 (2)
C2—H2A0.9700C13—C141.5001 (19)
C2—H2B0.9700C14—C171.5388 (19)
C3—C41.5432 (19)C14—H14A0.9800
C3—H3A0.9700C15—C161.340 (2)
C3—H3B0.9700C15—H15A0.9300
C4—C191.538 (2)C16—H16A0.9300
C4—C181.538 (2)C17—H17A0.9600
C4—C51.5764 (19)C17—H17B0.9600
C5—C61.5345 (18)C17—H17C0.9600
C5—C101.5699 (18)C18—H18A0.9600
C6—C71.525 (2)C18—H18B0.9600
C6—H6A0.9700C18—H18C0.9600
C6—H6B0.9700C19—H19A0.9600
C7—C81.5347 (18)C19—H19B0.9600
C7—H7A0.9700C19—H19C0.9600
C7—H7B0.9700C20—H20A0.9600
C8—C141.5489 (19)C20—H20B0.9600
C8—C91.5493 (17)C20—H20C0.9600
C8—H8A0.9800
C16—O1—C12105.67 (11)C10—C9—H9A106.8
C5—O2—H1O2108.0 (13)C1—C10—C20108.54 (11)
C2—C1—C10113.28 (11)C1—C10—C9109.45 (10)
C2—C1—H1A108.9C20—C10—C9109.06 (11)
C10—C1—H1A108.9C1—C10—C5109.14 (10)
C2—C1—H1B108.9C20—C10—C5112.86 (11)
C10—C1—H1B108.9C9—C10—C5107.75 (10)
H1A—C1—H1B107.7C12—C11—C9110.69 (11)
C3—C2—C1111.68 (11)C12—C11—H11A109.5
C3—C2—H2A109.3C9—C11—H11A109.5
C1—C2—H2A109.3C12—C11—H11B109.5
C3—C2—H2B109.3C9—C11—H11B109.5
C1—C2—H2B109.3H11A—C11—H11B108.1
H2A—C2—H2B107.9C13—C12—O1110.69 (12)
C2—C3—C4114.09 (12)C13—C12—C11129.43 (12)
C2—C3—H3A108.7O1—C12—C11119.88 (12)
C4—C3—H3A108.7C12—C13—C15106.14 (13)
C2—C3—H3B108.7C12—C13—C14121.80 (12)
C4—C3—H3B108.7C15—C13—C14132.02 (13)
H3A—C3—H3B107.6C13—C14—C17109.80 (11)
C19—C4—C18106.74 (12)C13—C14—C8108.93 (11)
C19—C4—C3109.45 (12)C17—C14—C8114.61 (11)
C18—C4—C3107.68 (12)C13—C14—H14A107.8
C19—C4—C5113.90 (11)C17—C14—H14A107.8
C18—C4—C5110.10 (11)C8—C14—H14A107.8
C3—C4—C5108.79 (11)C16—C15—C13106.54 (13)
O2—C5—C6103.66 (10)C16—C15—H15A126.7
O2—C5—C10108.31 (10)C13—C15—H15A126.7
C6—C5—C10109.74 (10)C15—C16—O1110.95 (13)
O2—C5—C4107.27 (10)C15—C16—H16A124.5
C6—C5—C4112.55 (11)O1—C16—H16A124.5
C10—C5—C4114.61 (10)C14—C17—H17A109.5
C7—C6—C5111.92 (11)C14—C17—H17B109.5
C7—C6—H6A109.2H17A—C17—H17B109.5
C5—C6—H6A109.2C14—C17—H17C109.5
C7—C6—H6B109.2H17A—C17—H17C109.5
C5—C6—H6B109.2H17B—C17—H17C109.5
H6A—C6—H6B107.9C4—C18—H18A109.5
C6—C7—C8114.87 (11)C4—C18—H18B109.5
C6—C7—H7A108.5H18A—C18—H18B109.5
C8—C7—H7A108.5C4—C18—H18C109.5
C6—C7—H7B108.5H18A—C18—H18C109.5
C8—C7—H7B108.5H18B—C18—H18C109.5
H7A—C7—H7B107.5C4—C19—H19A109.5
C7—C8—C14110.54 (11)C4—C19—H19B109.5
C7—C8—C9109.74 (11)H19A—C19—H19B109.5
C14—C8—C9114.19 (11)C4—C19—H19C109.5
C7—C8—H8A107.4H19A—C19—H19C109.5
C14—C8—H8A107.4H19B—C19—H19C109.5
C9—C8—H8A107.4C10—C20—H20A109.5
C8—C9—C11113.77 (11)C10—C20—H20B109.5
C8—C9—C10110.90 (10)H20A—C20—H20B109.5
C11—C9—C10111.33 (10)C10—C20—H20C109.5
C8—C9—H9A106.8H20A—C20—H20C109.5
C11—C9—H9A106.8H20B—C20—H20C109.5
C10—C1—C2—C355.24 (17)C11—C9—C10—C5170.45 (11)
C1—C2—C3—C455.00 (16)O2—C5—C10—C166.93 (13)
C2—C3—C4—C1972.73 (15)C6—C5—C10—C1179.45 (11)
C2—C3—C4—C18171.60 (12)C4—C5—C10—C152.77 (14)
C2—C3—C4—C552.30 (15)O2—C5—C10—C20172.30 (10)
C19—C4—C5—O2169.30 (11)C6—C5—C10—C2059.78 (14)
C18—C4—C5—O249.46 (14)C4—C5—C10—C2068.00 (14)
C3—C4—C5—O268.32 (13)O2—C5—C10—C951.83 (13)
C19—C4—C5—C655.92 (15)C6—C5—C10—C960.69 (13)
C18—C4—C5—C663.92 (15)C4—C5—C10—C9171.54 (10)
C3—C4—C5—C6178.30 (11)C8—C9—C11—C1228.58 (16)
C19—C4—C5—C1070.41 (15)C10—C9—C11—C12154.78 (11)
C18—C4—C5—C10169.75 (11)C16—O1—C12—C130.18 (16)
C3—C4—C5—C1051.97 (14)C16—O1—C12—C11179.32 (13)
O2—C5—C6—C759.70 (13)C9—C11—C12—C134.3 (2)
C10—C5—C6—C755.82 (14)C9—C11—C12—O1176.33 (12)
C4—C5—C6—C7175.28 (11)O1—C12—C13—C150.23 (16)
C5—C6—C7—C851.72 (15)C11—C12—C13—C15179.67 (15)
C6—C7—C8—C14177.79 (11)O1—C12—C13—C14178.36 (11)
C6—C7—C8—C950.97 (15)C11—C12—C13—C142.2 (2)
C7—C8—C9—C11177.42 (11)C12—C13—C14—C17102.74 (15)
C14—C8—C9—C1152.68 (15)C15—C13—C14—C1774.84 (18)
C7—C8—C9—C1056.15 (14)C12—C13—C14—C823.52 (17)
C14—C8—C9—C10179.10 (10)C15—C13—C14—C8158.90 (14)
C2—C1—C10—C2070.08 (15)C7—C8—C14—C13172.14 (10)
C2—C1—C10—C9171.00 (11)C9—C8—C14—C1347.82 (14)
C2—C1—C10—C553.30 (15)C7—C8—C14—C1748.70 (14)
C8—C9—C10—C1179.65 (11)C9—C8—C14—C1775.62 (14)
C11—C9—C10—C151.88 (14)C12—C13—C15—C160.56 (17)
C8—C9—C10—C2061.04 (13)C14—C13—C15—C16178.42 (14)
C11—C9—C10—C2066.72 (13)C13—C15—C16—O10.70 (17)
C8—C9—C10—C561.79 (13)C12—O1—C16—C150.56 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.854 (19)2.246 (19)3.0398 (14)154.7 (18)
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC20H30O2
Mr302.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.7367 (2), 12.7818 (3), 19.3472 (5)
V3)1665.93 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.58
Crystal size (mm)0.29 × 0.22 × 0.17
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.851, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
30751, 2880, 2856
Rint0.028
(sin θ/λ)max1)0.592
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.088, 1.16
No. of reflections2880
No. of parameters207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.25
Absolute structureFlack (1983), 1202 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i0.854 (19)2.246 (19)3.0398 (14)154.7 (18)
Symmetry code: (i) x1/2, y+3/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

OY thanks the Office of the Higher Education Commission, Thailand, for financial support by a grant fund under the program "Strategic Scholarships for Frontier Research Network for the Joint PhD Program Thai Doctoral Degree". The authors thank the Thailand Research Fund (BRG5280013) and Prince of Songkla University for financial support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, C. T., McPherson, D. D., Cordell, G. A. & Fong, H. H. (1986). J. Nat. Prod. 49, 561–566.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Yodsaoue, O., Karalai, C. & Chantrapromma, S. (2010). Acta Cryst. E66, o2059–o2060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, R.-W., Ma, S.-C., But, P. P.-H. & Mak, T. C. W. (2001). J. Nat. Prod. 64, 1266–1272.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMcPherson, D. D., Che, C. T., Cordell, G. A., Soejarto, D. D., Pezzuto, J. M. & Fong, H. H. S. (1986). Phytochemistry, 25, 167–170.  CrossRef CAS Web of Science Google Scholar
First citationPromsawan, N., Kittakoop, P., Boonphong, S. & Nongkunsarn, P. (2003). Planta Med. 69, 776–777.  Web of Science PubMed CAS Google Scholar
First citationRagasa, C. Y., Hofilena, J. G. & Rideout, J. A. (2002). J. Nat. Prod. 65, 1107–1110.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmitinand, T. & Larson, K. (2001). Flora of Thailand. Bangkok: ASRCT Press.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S. & Rattanasuwan, P. (2003). Songklanakarin J. Sci. Technol. 25, 509–514.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds