organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iso­propyl-3-methyl­quinoxaline 1,4-dioxide

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bShandong Shengquan Chemical Co. Ltd, Jinan 250204, People's Republic of China
*Correspondence e-mail: haoay@sdu.edu.cn

(Received 26 May 2010; accepted 18 June 2010; online 3 July 2010)

In the title compound, C12H14N2O2, the quinoxaline ring system and the C atoms of the methylene and methyl substituents lie on a mirror plane. The crystal packing is stabilized by weak ππ inter­actions [centroid–centroid distance = 3.680 (7) Å].

Related literature

For the preparation, see: Issidorides & Haddadin (1966[Issidorides, C. H. & Haddadin, M. J. (1966). J. Org. Chem. 31, 4067-4068.]). For the biological activity of quinoxaline di-N-oxide compounds, see: Amin et al. (2006[Amin, K. M., Ismail, M. M. F., Noaman. E., Soliman, D. H. & Ammar, Y. A. (2006). Bioorg. Med. Chem. 14, 6917-6923.]); Edwards et al. (1975[Edwards. M. L., Bambury. R. E. & Ritter. H. W. (1975). J. Med. Chem. 18, 637-639.]); Glazer & Chappel (1982[Glazer, E. A. & Chappel, L. R. (1982) J. Med. Chem. 25, 868-870.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2O2

  • Mr = 218.25

  • Orthorhombic, P n m a

  • a = 13.3879 (10) Å

  • b = 6.8462 (6) Å

  • c = 11.8861 (9) Å

  • V = 1089.44 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.29 × 0.27 × 0.26 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.651, Tmax = 0.745

  • 10376 measured reflections

  • 1446 independent reflections

  • 1062 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.203

  • S = 1.17

  • 1446 reflections

  • 96 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, the compounds of quinoxaline di-N-oxide have been used as important and widely-used drugs for sterilization and growth-promoting of animals. Quinoxaline di-N-oxide also has pharmacological properties usable as intermediates for producing plant protection agents. The research in the crystal of quinoxaline di-N-oxide has great meaning to pharmacology. The title compound 2-isopropyl-3-methylquinoxaline 1,4-dioxide was obtained by Beirut Reaction: benzofurazan-N-oxides reacted with cyclohexanone catalysed by triethylamine without any other solvent.

Related literature top

For the preparation, see: Issidorides & Haddadin (1966). For the biological activity of quinoxaline di-N-oxide compounds, see: Amin et al. (2006); Edwards et al. (1975); Glazer & Chappel (1982).

Experimental top

Yellow crystals were obtained by slow evaporation of the solvents from solutions of the title compound in methanol. 1H NMR (400 MHz, DMSO-d6): δ 8.43 (2H, d, J = 3.5 Hz, Ar—H), 7.88 (2H, d, J = 3.2 Hz, Ar—H), 2.93 (4H, s, CH2), 1.83 (4H, s, CH2); IRνmax (KBr, cm-1): 3455, 3125, 2943, 2866, 1987, 1953, 1737, 1605, 1516, 1441, 1422, 1400, 1357, 1315, 1277, 1246, 1125, 1089, 1016, 979, 933, 904, 842, 824, 776, 694, 668, 640, 613, 557, 528, 436; Calcd for C12H12N2O2: C, 66.65; H, 5.59; N, 12.96. Found: C, 66.34; H, 5.32; N, 12.90; ESIMS calcd for C12H12N2O2H+ m/z 217.24, found m/z 217.20.

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negativeF2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Structure description top

In recent years, the compounds of quinoxaline di-N-oxide have been used as important and widely-used drugs for sterilization and growth-promoting of animals. Quinoxaline di-N-oxide also has pharmacological properties usable as intermediates for producing plant protection agents. The research in the crystal of quinoxaline di-N-oxide has great meaning to pharmacology. The title compound 2-isopropyl-3-methylquinoxaline 1,4-dioxide was obtained by Beirut Reaction: benzofurazan-N-oxides reacted with cyclohexanone catalysed by triethylamine without any other solvent.

For the preparation, see: Issidorides & Haddadin (1966). For the biological activity of quinoxaline di-N-oxide compounds, see: Amin et al. (2006); Edwards et al. (1975); Glazer & Chappel (1982).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
[Figure 2] Fig. 2. Packing diagram.
2-Isopropyl-3-methylquinoxaline 1,4-dioxide top
Crystal data top
C12H14N2O2Dx = 1.331 Mg m3
Mr = 218.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 4638 reflections
a = 13.3879 (10) Åθ = 3.0–27.9°
b = 6.8462 (6) ŵ = 0.09 mm1
c = 11.8861 (9) ÅT = 296 K
V = 1089.44 (15) Å3Block, colourless
Z = 40.29 × 0.27 × 0.26 mm
F(000) = 464
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1446 independent reflections
Radiation source: fine-focus sealed tube1062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 28.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1817
Tmin = 0.651, Tmax = 0.745k = 99
10376 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.203 w = 1/[σ2(Fo2) + (0.0863P)2 + 0.4481P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
1446 reflectionsΔρmax = 0.38 e Å3
96 parametersΔρmin = 0.35 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (4)
Crystal data top
C12H14N2O2V = 1089.44 (15) Å3
Mr = 218.25Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 13.3879 (10) ŵ = 0.09 mm1
b = 6.8462 (6) ÅT = 296 K
c = 11.8861 (9) Å0.29 × 0.27 × 0.26 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1446 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1062 reflections with I > 2σ(I)
Tmin = 0.651, Tmax = 0.745Rint = 0.019
10376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.203H-atom parameters constrained
S = 1.17Δρmax = 0.38 e Å3
1446 reflectionsΔρmin = 0.35 e Å3
96 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9509 (2)0.25001.1853 (3)0.0603 (8)
H110.90260.25001.24160.072*
C21.0499 (3)0.25001.2128 (4)0.0731 (10)
H21.06890.25001.28800.088*
C31.1212 (2)0.25001.1306 (4)0.0723 (11)
H31.18830.25001.15100.087*
C41.0962 (2)0.25001.0186 (4)0.0641 (9)
H41.14540.25000.96330.077*
C50.99369 (19)0.25000.9893 (2)0.0449 (6)
C60.92245 (18)0.25001.0730 (2)0.0440 (6)
C70.79331 (18)0.25000.9352 (2)0.0427 (6)
C80.8664 (2)0.25000.8500 (2)0.0481 (6)
C90.8419 (3)0.25000.7287 (3)0.0705 (9)
H9A0.90230.25000.68450.080*
H9B0.80340.13550.70990.080*
C100.6836 (2)0.25000.9063 (3)0.0551 (7)
H100.67980.25000.82400.066*
C110.63084 (17)0.0655 (4)0.9452 (2)0.0777 (8)
H11A0.66570.04680.91690.117*
H11B0.56360.06520.91730.117*
H11C0.62990.06151.02590.117*
N10.82094 (15)0.25001.04424 (19)0.0445 (6)
N20.96482 (17)0.25000.8772 (2)0.0513 (6)
O10.75580 (15)0.25001.12490 (18)0.0681 (7)
O21.03357 (18)0.25000.8002 (2)0.0809 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0617 (17)0.0652 (18)0.0539 (18)0.0000.0125 (14)0.000
C20.067 (2)0.066 (2)0.085 (3)0.0000.0309 (19)0.000
C30.0494 (16)0.0531 (16)0.114 (3)0.0000.0284 (19)0.000
C40.0403 (13)0.0433 (14)0.109 (3)0.0000.0089 (16)0.000
C50.0405 (12)0.0326 (11)0.0616 (17)0.0000.0047 (11)0.000
C60.0389 (12)0.0377 (12)0.0553 (15)0.0000.0038 (11)0.000
C70.0408 (12)0.0438 (12)0.0434 (14)0.0000.0006 (10)0.000
C80.0557 (14)0.0409 (12)0.0477 (15)0.0000.0076 (12)0.000
C90.084 (2)0.081 (2)0.0466 (17)0.0000.0075 (16)0.000
C100.0409 (13)0.0706 (18)0.0537 (17)0.0000.0040 (12)0.000
C110.0525 (11)0.0818 (17)0.099 (2)0.0170 (11)0.0097 (12)0.0027 (15)
N10.0368 (10)0.0509 (12)0.0457 (12)0.0000.0050 (9)0.000
N20.0485 (12)0.0406 (11)0.0648 (15)0.0000.0196 (11)0.000
O10.0461 (10)0.1067 (18)0.0516 (12)0.0000.0126 (9)0.000
O20.0716 (15)0.0876 (17)0.0836 (18)0.0000.0422 (13)0.000
Geometric parameters (Å, º) top
C1—C21.365 (4)C7—C101.508 (4)
C1—C61.389 (4)C8—N21.357 (4)
C1—H110.9300C8—C91.479 (4)
C2—C31.366 (6)C9—H9A0.964 (4)
C2—H20.9300C9—H9B0.964 (2)
C3—C41.373 (5)C10—C11i1.519 (3)
C3—H30.9300C10—C111.519 (3)
C4—C51.416 (4)C10—H100.9800
C4—H40.9300C11—H11A0.9600
C5—C61.378 (4)C11—H11B0.9600
C5—N21.387 (4)C11—H11C0.9600
C6—N11.401 (3)N1—O11.296 (3)
C7—N11.348 (3)N2—O21.298 (3)
C7—C81.409 (4)
C2—C1—C6119.7 (3)C7—C8—C9123.1 (3)
C2—C1—H11120.1C8—C9—H9A110.2 (3)
C6—C1—H11120.1C8—C9—H9B110.1 (2)
C1—C2—C3120.5 (3)H9A—C9—H9B108.8 (2)
C1—C2—H2119.7C7—C10—C11i112.56 (16)
C3—C2—H2119.7C7—C10—C11112.56 (16)
C2—C3—C4121.5 (3)C11i—C10—C11112.5 (3)
C2—C3—H3119.2C7—C10—H10106.2
C4—C3—H3119.2C11i—C10—H10106.2
C3—C4—C5118.4 (3)C11—C10—H10106.2
C3—C4—H4120.8C10—C11—H11A109.5
C5—C4—H4120.8C10—C11—H11B109.5
C6—C5—N2120.0 (2)H11A—C11—H11B109.5
C6—C5—C4119.6 (3)C10—C11—H11C109.5
N2—C5—C4120.4 (3)H11A—C11—H11C109.5
C5—C6—C1120.3 (3)H11B—C11—H11C109.5
C5—C6—N1119.7 (3)O1—N1—C7121.8 (2)
C1—C6—N1120.0 (3)O1—N1—C6118.2 (2)
N1—C7—C8120.0 (2)C7—N1—C6120.0 (2)
N1—C7—C10119.1 (2)O2—N2—C8121.4 (3)
C8—C7—C10120.9 (3)O2—N2—C5118.7 (2)
N2—C8—C7120.2 (3)C8—N2—C5120.0 (2)
N2—C8—C9116.6 (3)
C6—C1—C2—C30.000 (2)C8—C7—C10—C11115.8 (2)
C1—C2—C3—C40.000 (2)C8—C7—N1—O1180.0
C2—C3—C4—C50.000 (1)C10—C7—N1—O10.0
C3—C4—C5—C60.000 (1)C8—C7—N1—C60.0
C3—C4—C5—N2180.000 (1)C10—C7—N1—C6180.0
N2—C5—C6—C1180.0C5—C6—N1—O1180.0
C4—C5—C6—C10.000 (1)C1—C6—N1—O10.0
N2—C5—C6—N10.0C5—C6—N1—C70.0
C4—C5—C6—N1180.0C1—C6—N1—C7180.0
C2—C1—C6—C50.000 (1)C7—C8—N2—O2180.0
C2—C1—C6—N1180.0C9—C8—N2—O20.0
N1—C7—C8—N20.0C7—C8—N2—C50.0
C10—C7—C8—N2180.0C9—C8—N2—C5180.0
N1—C7—C8—C9180.0C6—C5—N2—O2180.0
C10—C7—C8—C90.0C4—C5—N2—O20.0
N1—C7—C10—C11i64.2 (2)C6—C5—N2—C80.0
C8—C7—C10—C11i115.8 (2)C4—C5—N2—C8180.0
N1—C7—C10—C1164.2 (2)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC12H14N2O2
Mr218.25
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)296
a, b, c (Å)13.3879 (10), 6.8462 (6), 11.8861 (9)
V3)1089.44 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.29 × 0.27 × 0.26
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.651, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
10376, 1446, 1062
Rint0.019
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.203, 1.17
No. of reflections1446
No. of parameters96
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by the NSFC (grant No. 20625307), the National Basic Research Program of China (973 Program, 2009CB930103) and the Graduate Independent Innovation Foundation of Shandong University (GIIFSDU).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAmin, K. M., Ismail, M. M. F., Noaman. E., Soliman, D. H. & Ammar, Y. A. (2006). Bioorg. Med. Chem. 14, 6917–6923.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdwards. M. L., Bambury. R. E. & Ritter. H. W. (1975). J. Med. Chem. 18, 637–639.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGlazer, E. A. & Chappel, L. R. (1982) J. Med. Chem. 25, 868–870.  CrossRef PubMed Web of Science Google Scholar
First citationIssidorides, C. H. & Haddadin, M. J. (1966). J. Org. Chem. 31, 4067–4068.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds