organic compounds
2-Isopropyl-3-methylquinoxaline 1,4-dioxide
aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bShandong Shengquan Chemical Co. Ltd, Jinan 250204, People's Republic of China
*Correspondence e-mail: haoay@sdu.edu.cn
In the title compound, C12H14N2O2, the quinoxaline ring system and the C atoms of the methylene and methyl substituents lie on a mirror plane. The crystal packing is stabilized by weak π–π interactions [centroid–centroid distance = 3.680 (7) Å].
Related literature
For the preparation, see: Issidorides & Haddadin (1966). For the biological activity of quinoxaline di-N-oxide compounds, see: Amin et al. (2006); Edwards et al. (1975); Glazer & Chappel (1982).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810023706/jh2164sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810023706/jh2164Isup2.hkl
Yellow crystals were obtained by slow evaporation of the solvents from solutions of the title compound in methanol. 1H NMR (400 MHz, DMSO-d6): δ 8.43 (2H, d, J = 3.5 Hz, Ar—H), 7.88 (2H, d, J = 3.2 Hz, Ar—H), 2.93 (4H, s, CH2), 1.83 (4H, s, CH2); IRνmax (KBr, cm-1): 3455, 3125, 2943, 2866, 1987, 1953, 1737, 1605, 1516, 1441, 1422, 1400, 1357, 1315, 1277, 1246, 1125, 1089, 1016, 979, 933, 904, 842, 824, 776, 694, 668, 640, 613, 557, 528, 436; Calcd for C12H12N2O2: C, 66.65; H, 5.59; N, 12.96. Found: C, 66.34; H, 5.32; N, 12.90; ESIMS calcd for C12H12N2O2H+ m/z 217.24, found m/z 217.20.
Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negativeF2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for
R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.In recent years, the compounds of quinoxaline di-N-oxide have been used as important and widely-used drugs for sterilization and growth-promoting of animals. Quinoxaline di-N-oxide also has pharmacological properties usable as intermediates for producing plant protection agents. The research in the crystal of quinoxaline di-N-oxide has great meaning to pharmacology. The title compound 2-isopropyl-3-methylquinoxaline 1,4-dioxide was obtained by Beirut Reaction: benzofurazan-N-oxides reacted with cyclohexanone catalysed by triethylamine without any other solvent.
For the preparation, see: Issidorides & Haddadin (1966). For the biological activity of quinoxaline di-N-oxide compounds, see: Amin et al. (2006); Edwards et al. (1975); Glazer & Chappel (1982).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).C12H14N2O2 | Dx = 1.331 Mg m−3 |
Mr = 218.25 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 4638 reflections |
a = 13.3879 (10) Å | θ = 3.0–27.9° |
b = 6.8462 (6) Å | µ = 0.09 mm−1 |
c = 11.8861 (9) Å | T = 296 K |
V = 1089.44 (15) Å3 | Block, colourless |
Z = 4 | 0.29 × 0.27 × 0.26 mm |
F(000) = 464 |
Bruker APEXII CCD area-detector diffractometer | 1446 independent reflections |
Radiation source: fine-focus sealed tube | 1062 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
φ and ω scans | θmax = 28.6°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −18→17 |
Tmin = 0.651, Tmax = 0.745 | k = −9→9 |
10376 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.203 | w = 1/[σ2(Fo2) + (0.0863P)2 + 0.4481P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max < 0.001 |
1446 reflections | Δρmax = 0.38 e Å−3 |
96 parameters | Δρmin = −0.35 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.011 (4) |
C12H14N2O2 | V = 1089.44 (15) Å3 |
Mr = 218.25 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 13.3879 (10) Å | µ = 0.09 mm−1 |
b = 6.8462 (6) Å | T = 296 K |
c = 11.8861 (9) Å | 0.29 × 0.27 × 0.26 mm |
Bruker APEXII CCD area-detector diffractometer | 1446 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1062 reflections with I > 2σ(I) |
Tmin = 0.651, Tmax = 0.745 | Rint = 0.019 |
10376 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 1 restraint |
wR(F2) = 0.203 | H-atom parameters constrained |
S = 1.17 | Δρmax = 0.38 e Å−3 |
1446 reflections | Δρmin = −0.35 e Å−3 |
96 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.9509 (2) | 0.2500 | 1.1853 (3) | 0.0603 (8) | |
H11 | 0.9026 | 0.2500 | 1.2416 | 0.072* | |
C2 | 1.0499 (3) | 0.2500 | 1.2128 (4) | 0.0731 (10) | |
H2 | 1.0689 | 0.2500 | 1.2880 | 0.088* | |
C3 | 1.1212 (2) | 0.2500 | 1.1306 (4) | 0.0723 (11) | |
H3 | 1.1883 | 0.2500 | 1.1510 | 0.087* | |
C4 | 1.0962 (2) | 0.2500 | 1.0186 (4) | 0.0641 (9) | |
H4 | 1.1454 | 0.2500 | 0.9633 | 0.077* | |
C5 | 0.99369 (19) | 0.2500 | 0.9893 (2) | 0.0449 (6) | |
C6 | 0.92245 (18) | 0.2500 | 1.0730 (2) | 0.0440 (6) | |
C7 | 0.79331 (18) | 0.2500 | 0.9352 (2) | 0.0427 (6) | |
C8 | 0.8664 (2) | 0.2500 | 0.8500 (2) | 0.0481 (6) | |
C9 | 0.8419 (3) | 0.2500 | 0.7287 (3) | 0.0705 (9) | |
H9A | 0.9023 | 0.2500 | 0.6845 | 0.080* | |
H9B | 0.8034 | 0.1355 | 0.7099 | 0.080* | |
C10 | 0.6836 (2) | 0.2500 | 0.9063 (3) | 0.0551 (7) | |
H10 | 0.6798 | 0.2500 | 0.8240 | 0.066* | |
C11 | 0.63084 (17) | 0.0655 (4) | 0.9452 (2) | 0.0777 (8) | |
H11A | 0.6657 | −0.0468 | 0.9169 | 0.117* | |
H11B | 0.5636 | 0.0652 | 0.9173 | 0.117* | |
H11C | 0.6299 | 0.0615 | 1.0259 | 0.117* | |
N1 | 0.82094 (15) | 0.2500 | 1.04424 (19) | 0.0445 (6) | |
N2 | 0.96482 (17) | 0.2500 | 0.8772 (2) | 0.0513 (6) | |
O1 | 0.75580 (15) | 0.2500 | 1.12490 (18) | 0.0681 (7) | |
O2 | 1.03357 (18) | 0.2500 | 0.8002 (2) | 0.0809 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0617 (17) | 0.0652 (18) | 0.0539 (18) | 0.000 | −0.0125 (14) | 0.000 |
C2 | 0.067 (2) | 0.066 (2) | 0.085 (3) | 0.000 | −0.0309 (19) | 0.000 |
C3 | 0.0494 (16) | 0.0531 (16) | 0.114 (3) | 0.000 | −0.0284 (19) | 0.000 |
C4 | 0.0403 (13) | 0.0433 (14) | 0.109 (3) | 0.000 | 0.0089 (16) | 0.000 |
C5 | 0.0405 (12) | 0.0326 (11) | 0.0616 (17) | 0.000 | 0.0047 (11) | 0.000 |
C6 | 0.0389 (12) | 0.0377 (12) | 0.0553 (15) | 0.000 | −0.0038 (11) | 0.000 |
C7 | 0.0408 (12) | 0.0438 (12) | 0.0434 (14) | 0.000 | −0.0006 (10) | 0.000 |
C8 | 0.0557 (14) | 0.0409 (12) | 0.0477 (15) | 0.000 | 0.0076 (12) | 0.000 |
C9 | 0.084 (2) | 0.081 (2) | 0.0466 (17) | 0.000 | 0.0075 (16) | 0.000 |
C10 | 0.0409 (13) | 0.0706 (18) | 0.0537 (17) | 0.000 | −0.0040 (12) | 0.000 |
C11 | 0.0525 (11) | 0.0818 (17) | 0.099 (2) | −0.0170 (11) | −0.0097 (12) | 0.0027 (15) |
N1 | 0.0368 (10) | 0.0509 (12) | 0.0457 (12) | 0.000 | 0.0050 (9) | 0.000 |
N2 | 0.0485 (12) | 0.0406 (11) | 0.0648 (15) | 0.000 | 0.0196 (11) | 0.000 |
O1 | 0.0461 (10) | 0.1067 (18) | 0.0516 (12) | 0.000 | 0.0126 (9) | 0.000 |
O2 | 0.0716 (15) | 0.0876 (17) | 0.0836 (18) | 0.000 | 0.0422 (13) | 0.000 |
C1—C2 | 1.365 (4) | C7—C10 | 1.508 (4) |
C1—C6 | 1.389 (4) | C8—N2 | 1.357 (4) |
C1—H11 | 0.9300 | C8—C9 | 1.479 (4) |
C2—C3 | 1.366 (6) | C9—H9A | 0.964 (4) |
C2—H2 | 0.9300 | C9—H9B | 0.964 (2) |
C3—C4 | 1.373 (5) | C10—C11i | 1.519 (3) |
C3—H3 | 0.9300 | C10—C11 | 1.519 (3) |
C4—C5 | 1.416 (4) | C10—H10 | 0.9800 |
C4—H4 | 0.9300 | C11—H11A | 0.9600 |
C5—C6 | 1.378 (4) | C11—H11B | 0.9600 |
C5—N2 | 1.387 (4) | C11—H11C | 0.9600 |
C6—N1 | 1.401 (3) | N1—O1 | 1.296 (3) |
C7—N1 | 1.348 (3) | N2—O2 | 1.298 (3) |
C7—C8 | 1.409 (4) | ||
C2—C1—C6 | 119.7 (3) | C7—C8—C9 | 123.1 (3) |
C2—C1—H11 | 120.1 | C8—C9—H9A | 110.2 (3) |
C6—C1—H11 | 120.1 | C8—C9—H9B | 110.1 (2) |
C1—C2—C3 | 120.5 (3) | H9A—C9—H9B | 108.8 (2) |
C1—C2—H2 | 119.7 | C7—C10—C11i | 112.56 (16) |
C3—C2—H2 | 119.7 | C7—C10—C11 | 112.56 (16) |
C2—C3—C4 | 121.5 (3) | C11i—C10—C11 | 112.5 (3) |
C2—C3—H3 | 119.2 | C7—C10—H10 | 106.2 |
C4—C3—H3 | 119.2 | C11i—C10—H10 | 106.2 |
C3—C4—C5 | 118.4 (3) | C11—C10—H10 | 106.2 |
C3—C4—H4 | 120.8 | C10—C11—H11A | 109.5 |
C5—C4—H4 | 120.8 | C10—C11—H11B | 109.5 |
C6—C5—N2 | 120.0 (2) | H11A—C11—H11B | 109.5 |
C6—C5—C4 | 119.6 (3) | C10—C11—H11C | 109.5 |
N2—C5—C4 | 120.4 (3) | H11A—C11—H11C | 109.5 |
C5—C6—C1 | 120.3 (3) | H11B—C11—H11C | 109.5 |
C5—C6—N1 | 119.7 (3) | O1—N1—C7 | 121.8 (2) |
C1—C6—N1 | 120.0 (3) | O1—N1—C6 | 118.2 (2) |
N1—C7—C8 | 120.0 (2) | C7—N1—C6 | 120.0 (2) |
N1—C7—C10 | 119.1 (2) | O2—N2—C8 | 121.4 (3) |
C8—C7—C10 | 120.9 (3) | O2—N2—C5 | 118.7 (2) |
N2—C8—C7 | 120.2 (3) | C8—N2—C5 | 120.0 (2) |
N2—C8—C9 | 116.6 (3) | ||
C6—C1—C2—C3 | 0.000 (2) | C8—C7—C10—C11 | 115.8 (2) |
C1—C2—C3—C4 | 0.000 (2) | C8—C7—N1—O1 | 180.0 |
C2—C3—C4—C5 | 0.000 (1) | C10—C7—N1—O1 | 0.0 |
C3—C4—C5—C6 | 0.000 (1) | C8—C7—N1—C6 | 0.0 |
C3—C4—C5—N2 | 180.000 (1) | C10—C7—N1—C6 | 180.0 |
N2—C5—C6—C1 | 180.0 | C5—C6—N1—O1 | 180.0 |
C4—C5—C6—C1 | 0.000 (1) | C1—C6—N1—O1 | 0.0 |
N2—C5—C6—N1 | 0.0 | C5—C6—N1—C7 | 0.0 |
C4—C5—C6—N1 | 180.0 | C1—C6—N1—C7 | 180.0 |
C2—C1—C6—C5 | 0.000 (1) | C7—C8—N2—O2 | 180.0 |
C2—C1—C6—N1 | 180.0 | C9—C8—N2—O2 | 0.0 |
N1—C7—C8—N2 | 0.0 | C7—C8—N2—C5 | 0.0 |
C10—C7—C8—N2 | 180.0 | C9—C8—N2—C5 | 180.0 |
N1—C7—C8—C9 | 180.0 | C6—C5—N2—O2 | 180.0 |
C10—C7—C8—C9 | 0.0 | C4—C5—N2—O2 | 0.0 |
N1—C7—C10—C11i | 64.2 (2) | C6—C5—N2—C8 | 0.0 |
C8—C7—C10—C11i | −115.8 (2) | C4—C5—N2—C8 | 180.0 |
N1—C7—C10—C11 | −64.2 (2) |
Symmetry code: (i) x, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C12H14N2O2 |
Mr | 218.25 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 296 |
a, b, c (Å) | 13.3879 (10), 6.8462 (6), 11.8861 (9) |
V (Å3) | 1089.44 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.29 × 0.27 × 0.26 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.651, 0.745 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10376, 1446, 1062 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.674 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.203, 1.17 |
No. of reflections | 1446 |
No. of parameters | 96 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.35 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).
Acknowledgements
This work was supported by the NSFC (grant No. 20625307), the National Basic Research Program of China (973 Program, 2009CB930103) and the Graduate Independent Innovation Foundation of Shandong University (GIIFSDU).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Amin, K. M., Ismail, M. M. F., Noaman. E., Soliman, D. H. & Ammar, Y. A. (2006). Bioorg. Med. Chem. 14, 6917–6923. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Edwards. M. L., Bambury. R. E. & Ritter. H. W. (1975). J. Med. Chem. 18, 637–639. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Glazer, E. A. & Chappel, L. R. (1982) J. Med. Chem. 25, 868–870. CrossRef PubMed Web of Science Google Scholar
Issidorides, C. H. & Haddadin, M. J. (1966). J. Org. Chem. 31, 4067–4068. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, the compounds of quinoxaline di-N-oxide have been used as important and widely-used drugs for sterilization and growth-promoting of animals. Quinoxaline di-N-oxide also has pharmacological properties usable as intermediates for producing plant protection agents. The research in the crystal of quinoxaline di-N-oxide has great meaning to pharmacology. The title compound 2-isopropyl-3-methylquinoxaline 1,4-dioxide was obtained by Beirut Reaction: benzofurazan-N-oxides reacted with cyclohexanone catalysed by triethylamine without any other solvent.