organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(5-methyl-1-phenyl-1H-1,2,3-triazole-4-carb­­oxy­lic acid) monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: linjinrui23@163.com

(Received 19 May 2010; accepted 3 July 2010; online 10 July 2010)

The crystal structure of the title compound, 2C10H9N3O2·H2O, synthesized from azido­benzene and ethyl acetyl­acetate, is stabilized by O—H⋯O and O—H⋯N hydrogen bonds.

Related literature

The title compound was studied as part of our search for phase transition materials, see: Li et al. (2008[Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959-1962.]); Zhang et al. (2009[Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]). For the preparation, see: El Khadem et al. (1968[El Khadem, H., Mansour, H. A. R. & Meshreki, M. H. (1968). J. Chem. Soc. C, pp. 1329-1331.]). For the biological activity of triazoles, see: Olesen et al. (2003[Olesen, P. H., Sorensen, A. R., Urso, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem. 46, 3333-3341.]) Tian et al. (2005[Tian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646-1652.]). For a related structure, see: Lin (2008[Lin, J. R., Yao, J. Y. & Zhao, H. (2008). Acta Cryst. E64, o1843.]).

[Scheme 1]

Experimental

Crystal data
  • 2C10H9N3O2·H2O

  • Mr = 424.42

  • Monoclinic, P 21 /c

  • a = 6.7419 (13) Å

  • b = 15.842 (3) Å

  • c = 19.643 (4) Å

  • β = 99.82 (3)°

  • V = 2067.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.42 × 0.38 × 0.35 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.947, Tmax = 0.951

  • 20838 measured reflections

  • 4733 independent reflections

  • 3206 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.172

  • S = 0.87

  • 4733 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N3i 0.82 1.89 2.704 (2) 170
O1—H1⋯O5 0.82 1.79 2.599 (2) 168
O5—H5A⋯O2ii 0.85 (4) 2.07 (4) 2.914 (3) 171 (3)
O5—H5B⋯N6iii 0.83 (4) 2.20 (4) 3.015 (3) 171 (4)
Symmetry codes: (i) x-1, y, z+1; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many triazole-related molecules have received much attention because of their biological activities (Olesen et al., 2003; Tian et al., 2005). Most non-hydrogen atoms of the triazole Ring were coplanar, with the mean deviation from plane of 0.363 (142)° and C11—C16—N4—N5 torsion angle of 57.202 (259)°. The weak π-π packing interactions of the triazole and phenyl ring planes with CgCg distances from 4.2017 Å to 5.0920 Å (Cg is the centroid of the triazole or the phenyl ring planes) stabilized the crystal structure. Because of changes in the external environment, the title compound crystallize in different space group (Lin et al., 2008) and there is a water molecular in the asymmetric unit which transform the method of connection of hydrogen bonds.

As a continuation of our study of phase transition materials, including organicligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009),the dielectric constant of 5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid hydrate compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 5.2 to 8.2), suggesting that there may be no distinct phase transition occurred within the measured temperature range.

Related literature top

The title compound was studied as part of our search for phase transition materials, see: Li et al. (2008); Zhang et al. (2009). For the preparation, see: El Khadem et al. (1968). For the biological activity of triazoles, see: Olesen et al. (2003) Tian et al. (2005). For a related structure, see: Lin (2008).

Experimental top

The title compound was prepared from azidobenzene according to the reported method (El Khadem et al., 1968). The colourless prisms (average size: 0.8×0.8×2.0 mm) were obtained by slow evaporation from ethanol solution at room temperature for 3 days.

Refinement top

All the H atoms attached to the carbon atoms were constrained in a riding motion approximation. Caryl—H=0.93 Å, with Uiso(H)=1.2Ueq(C). Cmethyl—H=0.96 Å, with Uiso(H)=1.5Ueq(C). The hydroxyl hydrogen was refined freely.

Structure description top

Many triazole-related molecules have received much attention because of their biological activities (Olesen et al., 2003; Tian et al., 2005). Most non-hydrogen atoms of the triazole Ring were coplanar, with the mean deviation from plane of 0.363 (142)° and C11—C16—N4—N5 torsion angle of 57.202 (259)°. The weak π-π packing interactions of the triazole and phenyl ring planes with CgCg distances from 4.2017 Å to 5.0920 Å (Cg is the centroid of the triazole or the phenyl ring planes) stabilized the crystal structure. Because of changes in the external environment, the title compound crystallize in different space group (Lin et al., 2008) and there is a water molecular in the asymmetric unit which transform the method of connection of hydrogen bonds.

As a continuation of our study of phase transition materials, including organicligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009),the dielectric constant of 5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid hydrate compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 5.2 to 8.2), suggesting that there may be no distinct phase transition occurred within the measured temperature range.

The title compound was studied as part of our search for phase transition materials, see: Li et al. (2008); Zhang et al. (2009). For the preparation, see: El Khadem et al. (1968). For the biological activity of triazoles, see: Olesen et al. (2003) Tian et al. (2005). For a related structure, see: Lin (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis.
Bis(5-methyl-1-phenyl-1H-1,2,3-triazole-4-carboxylic acid) monohydrate top
Crystal data top
2C10H9N3O2·H2OF(000) = 888
Mr = 424.42Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8429 reflections
a = 6.7419 (13) Åθ = 3.1–27.7°
b = 15.842 (3) ŵ = 0.10 mm1
c = 19.643 (4) ÅT = 293 K
β = 99.82 (3)°Prism, colorless
V = 2067.2 (7) Å30.42 × 0.38 × 0.35 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
4733 independent reflections
Radiation source: fine-focus sealed tube3206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2020
Tmin = 0.947, Tmax = 0.951l = 2525
20838 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.1083P)2 + 0.6293P]
where P = (Fo2 + 2Fc2)/3
4733 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
2C10H9N3O2·H2OV = 2067.2 (7) Å3
Mr = 424.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7419 (13) ŵ = 0.10 mm1
b = 15.842 (3) ÅT = 293 K
c = 19.643 (4) Å0.42 × 0.38 × 0.35 mm
β = 99.82 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4733 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3206 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.951Rint = 0.056
20838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.21 e Å3
4733 reflectionsΔρmin = 0.19 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.2245 (3)0.25435 (10)1.04831 (9)0.0616 (5)
H40.30310.24781.07540.092*
N10.3101 (2)0.21148 (10)0.20357 (8)0.0427 (4)
O10.2105 (2)0.44007 (10)0.09705 (9)0.0604 (5)
H10.21330.48020.07090.091*
O20.4704 (3)0.39675 (10)0.05055 (9)0.0658 (5)
N30.4944 (3)0.25050 (10)0.13134 (10)0.0505 (5)
O30.1197 (3)0.12701 (11)1.08533 (9)0.0725 (5)
N60.0253 (3)0.25962 (11)0.95482 (10)0.0515 (5)
N40.2420 (2)0.17006 (10)0.93228 (9)0.0426 (4)
C170.1698 (3)0.13594 (13)0.98605 (10)0.0416 (5)
N50.1530 (3)0.24561 (11)0.91340 (10)0.0542 (5)
C160.3809 (3)0.13618 (13)0.89167 (10)0.0427 (5)
C70.2327 (3)0.28716 (12)0.18016 (10)0.0387 (4)
C90.3516 (3)0.38637 (12)0.08889 (11)0.0438 (5)
C80.3532 (3)0.31110 (12)0.13320 (10)0.0407 (4)
C60.2526 (3)0.15587 (12)0.25486 (10)0.0406 (4)
C180.0303 (3)0.19342 (12)0.99957 (10)0.0397 (4)
C190.1097 (3)0.18755 (13)1.04937 (10)0.0435 (5)
N20.4702 (3)0.18997 (11)0.17417 (10)0.0544 (5)
C40.0066 (4)0.07727 (15)0.30104 (13)0.0555 (6)
H4A0.12620.06020.29920.067*
C30.1503 (4)0.04942 (14)0.35351 (12)0.0539 (6)
H30.11570.01350.38710.065*
C10.3999 (3)0.12818 (13)0.30735 (11)0.0468 (5)
H1A0.53290.14520.30960.056*
C110.5459 (3)0.18340 (15)0.88273 (12)0.0535 (5)
H110.57210.23500.90510.064*
C50.0549 (3)0.13048 (14)0.25048 (11)0.0495 (5)
H50.04350.14870.21440.059*
C100.0630 (3)0.32936 (14)0.20576 (12)0.0515 (5)
H10A0.06150.31400.17700.077*
H10B0.08020.38950.20440.077*
H10C0.06060.31190.25240.077*
C150.3431 (4)0.05856 (14)0.86021 (12)0.0542 (6)
H150.23220.02680.86710.065*
C20.3460 (4)0.07454 (14)0.35661 (12)0.0528 (5)
H20.44410.05520.39240.063*
C130.6347 (4)0.0763 (2)0.80763 (13)0.0709 (8)
H130.71940.05650.77840.085*
C200.2496 (4)0.05710 (17)1.02157 (13)0.0694 (8)
H20A0.21710.01000.99090.104*
H20B0.19010.04901.06210.104*
H20C0.39310.06141.03460.104*
C120.6716 (4)0.1527 (2)0.83991 (14)0.0705 (7)
H120.78270.18430.83290.085*
C140.4724 (4)0.02880 (17)0.81842 (12)0.0644 (7)
H140.44960.02370.79740.077*
O50.2055 (3)0.58080 (13)0.02879 (12)0.0749 (6)
H5A0.290 (5)0.591 (2)0.0025 (18)0.098 (11)*
H5B0.131 (6)0.622 (3)0.0310 (19)0.111 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0721 (11)0.0477 (9)0.0777 (11)0.0177 (8)0.0487 (9)0.0112 (8)
N10.0477 (9)0.0344 (9)0.0519 (10)0.0046 (7)0.0252 (8)0.0031 (7)
O10.0609 (10)0.0480 (9)0.0805 (12)0.0167 (8)0.0356 (9)0.0221 (8)
O20.0814 (12)0.0502 (9)0.0792 (11)0.0107 (8)0.0519 (10)0.0132 (8)
N30.0571 (11)0.0373 (9)0.0654 (12)0.0075 (8)0.0342 (9)0.0056 (8)
O30.0995 (14)0.0625 (11)0.0671 (11)0.0289 (10)0.0472 (10)0.0255 (9)
N60.0569 (11)0.0385 (9)0.0674 (12)0.0102 (8)0.0337 (9)0.0083 (8)
N40.0434 (9)0.0380 (9)0.0496 (10)0.0080 (7)0.0168 (7)0.0025 (7)
C170.0434 (10)0.0429 (11)0.0397 (10)0.0091 (8)0.0107 (8)0.0019 (8)
N50.0615 (11)0.0382 (10)0.0722 (13)0.0129 (8)0.0377 (10)0.0119 (8)
C160.0426 (10)0.0445 (11)0.0434 (10)0.0126 (9)0.0143 (8)0.0035 (8)
C70.0409 (10)0.0353 (10)0.0428 (10)0.0008 (8)0.0154 (8)0.0040 (8)
C90.0457 (11)0.0377 (10)0.0518 (12)0.0008 (9)0.0193 (9)0.0020 (8)
C80.0440 (10)0.0341 (10)0.0482 (11)0.0017 (8)0.0194 (9)0.0038 (8)
C60.0492 (11)0.0319 (9)0.0452 (11)0.0011 (8)0.0209 (9)0.0006 (8)
C180.0414 (10)0.0377 (10)0.0415 (10)0.0045 (8)0.0115 (8)0.0006 (8)
C190.0514 (11)0.0403 (11)0.0414 (11)0.0072 (9)0.0155 (9)0.0002 (8)
N20.0628 (12)0.0400 (10)0.0702 (12)0.0116 (8)0.0394 (10)0.0097 (8)
C40.0495 (12)0.0546 (13)0.0659 (15)0.0092 (10)0.0195 (11)0.0070 (11)
C30.0665 (14)0.0445 (12)0.0555 (13)0.0007 (10)0.0238 (11)0.0096 (10)
C10.0434 (11)0.0413 (11)0.0586 (13)0.0047 (9)0.0169 (9)0.0021 (9)
C110.0489 (12)0.0584 (13)0.0560 (13)0.0021 (10)0.0169 (10)0.0043 (10)
C50.0487 (12)0.0498 (12)0.0508 (12)0.0049 (9)0.0106 (9)0.0055 (10)
C100.0534 (12)0.0492 (12)0.0579 (13)0.0065 (10)0.0271 (10)0.0006 (10)
C150.0613 (13)0.0449 (12)0.0584 (14)0.0085 (10)0.0157 (11)0.0012 (10)
C20.0604 (13)0.0459 (12)0.0528 (13)0.0092 (10)0.0120 (10)0.0075 (10)
C130.0699 (17)0.090 (2)0.0589 (15)0.0279 (15)0.0283 (13)0.0044 (14)
C200.0859 (18)0.0688 (16)0.0585 (15)0.0407 (14)0.0265 (13)0.0226 (12)
C120.0535 (14)0.091 (2)0.0744 (17)0.0013 (13)0.0306 (12)0.0034 (15)
C140.0805 (17)0.0569 (14)0.0582 (14)0.0247 (13)0.0186 (12)0.0081 (11)
O50.0685 (12)0.0576 (11)0.1075 (16)0.0208 (10)0.0409 (11)0.0379 (10)
Geometric parameters (Å, º) top
O4—C191.309 (2)C4—C31.362 (3)
O4—H40.8200C4—C51.383 (3)
N1—N21.352 (2)C4—H4A0.9300
N1—C71.356 (3)C3—C21.370 (3)
N1—C61.440 (2)C3—H30.9300
O1—C91.306 (2)C1—C21.382 (3)
O1—H10.8200C1—H1A0.9300
O2—C91.201 (2)C11—C121.381 (3)
N3—N21.304 (2)C11—H110.9300
N3—C81.357 (2)C5—H50.9300
O3—C191.200 (2)C10—H10A0.9600
N6—N51.300 (2)C10—H10B0.9600
N6—C181.365 (3)C10—H10C0.9600
N4—C171.349 (2)C15—C141.378 (3)
N4—N51.362 (2)C15—H150.9300
N4—C161.434 (2)C2—H20.9300
C17—C181.367 (3)C13—C121.370 (4)
C17—C201.486 (3)C13—C141.373 (4)
C16—C111.376 (3)C13—H130.9300
C16—C151.380 (3)C20—H20A0.9600
C7—C81.382 (3)C20—H20B0.9600
C7—C101.485 (3)C20—H20C0.9600
C9—C81.475 (3)C12—H120.9300
C6—C11.376 (3)C14—H140.9300
C6—C51.381 (3)O5—H5A0.85 (4)
C18—C191.474 (3)O5—H5B0.83 (4)
C19—O4—H4109.5C4—C3—H3120.2
N2—N1—C7111.55 (15)C2—C3—H3120.2
N2—N1—C6118.32 (15)C6—C1—C2118.6 (2)
C7—N1—C6130.07 (16)C6—C1—H1A120.7
C9—O1—H1109.5C2—C1—H1A120.7
N2—N3—C8109.73 (16)C16—C11—C12118.7 (2)
N5—N6—C18109.01 (16)C16—C11—H11120.7
C17—N4—N5111.38 (15)C12—C11—H11120.7
C17—N4—C16129.99 (17)C6—C5—C4118.4 (2)
N5—N4—C16118.46 (16)C6—C5—H5120.8
N4—C17—C18103.72 (17)C4—C5—H5120.8
N4—C17—C20123.68 (18)C7—C10—H10A109.5
C18—C17—C20132.41 (19)C7—C10—H10B109.5
N6—N5—N4106.70 (16)H10A—C10—H10B109.5
C11—C16—C15121.2 (2)C7—C10—H10C109.5
C11—C16—N4119.10 (19)H10A—C10—H10C109.5
C15—C16—N4119.62 (19)H10B—C10—H10C109.5
N1—C7—C8103.45 (16)C14—C15—C16119.0 (2)
N1—C7—C10123.88 (17)C14—C15—H15120.5
C8—C7—C10132.61 (18)C16—C15—H15120.5
O2—C9—O1124.44 (19)C3—C2—C1120.9 (2)
O2—C9—C8122.83 (18)C3—C2—H2119.6
O1—C9—C8112.72 (17)C1—C2—H2119.6
N3—C8—C7108.59 (17)C12—C13—C14120.0 (2)
N3—C8—C9119.39 (17)C12—C13—H13120.0
C7—C8—C9132.02 (17)C14—C13—H13120.0
C1—C6—C5121.31 (19)C17—C20—H20A109.5
C1—C6—N1118.25 (18)C17—C20—H20B109.5
C5—C6—N1120.44 (19)H20A—C20—H20B109.5
N6—C18—C17109.19 (17)C17—C20—H20C109.5
N6—C18—C19121.87 (17)H20A—C20—H20C109.5
C17—C18—C19128.80 (18)H20B—C20—H20C109.5
O3—C19—O4124.27 (19)C13—C12—C11120.7 (3)
O3—C19—C18123.24 (18)C13—C12—H12119.6
O4—C19—C18112.46 (17)C11—C12—H12119.6
N3—N2—N1106.67 (15)C13—C14—C15120.4 (2)
C3—C4—C5121.1 (2)C13—C14—H14119.8
C3—C4—H4A119.4C15—C14—H14119.8
C5—C4—H4A119.4H5A—O5—H5B112 (3)
C4—C3—C2119.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N3i0.821.892.704 (2)170
O1—H1···O50.821.792.599 (2)168
O5—H5A···O2ii0.85 (4)2.07 (4)2.914 (3)171 (3)
O5—H5B···N6iii0.83 (4)2.20 (4)3.015 (3)171 (4)
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C10H9N3O2·H2O
Mr424.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.7419 (13), 15.842 (3), 19.643 (4)
β (°) 99.82 (3)
V3)2067.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.38 × 0.35
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.947, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
20838, 4733, 3206
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.172, 0.87
No. of reflections4733
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N3i0.821.892.704 (2)169.9
O1—H1···O50.821.792.599 (2)167.7
O5—H5A···O2ii0.85 (4)2.07 (4)2.914 (3)171 (3)
O5—H5B···N6iii0.83 (4)2.20 (4)3.015 (3)171 (4)
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z+1.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

References

First citationEl Khadem, H., Mansour, H. A. R. & Meshreki, M. H. (1968). J. Chem. Soc. C, pp. 1329–1331.  Google Scholar
First citationLi, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem. 11, 1959–1962.  Web of Science CSD CrossRef Google Scholar
First citationLin, J. R., Yao, J. Y. & Zhao, H. (2008). Acta Cryst. E64, o1843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOlesen, P. H., Sorensen, A. R., Urso, B., Kurtzhals, P., Bowler, A. N., Ehrbar, U. & Hansen, B. F. (2003). J. Med. Chem. 46, 3333–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, L., Sun, Y., Li, H., Zheng, X., Cheng, Y., Liu, X. & Qian, B. (2005). J. Inorg. Biochem. 99, 1646–1652.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds