organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(1-Allyl-2-oxoindolin-3-yl­­idene)benzohydrazide

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 June 2010; accepted 25 June 2010; online 3 July 2010)

In the title compound, C18H15N3O2, the dihedral angle between the ring systems is 15.1 (1)°. The amino H atom is hydrogen bonded to the exocyclic O atom of the five-membered ring, forming an S(6) motif.

Related literature

For the use of the title compound as the starting reactant for the synthesis of other heterocyclic systems, see: Alsubari et al. (2009[Alsubari, A., Bouhfid, R. & Essassi, E. M. (2009). ARKIVOC, xii, 337-346.]). For a related structure, see: Ali et al. (2005a[Ali, H. M., Abdul Halim, S. N. & Ng, S. W. (2005a). Acta Cryst. E61, o3285-o3286.],b[Ali, H. M., Abdul Halim, S. N. & Ng, S. W. (2005b). Acta Cryst. E61, o3287-o3288.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15N3O2

  • Mr = 305.33

  • Monoclinic, P 21 /c

  • a = 7.5921 (2) Å

  • b = 15.1968 (4) Å

  • c = 12.8716 (3) Å

  • β = 94.481 (2)°

  • V = 1480.53 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • 17477 measured reflections

  • 3286 independent reflections

  • 2343 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.00

  • 3286 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.88 (2) 1.98 (2) 2.721 (2) 141 (2)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

An earlier study reports the synthesis of oxindole derivatives bearing an oxazolidin-2-one sub-unit. The title Sciff base (Scheme I) is the starting reactant for the synthesis of other heterocyclic systems (Alsubari et al., 2009). We have previously determined the crystal structure of two modifications of the Schiff base derived by condensing isatin and benzoylhydrazine. In both, the amino unit of the five-membered ring functions as a hydrogen bond donor to carbonyl group of an adjacent molecule to generate a chain structure. Meanwhile, the amino –NH– unit forms an intramolecular hydrogen bond to the –C(O)– unit of the five-membered ring (Ali et al., 2005a, 2005b). The molecule of C18H15N3O2 (Fig, 1) has a phenyl ring connected to a nine-membered fused-ring through the three-atom –C(O)–N(H)–Nunit, whose amino H-atom is hydrogen bonded to the carbonyl group of the fused-ring. The two ring systems are aligned at 15.1 (1) °.

Related literature top

For the use of the title compound as the starting reactant for the synthesis of other heterocyclic systems, see: Alsubari et al. (2009). For a related structure, see: Ali et al. (2005a,b).

Experimental top

1-Allylindoline-2,3-dione (0.5 g, 2.7 mmol) and benzoyl hydrazine (0.36 g, 2.7 mmol) were heated in ethanol (20 ml) for 2 h. The solvent was evaporated and the yellow solid was recrystallized from ethanol in 90% yield.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The amino H-atom was located in a difference Fourier map; the N–H distance was restrained to 0.86±0.01 Å; the temperature factor of this hydrogen atom was freely refined.

Structure description top

An earlier study reports the synthesis of oxindole derivatives bearing an oxazolidin-2-one sub-unit. The title Sciff base (Scheme I) is the starting reactant for the synthesis of other heterocyclic systems (Alsubari et al., 2009). We have previously determined the crystal structure of two modifications of the Schiff base derived by condensing isatin and benzoylhydrazine. In both, the amino unit of the five-membered ring functions as a hydrogen bond donor to carbonyl group of an adjacent molecule to generate a chain structure. Meanwhile, the amino –NH– unit forms an intramolecular hydrogen bond to the –C(O)– unit of the five-membered ring (Ali et al., 2005a, 2005b). The molecule of C18H15N3O2 (Fig, 1) has a phenyl ring connected to a nine-membered fused-ring through the three-atom –C(O)–N(H)–Nunit, whose amino H-atom is hydrogen bonded to the carbonyl group of the fused-ring. The two ring systems are aligned at 15.1 (1) °.

For the use of the title compound as the starting reactant for the synthesis of other heterocyclic systems, see: Alsubari et al. (2009). For a related structure, see: Ali et al. (2005a,b).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the molecule of C18H15N3O2 at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radii.
N'-(1-Allyl-2-oxoindolin-3-ylidene)benzohydrazide top
Crystal data top
C18H15N3O2F(000) = 640
Mr = 305.33Dx = 1.370 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3004 reflections
a = 7.5921 (2) Åθ = 2.7–25.0°
b = 15.1968 (4) ŵ = 0.09 mm1
c = 12.8716 (3) ÅT = 293 K
β = 94.481 (2)°Prism, yellow
V = 1480.53 (7) Å30.35 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
2343 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 27.1°, θmin = 2.7°
φ and ω scansh = 99
17477 measured reflectionsk = 1919
3286 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.3757P]
where P = (Fo2 + 2Fc2)/3
3286 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H15N3O2V = 1480.53 (7) Å3
Mr = 305.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5921 (2) ŵ = 0.09 mm1
b = 15.1968 (4) ÅT = 293 K
c = 12.8716 (3) Å0.35 × 0.30 × 0.20 mm
β = 94.481 (2)°
Data collection top
Bruker X8 APEXII
diffractometer
2343 reflections with I > 2σ(I)
17477 measured reflectionsRint = 0.059
3286 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.18 e Å3
3286 reflectionsΔρmin = 0.21 e Å3
212 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63773 (15)0.55475 (7)0.60381 (8)0.0315 (3)
O20.68617 (16)0.66838 (8)0.24350 (8)0.0353 (3)
N10.76855 (17)0.41763 (9)0.62121 (10)0.0271 (3)
N20.75597 (16)0.53877 (8)0.38503 (9)0.0248 (3)
N30.67263 (17)0.61477 (9)0.40734 (10)0.0259 (3)
H30.638 (2)0.6205 (11)0.4710 (14)0.034 (5)*
C10.8544 (2)0.35920 (10)0.55565 (12)0.0261 (3)
C20.9222 (2)0.27683 (11)0.57850 (13)0.0318 (4)
H20.91620.25180.64410.038*
C31.0002 (2)0.23266 (11)0.49925 (14)0.0342 (4)
H3A1.04540.17650.51200.041*
C41.0126 (2)0.27008 (11)0.40166 (14)0.0338 (4)
H41.06830.23950.35090.041*
C50.9423 (2)0.35293 (11)0.37944 (12)0.0292 (4)
H50.94960.37810.31410.035*
C60.86100 (19)0.39725 (10)0.45682 (12)0.0248 (3)
C70.7178 (2)0.49230 (11)0.56872 (12)0.0258 (3)
C80.7558 (2)0.40781 (12)0.73353 (12)0.0306 (4)
H8A0.74900.34580.75050.037*
H8B0.64840.43590.75290.037*
C90.9114 (2)0.44791 (11)0.79466 (12)0.0302 (4)
H91.02330.42590.78500.036*
C100.8980 (3)0.51229 (13)0.86094 (14)0.0418 (5)
H10A0.78760.53540.87200.050*
H10B0.99880.53500.89710.050*
C110.77560 (19)0.48267 (10)0.46041 (11)0.0238 (3)
C120.6459 (2)0.67879 (11)0.33277 (11)0.0255 (3)
C130.5594 (2)0.76046 (10)0.36850 (11)0.0254 (3)
C140.5437 (2)0.78064 (11)0.47319 (12)0.0300 (4)
H140.58830.74200.52480.036*
C150.4623 (2)0.85771 (12)0.50059 (13)0.0351 (4)
H150.45230.87080.57050.042*
C160.3957 (2)0.91536 (11)0.42413 (14)0.0339 (4)
H160.33990.96690.44270.041*
C170.4119 (2)0.89656 (11)0.32019 (13)0.0338 (4)
H170.36770.93560.26890.041*
C180.4937 (2)0.81987 (11)0.29260 (13)0.0313 (4)
H180.50510.80770.22260.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0376 (6)0.0279 (6)0.0296 (6)0.0016 (5)0.0074 (5)0.0031 (5)
O20.0445 (7)0.0378 (7)0.0243 (6)0.0041 (6)0.0065 (5)0.0008 (5)
N10.0309 (7)0.0272 (7)0.0234 (6)0.0021 (6)0.0028 (5)0.0006 (5)
N20.0254 (7)0.0229 (7)0.0258 (6)0.0022 (5)0.0005 (5)0.0037 (5)
N30.0325 (7)0.0226 (7)0.0230 (7)0.0006 (6)0.0036 (5)0.0020 (6)
C10.0244 (8)0.0247 (8)0.0286 (8)0.0056 (7)0.0011 (6)0.0035 (6)
C20.0336 (9)0.0272 (9)0.0338 (9)0.0038 (7)0.0015 (7)0.0037 (7)
C30.0342 (9)0.0223 (9)0.0452 (10)0.0013 (7)0.0030 (8)0.0014 (7)
C40.0323 (9)0.0284 (9)0.0402 (10)0.0022 (7)0.0003 (7)0.0094 (7)
C50.0292 (8)0.0296 (9)0.0283 (8)0.0014 (7)0.0000 (7)0.0052 (7)
C60.0239 (7)0.0231 (8)0.0267 (8)0.0042 (6)0.0013 (6)0.0028 (6)
C70.0260 (8)0.0260 (9)0.0254 (8)0.0051 (7)0.0023 (6)0.0018 (6)
C80.0366 (9)0.0315 (9)0.0241 (8)0.0049 (7)0.0048 (7)0.0037 (7)
C90.0319 (9)0.0327 (10)0.0259 (8)0.0010 (7)0.0017 (7)0.0056 (7)
C100.0400 (10)0.0462 (12)0.0386 (10)0.0019 (9)0.0007 (8)0.0081 (9)
C110.0237 (7)0.0225 (8)0.0249 (8)0.0048 (6)0.0007 (6)0.0036 (6)
C120.0251 (8)0.0273 (9)0.0237 (8)0.0033 (7)0.0001 (6)0.0002 (6)
C130.0258 (8)0.0239 (8)0.0262 (8)0.0030 (6)0.0000 (6)0.0003 (6)
C140.0339 (9)0.0300 (9)0.0255 (8)0.0023 (7)0.0005 (7)0.0028 (7)
C150.0401 (10)0.0343 (10)0.0309 (9)0.0022 (8)0.0034 (7)0.0056 (7)
C160.0319 (9)0.0248 (9)0.0441 (10)0.0013 (7)0.0018 (7)0.0034 (7)
C170.0361 (9)0.0258 (9)0.0380 (9)0.0011 (7)0.0066 (7)0.0070 (7)
C180.0378 (9)0.0292 (9)0.0265 (8)0.0036 (7)0.0006 (7)0.0021 (7)
Geometric parameters (Å, º) top
O1—C71.2318 (18)C7—C111.501 (2)
O2—C121.2223 (18)C8—C91.497 (2)
N1—C71.361 (2)C8—H8A0.9700
N1—C11.418 (2)C8—H8B0.9700
N1—C81.4641 (19)C9—C101.307 (2)
N2—C111.2915 (19)C9—H90.9300
N2—N31.3584 (18)C10—H10A0.9300
N3—C121.371 (2)C10—H10B0.9300
N3—H30.883 (18)C12—C131.493 (2)
C1—C21.377 (2)C13—C181.394 (2)
C1—C61.402 (2)C13—C141.396 (2)
C2—C31.392 (2)C14—C151.383 (2)
C2—H20.9300C14—H140.9300
C3—C41.389 (2)C15—C161.383 (2)
C3—H3A0.9300C15—H150.9300
C4—C51.388 (2)C16—C171.383 (2)
C4—H40.9300C16—H160.9300
C5—C61.387 (2)C17—C181.380 (2)
C5—H50.9300C17—H170.9300
C6—C111.453 (2)C18—H180.9300
C7—N1—C1110.61 (12)C9—C8—H8B109.3
C7—N1—C8122.50 (13)H8A—C8—H8B108.0
C1—N1—C8126.35 (14)C10—C9—C8123.28 (16)
C11—N2—N3115.52 (13)C10—C9—H9118.4
N2—N3—C12120.10 (13)C8—C9—H9118.4
N2—N3—H3117.1 (11)C9—C10—H10A120.0
C12—N3—H3122.8 (11)C9—C10—H10B120.0
C2—C1—C6121.98 (15)H10A—C10—H10B120.0
C2—C1—N1128.60 (15)N2—C11—C6126.25 (14)
C6—C1—N1109.42 (14)N2—C11—C7127.48 (14)
C1—C2—C3117.11 (15)C6—C11—C7106.27 (13)
C1—C2—H2121.4O2—C12—N3122.15 (15)
C3—C2—H2121.4O2—C12—C13123.06 (14)
C4—C3—C2121.89 (16)N3—C12—C13114.77 (13)
C4—C3—H3A119.1C18—C13—C14118.77 (15)
C2—C3—H3A119.1C18—C13—C12117.67 (14)
C5—C4—C3120.37 (16)C14—C13—C12123.55 (14)
C5—C4—H4119.8C15—C14—C13120.38 (15)
C3—C4—H4119.8C15—C14—H14119.8
C6—C5—C4118.56 (15)C13—C14—H14119.8
C6—C5—H5120.7C14—C15—C16120.05 (16)
C4—C5—H5120.7C14—C15—H15120.0
C5—C6—C1120.06 (15)C16—C15—H15120.0
C5—C6—C11132.96 (15)C17—C16—C15120.14 (16)
C1—C6—C11106.97 (13)C17—C16—H16119.9
O1—C7—N1126.09 (14)C15—C16—H16119.9
O1—C7—C11127.17 (14)C18—C17—C16119.95 (16)
N1—C7—C11106.74 (13)C18—C17—H17120.0
N1—C8—C9111.54 (13)C16—C17—H17120.0
N1—C8—H8A109.3C17—C18—C13120.69 (15)
C9—C8—H8A109.3C17—C18—H18119.7
N1—C8—H8B109.3C13—C18—H18119.7
C11—N2—N3—C12179.73 (14)N3—N2—C11—C70.3 (2)
C7—N1—C1—C2178.87 (15)C5—C6—C11—N20.6 (3)
C8—N1—C1—C29.5 (3)C1—C6—C11—N2179.33 (14)
C7—N1—C1—C60.38 (17)C5—C6—C11—C7178.78 (16)
C8—N1—C1—C6171.30 (14)C1—C6—C11—C70.03 (16)
C6—C1—C2—C30.7 (2)O1—C7—C11—N21.9 (3)
N1—C1—C2—C3179.84 (15)N1—C7—C11—N2179.10 (14)
C1—C2—C3—C41.1 (2)O1—C7—C11—C6178.79 (15)
C2—C3—C4—C51.7 (3)N1—C7—C11—C60.26 (16)
C3—C4—C5—C60.4 (2)N2—N3—C12—O24.0 (2)
C4—C5—C6—C11.4 (2)N2—N3—C12—C13177.63 (12)
C4—C5—C6—C11179.98 (16)O2—C12—C13—C1811.9 (2)
C2—C1—C6—C51.9 (2)N3—C12—C13—C18166.38 (14)
N1—C1—C6—C5178.75 (13)O2—C12—C13—C14167.09 (15)
C2—C1—C6—C11179.12 (14)N3—C12—C13—C1414.6 (2)
N1—C1—C6—C110.19 (16)C18—C13—C14—C150.8 (2)
C1—N1—C7—O1178.68 (15)C12—C13—C14—C15179.84 (15)
C8—N1—C7—O19.3 (2)C13—C14—C15—C160.0 (3)
C1—N1—C7—C110.38 (16)C14—C15—C16—C170.6 (3)
C8—N1—C7—C11171.67 (13)C15—C16—C17—C180.4 (3)
C7—N1—C8—C983.08 (19)C16—C17—C18—C130.5 (3)
C1—N1—C8—C987.67 (19)C14—C13—C18—C171.1 (2)
N1—C8—C9—C10119.36 (18)C12—C13—C18—C17179.85 (14)
N3—N2—C11—C6179.51 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.88 (2)1.98 (2)2.721 (2)141 (2)

Experimental details

Crystal data
Chemical formulaC18H15N3O2
Mr305.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5921 (2), 15.1968 (4), 12.8716 (3)
β (°) 94.481 (2)
V3)1480.53 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17477, 3286, 2343
Rint0.059
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.00
No. of reflections3286
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.88 (2)1.98 (2)2.721 (2)141 (2)
 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationAli, H. M., Abdul Halim, S. N. & Ng, S. W. (2005a). Acta Cryst. E61, o3285–o3286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, H. M., Abdul Halim, S. N. & Ng, S. W. (2005b). Acta Cryst. E61, o3287–o3288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlsubari, A., Bouhfid, R. & Essassi, E. M. (2009). ARKIVOC, xii, 337–346.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds