organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[1-(3-Oxo-1,3-di­hydro-2-benzo­furan-1-yl)-1H-benzimidazol-2-yl]benzoic acid methanol solvate

aSchool of Chemistry and Environment, South China Nomal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: dh@scnu.edu.cn

(Received 20 June 2010; accepted 7 July 2010; online 17 July 2010)

The condensation of 2-carb­oxy­benzaldehyde with 1,2-phenyl­enediamine unexpectedly yielded the title compound, C22H14N2O4·CH4O. The benzimidazole ring system is almost perpendicular to the phthalazine ring system, making a dihedral angle of 88.4 (5)°. Inter­molecular O—H⋯N and O—H⋯O hydrogen-bonding inter­actions stabilize the crystal structure.

Related literature

For hydrogen bonding, see: Scheiner (1997[Zhang, Y.-L., Wu, Y.-J., Peng, G. & Deng, H. (2009). Acta Cryst. E65, o974.]). For the role of hydrogen bonding between solvent mol­ecules and heterocyclic compounds in the formation of supra­molecules, see: Amaya & Rebek (2004[Amaya, T. & Rebek, J. (2004). J. Am. Chem. Soc. 126, 14149-14156.]); Roesky & Andruh (2003[Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.]). Nelson et al. (1982[Nelson, S. M., Esho, F. S. & Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407-415.]) have reported that reaction of 2,6-diacetyl­pyridine and 1,2-phenyl­enediamine can form benzimidazole groups via oxidative dehydrogenation and Li et al. (2002[Li, J., Zhang, F. X. & Shi, Q. Z. (2002). Chin. J. Inorg. Chem. 6, 643-645.]) have isolated a benzimidazole derivate by the reaction of 5-bromo-2-hy­droxy­­benzaldehyde and 1,2-phenyl­enediamine in the presence of anhydrous ethanol solution. For a related structure, see: Zhang et al. (2009[Zhang, Y.-L., Wu, Y.-J., Peng, G. & Deng, H. (2009). Acta Cryst. E65, o974.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14N2O4·CH4O

  • Mr = 402.39

  • Monoclinic, P 21 /c

  • a = 13.7946 (8) Å

  • b = 9.7815 (7) Å

  • c = 15.3083 (9) Å

  • β = 103.985 (4)°

  • V = 2004.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.981

  • 16115 measured reflections

  • 3618 independent reflections

  • 2220 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.179

  • S = 1.07

  • 3618 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5 0.82 1.83 2.632 (4) 167
O5—H5A⋯N1i 0.82 1.92 2.733 (3) 173
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrogen bonding is one of an important non-covalent interaction,which plays a great role in supramolecular chemistry and material sciences (Scheiner,1997). Among solvent molecules and the hetercycle compounds the hydrogen bonding comprising O– or N– donors has been confirmed to be a useful and powerful organizing force to form supramolecules (Roesky et al., 2003; Amaya et al., 2004). Nelson et al. (Nelson et al., 1982) have reported a reaction of 2,6-diacetylpyridine and 1,2-phenylenediamine can form benzimidazole groups via oxidative dehydrogenation and Li et al. (Li et al., 2002) have also isolated a benzimidazole derivate in the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-phenylenediamine in the presence of the anhydrous ethanol solution. Here, we chose 2-carboxybenzaldehyde and 1,2-phenylenediamine successfully synthesized the title compound 2-(1-(3'-phthalide-yl)-1H-benzoimidazol-2-yl)benzoic acid, (I).

In the main molecule of the title compound (I), (Fig. 1), the benzimidazole ring is almost perpendicular to the phthalazine ring with a dihedral angle of 88.4 (5)°, The bond lengths and angles are comparable to the similar structures (Zhang et al., 2009). Intermolecular O—H···O and O—H···N interactions between the symmetry-related molecues (Table 1, Fig. 2). Adjacent molecules are stacked through π-π interactions [Cg1···Cg2(-x, 1 - y, -z) = 3.578 (3) Å, where Cg1 and Cg2 are centroids of the N1/C1—C3/C8/C9 and C4—C9 rings, respectively].

Related literature top

For hydrogen bonding, see: Scheiner (1997). For the role of hydrogen bonding between solvent molecules and heterocyclic compounds in the formation of supramolecules, see: Amaya & Rebek (2004); Roesky & Andruh (2003). Nelson et al. (1982) have reported that reaction of 2,6-diacetylpyridine and 1,2-phenylenediamine can form benzimidazole groups via oxidative dehydrogenation and Li et al. (2002) have isolated a benzimidazole derivate by the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-phenylenediamine in the presence of anhydrous ethanol solution. For a related structure, see: Zhang et al. (2009).

Experimental top

2-carboxybenzaldehyde (0.30 g; 2 mmol) and 1,2-phenylenediamine (0.108 g; 1 mmol) were mixture in the methanol solution (30 ml), and the mixture was refluxed 3 h at 353 K. The resultant yellow precipitate was filtered and recrystallized in methanol/chloroform (4:1) solution. Standing of the solution in air at room temperation obtained colorless block crystals (I) in 79% yield.

Refinement top

water H atoms were located in a difference Fourier map and were refined isotropically, Other H-atoms on aromatic ring were placed in calculated positions with C—H = 0.93 Å; refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Structure description top

Hydrogen bonding is one of an important non-covalent interaction,which plays a great role in supramolecular chemistry and material sciences (Scheiner,1997). Among solvent molecules and the hetercycle compounds the hydrogen bonding comprising O– or N– donors has been confirmed to be a useful and powerful organizing force to form supramolecules (Roesky et al., 2003; Amaya et al., 2004). Nelson et al. (Nelson et al., 1982) have reported a reaction of 2,6-diacetylpyridine and 1,2-phenylenediamine can form benzimidazole groups via oxidative dehydrogenation and Li et al. (Li et al., 2002) have also isolated a benzimidazole derivate in the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-phenylenediamine in the presence of the anhydrous ethanol solution. Here, we chose 2-carboxybenzaldehyde and 1,2-phenylenediamine successfully synthesized the title compound 2-(1-(3'-phthalide-yl)-1H-benzoimidazol-2-yl)benzoic acid, (I).

In the main molecule of the title compound (I), (Fig. 1), the benzimidazole ring is almost perpendicular to the phthalazine ring with a dihedral angle of 88.4 (5)°, The bond lengths and angles are comparable to the similar structures (Zhang et al., 2009). Intermolecular O—H···O and O—H···N interactions between the symmetry-related molecues (Table 1, Fig. 2). Adjacent molecules are stacked through π-π interactions [Cg1···Cg2(-x, 1 - y, -z) = 3.578 (3) Å, where Cg1 and Cg2 are centroids of the N1/C1—C3/C8/C9 and C4—C9 rings, respectively].

For hydrogen bonding, see: Scheiner (1997). For the role of hydrogen bonding between solvent molecules and heterocyclic compounds in the formation of supramolecules, see: Amaya & Rebek (2004); Roesky & Andruh (2003). Nelson et al. (1982) have reported that reaction of 2,6-diacetylpyridine and 1,2-phenylenediamine can form benzimidazole groups via oxidative dehydrogenation and Li et al. (2002) have isolated a benzimidazole derivate by the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-phenylenediamine in the presence of anhydrous ethanol solution. For a related structure, see: Zhang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of (I) along the b axis, showing the O—H···O and O—H···N hydrogen bonds.
2-[1-(3-Oxo-1,3-dihydro-2-benzofuran-1-yl)-1H-benzimidazol- 2-yl]benzoic acid methanol solvate top
Crystal data top
C22H14N2O4·CH4OF(000) = 840
Mr = 402.39Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4300 reflections
a = 13.7946 (8) Åθ = 2.5–25.2°
b = 9.7815 (7) ŵ = 0.10 mm1
c = 15.3083 (9) ÅT = 293 K
β = 103.985 (4)°Block, colorless
V = 2004.4 (2) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3618 independent reflections
Radiation source: fine-focus sealed tube2220 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 25.2°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.972, Tmax = 0.981k = 1111
16115 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0793P)2 + 0.7223P]
where P = (Fo2 + 2Fc2)/3
3618 reflections(Δ/σ)max = 0.005
273 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C22H14N2O4·CH4OV = 2004.4 (2) Å3
Mr = 402.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7946 (8) ŵ = 0.10 mm1
b = 9.7815 (7) ÅT = 293 K
c = 15.3083 (9) Å0.30 × 0.25 × 0.20 mm
β = 103.985 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3618 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2220 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.981Rint = 0.042
16115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.07Δρmax = 0.26 e Å3
3618 reflectionsΔρmin = 0.23 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2698 (3)0.7568 (4)0.3140 (2)0.0646 (8)
C20.2114 (2)0.7749 (3)0.2192 (2)0.0574 (8)
C30.1577 (3)0.8940 (3)0.1918 (2)0.0735 (9)
H30.15390.96030.23440.088*
C40.1102 (3)0.9157 (4)0.1035 (3)0.0837 (11)
H40.07430.99600.08690.100*
C50.1153 (3)0.8195 (4)0.0393 (2)0.0802 (10)
H50.08420.83550.02080.096*
C60.1665 (2)0.6995 (3)0.0642 (2)0.0675 (9)
H60.16920.63430.02070.081*
C70.2148 (2)0.6743 (3)0.15465 (19)0.0534 (7)
C80.2695 (2)0.5440 (3)0.17289 (17)0.0514 (7)
C90.3092 (2)0.3309 (3)0.21960 (18)0.0504 (7)
C100.3180 (2)0.1996 (3)0.2542 (2)0.0619 (8)
H100.27470.16640.28720.074*
C110.3938 (2)0.1202 (4)0.2373 (2)0.0748 (10)
H110.40150.03130.25930.090*
C120.4587 (3)0.1686 (4)0.1886 (3)0.0774 (10)
H120.50880.11130.17860.093*
C130.4514 (2)0.2990 (4)0.1547 (2)0.0700 (9)
H130.49550.33130.12210.084*
C140.3749 (2)0.3812 (3)0.17105 (19)0.0550 (7)
C150.2117 (3)0.3034 (4)0.4943 (2)0.0780 (10)
H150.25040.32000.55200.094*
C160.1467 (3)0.1954 (4)0.4806 (2)0.0805 (11)
H160.14230.14080.52930.097*
C170.0878 (3)0.1656 (4)0.3965 (2)0.0698 (9)
H170.04440.09130.38680.084*
C180.0965 (2)0.2521 (3)0.32720 (18)0.0519 (7)
C190.1618 (2)0.3603 (3)0.34079 (17)0.0499 (7)
C200.2215 (2)0.3885 (3)0.42476 (19)0.0666 (9)
H200.26620.46130.43430.080*
C210.1534 (2)0.4328 (3)0.25260 (17)0.0498 (7)
H210.12960.52630.25720.060*
C220.0433 (2)0.2488 (3)0.2319 (2)0.0546 (7)
C240.4396 (5)0.6942 (6)0.5552 (4)0.149 (2)
H24A0.50880.70020.58650.223*
H24B0.43190.62790.50780.223*
H24C0.40080.66710.59660.223*
N10.34805 (17)0.5147 (3)0.14283 (15)0.0571 (7)
N20.24148 (16)0.4369 (2)0.22025 (14)0.0483 (6)
O10.3086 (2)0.6524 (3)0.34359 (16)0.0873 (8)
O20.2764 (2)0.8683 (3)0.36180 (18)0.1010 (9)
H20.30910.85300.41310.151*
O30.01827 (18)0.1711 (3)0.19162 (15)0.0789 (7)
O40.07646 (14)0.3553 (2)0.18969 (12)0.0556 (5)
O50.4054 (2)0.8271 (3)0.51697 (18)0.1090 (10)
H5A0.39300.87630.55630.163*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.073 (2)0.058 (2)0.063 (2)0.0139 (17)0.0172 (17)0.0095 (17)
C20.0678 (19)0.0495 (18)0.0555 (18)0.0065 (15)0.0161 (15)0.0008 (14)
C30.087 (2)0.055 (2)0.079 (2)0.0016 (18)0.0216 (19)0.0016 (17)
C40.096 (3)0.062 (2)0.088 (3)0.009 (2)0.013 (2)0.016 (2)
C50.088 (3)0.079 (3)0.065 (2)0.001 (2)0.0033 (18)0.019 (2)
C60.081 (2)0.067 (2)0.0524 (18)0.0029 (18)0.0126 (16)0.0050 (16)
C70.0568 (17)0.0519 (17)0.0526 (17)0.0054 (14)0.0155 (14)0.0049 (14)
C80.0548 (17)0.0563 (18)0.0424 (15)0.0016 (14)0.0108 (13)0.0001 (13)
C90.0497 (16)0.0541 (17)0.0456 (15)0.0014 (13)0.0084 (13)0.0025 (13)
C100.0607 (19)0.0605 (19)0.066 (2)0.0062 (15)0.0183 (15)0.0060 (16)
C110.067 (2)0.066 (2)0.091 (3)0.0134 (18)0.0187 (19)0.0115 (19)
C120.062 (2)0.078 (3)0.094 (3)0.0177 (18)0.0219 (19)0.001 (2)
C130.0529 (18)0.086 (3)0.074 (2)0.0035 (17)0.0220 (16)0.0046 (19)
C140.0536 (17)0.0602 (19)0.0504 (16)0.0026 (14)0.0111 (14)0.0015 (14)
C150.100 (3)0.082 (2)0.0461 (18)0.004 (2)0.0067 (17)0.0040 (18)
C160.106 (3)0.089 (3)0.0502 (19)0.011 (2)0.0255 (19)0.0221 (19)
C170.081 (2)0.073 (2)0.061 (2)0.0001 (18)0.0259 (18)0.0145 (17)
C180.0551 (17)0.0579 (18)0.0463 (16)0.0042 (14)0.0194 (13)0.0032 (13)
C190.0565 (17)0.0525 (17)0.0423 (15)0.0079 (14)0.0151 (13)0.0023 (13)
C200.077 (2)0.070 (2)0.0497 (18)0.0010 (17)0.0080 (15)0.0033 (16)
C210.0567 (17)0.0496 (16)0.0437 (15)0.0018 (13)0.0136 (13)0.0005 (13)
C220.0547 (17)0.0605 (19)0.0508 (17)0.0030 (15)0.0167 (14)0.0003 (15)
C240.196 (6)0.126 (4)0.107 (4)0.046 (4)0.003 (4)0.023 (3)
N10.0575 (15)0.0634 (16)0.0525 (14)0.0064 (12)0.0172 (12)0.0006 (12)
N20.0515 (13)0.0486 (13)0.0471 (13)0.0029 (11)0.0163 (10)0.0039 (11)
O10.1053 (19)0.0746 (17)0.0682 (15)0.0027 (15)0.0062 (13)0.0027 (13)
O20.138 (2)0.0844 (18)0.0751 (17)0.0012 (17)0.0144 (16)0.0227 (14)
O30.0792 (15)0.0920 (18)0.0642 (14)0.0309 (14)0.0147 (12)0.0024 (13)
O40.0561 (12)0.0671 (13)0.0422 (10)0.0067 (10)0.0089 (9)0.0045 (9)
O50.117 (2)0.138 (3)0.0689 (16)0.024 (2)0.0179 (16)0.0279 (17)
Geometric parameters (Å, º) top
C1—O11.190 (4)C13—H130.9300
C1—O21.305 (4)C14—N11.397 (4)
C1—C21.489 (4)C15—C161.368 (5)
C2—C31.390 (4)C15—C201.383 (5)
C2—C71.404 (4)C15—H150.9300
C3—C41.369 (5)C16—C171.378 (5)
C3—H30.9300C16—H160.9300
C4—C51.375 (5)C17—C181.385 (4)
C4—H40.9300C17—H170.9300
C5—C61.376 (5)C18—C191.372 (4)
C5—H50.9300C18—C221.467 (4)
C6—C71.405 (4)C19—C201.377 (4)
C6—H60.9300C19—C211.505 (4)
C7—C81.473 (4)C20—H200.9300
C8—N11.307 (3)C21—N21.419 (3)
C8—N21.381 (3)C21—O41.461 (3)
C9—C101.384 (4)C21—H210.9800
C9—C141.393 (4)C22—O31.194 (3)
C9—N21.397 (3)C22—O41.362 (3)
C10—C111.376 (4)C24—O51.456 (6)
C10—H100.9300C24—H24A0.9600
C11—C121.380 (5)C24—H24B0.9600
C11—H110.9300C24—H24C0.9600
C12—C131.372 (5)O2—H20.8200
C12—H120.9300O5—H5A0.8200
C13—C141.397 (4)
O1—C1—O2122.6 (3)C13—C14—N1129.6 (3)
O1—C1—C2124.1 (3)C16—C15—C20122.0 (3)
O2—C1—C2113.3 (3)C16—C15—H15119.0
C3—C2—C7118.7 (3)C20—C15—H15119.0
C3—C2—C1121.1 (3)C15—C16—C17121.5 (3)
C7—C2—C1120.0 (3)C15—C16—H16119.2
C4—C3—C2121.4 (3)C17—C16—H16119.2
C4—C3—H3119.3C16—C17—C18116.4 (3)
C2—C3—H3119.3C16—C17—H17121.8
C3—C4—C5120.3 (3)C18—C17—H17121.8
C3—C4—H4119.8C19—C18—C17122.1 (3)
C5—C4—H4119.8C19—C18—C22108.7 (2)
C6—C5—C4119.8 (3)C17—C18—C22129.3 (3)
C6—C5—H5120.1C18—C19—C20121.2 (3)
C4—C5—H5120.1C18—C19—C21108.8 (2)
C5—C6—C7120.9 (3)C20—C19—C21130.0 (3)
C5—C6—H6119.6C19—C20—C15116.7 (3)
C7—C6—H6119.6C19—C20—H20121.6
C2—C7—C6118.8 (3)C15—C20—H20121.6
C2—C7—C8125.1 (3)N2—C21—O4109.3 (2)
C6—C7—C8116.0 (3)N2—C21—C19116.1 (2)
N1—C8—N2112.3 (2)O4—C21—C19103.4 (2)
N1—C8—C7123.6 (2)N2—C21—H21109.2
N2—C8—C7124.1 (2)O4—C21—H21109.2
C10—C9—C14121.6 (3)C19—C21—H21109.2
C10—C9—N2133.1 (3)O3—C22—O4121.4 (3)
C14—C9—N2105.3 (2)O3—C22—C18130.6 (3)
C11—C10—C9116.9 (3)O4—C22—C18108.0 (2)
C11—C10—H10121.5O5—C24—H24A109.5
C9—C10—H10121.5O5—C24—H24B109.5
C10—C11—C12122.0 (3)H24A—C24—H24B109.5
C10—C11—H11119.0O5—C24—H24C109.5
C12—C11—H11119.0H24A—C24—H24C109.5
C13—C12—C11121.7 (3)H24B—C24—H24C109.5
C13—C12—H12119.2C8—N1—C14106.0 (2)
C11—C12—H12119.2C8—N2—C9106.6 (2)
C12—C13—C14117.2 (3)C8—N2—C21125.2 (2)
C12—C13—H13121.4C9—N2—C21127.7 (2)
C14—C13—H13121.4C1—O2—H2109.5
C9—C14—C13120.7 (3)C22—O4—C21111.0 (2)
C9—C14—N1109.7 (2)C24—O5—H5A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.821.832.632 (4)167
O5—H5A···N1i0.821.922.733 (3)173
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H14N2O4·CH4O
Mr402.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.7946 (8), 9.7815 (7), 15.3083 (9)
β (°) 103.985 (4)
V3)2004.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
16115, 3618, 2220
Rint0.042
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.179, 1.07
No. of reflections3618
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.821.832.632 (4)167.4
O5—H5A···N1i0.821.922.733 (3)173.2
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationAmaya, T. & Rebek, J. (2004). J. Am. Chem. Soc. 126, 14149–14156.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J., Zhang, F. X. & Shi, Q. Z. (2002). Chin. J. Inorg. Chem. 6, 643–645.  Google Scholar
First citationNelson, S. M., Esho, F. S. & Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407–415.  CSD CrossRef Web of Science Google Scholar
First citationRoesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.  Web of Science CrossRef CAS Google Scholar
First citationScheiner (1997). Please give full reference.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-L., Wu, Y.-J., Peng, G. & Deng, H. (2009). Acta Cryst. E65, o974.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds