organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Butane-1,3-diyne-1,4-diyl)bis­­(tri­iso­propyl­silane)

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 2 July 2010; accepted 9 July 2010; online 17 July 2010)

The mol­ecule of the title compound, C22H42Si2, lies on a center of inversion, and the triisopropyl­silyl groups are staggered.

Related literature

For the crystal structures of the trimethyl and tris-tert-butyl analogs, see: Bruckmann & Krüger (1997[Bruckmann, J. & Krüger, C. (1997). Acta Cryst. C53, 1845-1846.]); Vitze et al. (2009[Vitze, H., Wietelmann, U., Murso, A., Bolte, M., Wagner, M. & Lerner, H.-W. (2009). Z. Naturforsch. Teil B, 64, 223-228.]).

[Scheme 1]

Experimental

Crystal data
  • C22H42Si2

  • Mr = 362.74

  • Triclinic, [P \overline 1]

  • a = 7.1213 (10) Å

  • b = 7.9057 (11) Å

  • c = 10.6937 (14) Å

  • α = 89.139 (2)°

  • β = 81.823 (2)°

  • γ = 79.449 (2)°

  • V = 585.81 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.941, Tmax = 0.985

  • 5560 measured reflections

  • 2674 independent reflections

  • 2190 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.06

  • 2674 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The compound (Scheme I) was obtained in an unsuccessful attempt at the Sonogoshira coupling of 2,9-dichloro-1,10-phenanthroline with trisisopropylsilylacetylene. The carbon–carbon triple-bond is 1.210 (2) Å long; the distance is indistinguisahble from that [1.208 (3) Å] for bis(trimethylsilyl)acetylene (Bruckmann & Krüger, 1997) as well as that [1.22 (2) Å] found in the t-butyl analog (Vitze et al. (2009). The molecule lies on a center of inversion, and the trisisopropylsilyl groups are staggered (Fig. 1).

Related literature top

For the crystal structures of the trimethyl and tris-tert-butyl analogs, see: Bruckmann & Krüger (1997); Vitze et al. (2009).

Experimental top

Copper(I) iodide (70 mg, 0.36 mmol) and dichlorobis(triphenylphosphine)palladium (10 mg, 0.014 mmol) were added to a pyridine solution (10 ml) of triisopropylsilylacetylene (440 mg, 2.4 mmol) and 2,9-dichloro-1,10-phenanthroline (200 mg, 0.8 mmol). The solution was stirred for 4 h. The pyridine was removed under vacuum and the residue dissolved in dichloromethane (10 ml). The solution was washed with 2 N hydrochloric acid (10 ml). The solvent was evaporated and the solid recrystallized from dichloromethane to afford colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C–H 0.98–1.00 Å, U(H) 1.2–1.5U(C)] and were included in the refinement in the riding model approximation.

Structure description top

The compound (Scheme I) was obtained in an unsuccessful attempt at the Sonogoshira coupling of 2,9-dichloro-1,10-phenanthroline with trisisopropylsilylacetylene. The carbon–carbon triple-bond is 1.210 (2) Å long; the distance is indistinguisahble from that [1.208 (3) Å] for bis(trimethylsilyl)acetylene (Bruckmann & Krüger, 1997) as well as that [1.22 (2) Å] found in the t-butyl analog (Vitze et al. (2009). The molecule lies on a center of inversion, and the trisisopropylsilyl groups are staggered (Fig. 1).

For the crystal structures of the trimethyl and tris-tert-butyl analogs, see: Bruckmann & Krüger (1997); Vitze et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C24H42Si2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
(Butane-1,3-diyne-1,4-diyl)bis(triisopropylsilane) top
Crystal data top
C22H42Si2Z = 1
Mr = 362.74F(000) = 202
Triclinic, P1Dx = 1.028 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1213 (10) ÅCell parameters from 1787 reflections
b = 7.9057 (11) Åθ = 2.6–27.7°
c = 10.6937 (14) ŵ = 0.15 mm1
α = 89.139 (2)°T = 100 K
β = 81.823 (2)°Prism, colorless
γ = 79.449 (2)°0.40 × 0.10 × 0.10 mm
V = 585.81 (14) Å3
Data collection top
Bruker SMART APEX
diffractometer
2674 independent reflections
Radiation source: fine-focus sealed tube2190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.941, Tmax = 0.985k = 1010
5560 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.057P]
where P = (Fo2 + 2Fc2)/3
2674 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C22H42Si2γ = 79.449 (2)°
Mr = 362.74V = 585.81 (14) Å3
Triclinic, P1Z = 1
a = 7.1213 (10) ÅMo Kα radiation
b = 7.9057 (11) ŵ = 0.15 mm1
c = 10.6937 (14) ÅT = 100 K
α = 89.139 (2)°0.40 × 0.10 × 0.10 mm
β = 81.823 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2674 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2190 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.985Rint = 0.036
5560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
2674 reflectionsΔρmin = 0.34 e Å3
115 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.75095 (6)0.77829 (5)0.27093 (4)0.01479 (15)
C10.7369 (2)0.7104 (2)0.10482 (15)0.0195 (4)
H10.79500.58520.09800.023*
C20.5337 (3)0.7257 (2)0.07088 (18)0.0295 (4)
H2A0.54010.67160.01180.044*
H2B0.47450.84750.06770.044*
H2C0.45590.66790.13490.044*
C30.8628 (3)0.8009 (2)0.00649 (16)0.0269 (4)
H3A0.86420.75280.07760.040*
H3B0.99470.78310.02710.040*
H3C0.80960.92440.00740.040*
C40.6408 (2)1.0072 (2)0.31850 (16)0.0185 (4)
H40.64461.01470.41130.022*
C50.4277 (3)1.0599 (2)0.30187 (18)0.0264 (4)
H5A0.37461.17120.34380.040*
H5B0.35580.97280.33950.040*
H5C0.41651.06930.21160.040*
C60.7578 (3)1.1395 (2)0.25767 (18)0.0282 (4)
H6A0.70611.25260.29720.042*
H6B0.74891.14590.16710.042*
H6C0.89321.10440.26990.042*
C71.0093 (2)0.7272 (2)0.30172 (16)0.0178 (4)
H71.08070.80910.25140.021*
C81.0237 (3)0.7550 (2)0.44066 (17)0.0233 (4)
H8A1.15980.73630.45270.035*
H8B0.95850.67370.49230.035*
H8C0.96200.87300.46620.035*
C91.1074 (2)0.5444 (2)0.25796 (17)0.0233 (4)
H9A1.23680.51900.28270.035*
H9B1.11730.53580.16580.035*
H9C1.03070.46170.29730.035*
C100.6199 (2)0.64130 (19)0.37986 (15)0.0161 (3)
C110.5440 (2)0.55159 (19)0.45656 (14)0.0152 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0163 (3)0.0141 (2)0.0141 (3)0.00465 (17)0.00050 (17)0.00352 (16)
C10.0248 (9)0.0177 (8)0.0167 (9)0.0068 (7)0.0015 (7)0.0022 (6)
C20.0319 (11)0.0371 (11)0.0229 (10)0.0123 (9)0.0080 (8)0.0002 (8)
C30.0355 (11)0.0301 (10)0.0170 (9)0.0146 (8)0.0009 (8)0.0004 (7)
C40.0228 (9)0.0173 (8)0.0146 (8)0.0041 (7)0.0006 (7)0.0028 (6)
C50.0269 (10)0.0230 (9)0.0266 (10)0.0029 (7)0.0043 (8)0.0015 (7)
C60.0361 (11)0.0163 (8)0.0302 (11)0.0070 (8)0.0051 (9)0.0005 (7)
C70.0171 (8)0.0166 (8)0.0200 (9)0.0055 (6)0.0010 (7)0.0022 (6)
C80.0192 (9)0.0254 (9)0.0263 (10)0.0034 (7)0.0077 (7)0.0010 (7)
C90.0198 (9)0.0215 (9)0.0273 (10)0.0009 (7)0.0029 (7)0.0016 (7)
C100.0159 (8)0.0150 (7)0.0174 (9)0.0017 (6)0.0041 (7)0.0021 (6)
C110.0148 (8)0.0142 (7)0.0168 (9)0.0010 (6)0.0049 (7)0.0001 (6)
Geometric parameters (Å, º) top
Si1—C101.8504 (16)C5—H5B0.9800
Si1—C41.8822 (17)C5—H5C0.9800
Si1—C11.8848 (17)C6—H6A0.9800
Si1—C71.8849 (17)C6—H6B0.9800
C1—C21.524 (2)C6—H6C0.9800
C1—C31.538 (2)C7—C81.526 (2)
C1—H11.0000C7—C91.533 (2)
C2—H2A0.9800C7—H71.0000
C2—H2B0.9800C8—H8A0.9800
C2—H2C0.9800C8—H8B0.9800
C3—H3A0.9800C8—H8C0.9800
C3—H3B0.9800C9—H9A0.9800
C3—H3C0.9800C9—H9B0.9800
C4—C51.533 (2)C9—H9C0.9800
C4—C61.535 (2)C10—C111.210 (2)
C4—H41.0000C11—C11i1.385 (3)
C5—H5A0.9800
C10—Si1—C4106.04 (7)C4—C5—H5B109.5
C10—Si1—C1107.42 (7)H5A—C5—H5B109.5
C4—Si1—C1117.06 (8)C4—C5—H5C109.5
C10—Si1—C7105.69 (7)H5A—C5—H5C109.5
C4—Si1—C7110.41 (7)H5B—C5—H5C109.5
C1—Si1—C7109.52 (8)C4—C6—H6A109.5
C2—C1—C3110.85 (14)C4—C6—H6B109.5
C2—C1—Si1115.47 (12)H6A—C6—H6B109.5
C3—C1—Si1111.67 (11)C4—C6—H6C109.5
C2—C1—H1106.0H6A—C6—H6C109.5
C3—C1—H1106.0H6B—C6—H6C109.5
Si1—C1—H1106.0C8—C7—C9110.89 (14)
C1—C2—H2A109.5C8—C7—Si1111.21 (11)
C1—C2—H2B109.5C9—C7—Si1111.98 (11)
H2A—C2—H2B109.5C8—C7—H7107.5
C1—C2—H2C109.5C9—C7—H7107.5
H2A—C2—H2C109.5Si1—C7—H7107.5
H2B—C2—H2C109.5C7—C8—H8A109.5
C1—C3—H3A109.5C7—C8—H8B109.5
C1—C3—H3B109.5H8A—C8—H8B109.5
H3A—C3—H3B109.5C7—C8—H8C109.5
C1—C3—H3C109.5H8A—C8—H8C109.5
H3A—C3—H3C109.5H8B—C8—H8C109.5
H3B—C3—H3C109.5C7—C9—H9A109.5
C5—C4—C6110.60 (14)C7—C9—H9B109.5
C5—C4—Si1114.57 (11)H9A—C9—H9B109.5
C6—C4—Si1113.60 (11)C7—C9—H9C109.5
C5—C4—H4105.7H9A—C9—H9C109.5
C6—C4—H4105.7H9B—C9—H9C109.5
Si1—C4—H4105.7C11—C10—Si1175.41 (14)
C4—C5—H5A109.5C10—C11—C11i179.4 (2)
C10—Si1—C1—C259.25 (14)C1—Si1—C4—C672.44 (15)
C4—Si1—C1—C259.79 (14)C7—Si1—C4—C653.75 (15)
C7—Si1—C1—C2173.58 (12)C10—Si1—C7—C856.07 (12)
C10—Si1—C1—C3172.91 (12)C4—Si1—C7—C858.19 (13)
C4—Si1—C1—C368.05 (14)C1—Si1—C7—C8171.50 (11)
C7—Si1—C1—C358.59 (14)C10—Si1—C7—C968.62 (13)
C10—Si1—C4—C563.77 (14)C4—Si1—C7—C9177.12 (11)
C1—Si1—C4—C556.00 (14)C1—Si1—C7—C946.81 (13)
C7—Si1—C4—C5177.80 (12)C1—Si1—C10—C11142.3 (18)
C10—Si1—C4—C6167.78 (12)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H42Si2
Mr362.74
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.1213 (10), 7.9057 (11), 10.6937 (14)
α, β, γ (°)89.139 (2), 81.823 (2), 79.449 (2)
V3)585.81 (14)
Z1
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.941, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
5560, 2674, 2190
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.06
No. of reflections2674
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruckmann, J. & Krüger, C. (1997). Acta Cryst. C53, 1845–1846.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVitze, H., Wietelmann, U., Murso, A., Bolte, M., Wagner, M. & Lerner, H.-W. (2009). Z. Naturforsch. Teil B, 64, 223–228.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds