metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­zinc(II) 4,4′-(1,2-dihy­dr­oxy­ethane-1,2-di­yl)dibenzoate monohydrate

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China, bZhongzhou University, Zhongzhou 450044, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: tiandamin2009@163.com

(Received 10 July 2010; accepted 14 July 2010; online 17 July 2010)

The title compound, [Zn(H2O)6](C16H12O6)·H2O, consists of one 4,4′-(1,2-dihy­droxy­ethane-1,2-di­yl)dibenzoate anion lying on an inversion centre, one [Zn(H2O)6]2+ dication lying on a mirror plane and one solvent water mol­ecule located on a mirror plane. The octahedral [Zn(H2O)6]2+ cations, solvent water mol­ecules and anions inter­act via O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the architectures and potential application of polymeric coordination networks, see: Carlucci et al. (2003[Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247-289.]); Rosi et al. (2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]). For the isostructural Mn complex, see: Hao & Cao (2010[Hao, C.-J. & Cao, Y.-L. (2010). Acta Cryst. E66, m809.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(H2O)6](C16H12O6)·H2O

  • Mr = 491.76

  • Monoclinic, P 21 /m

  • a = 6.0356 (9) Å

  • b = 20.508 (2) Å

  • c = 8.626 (1) Å

  • β = 104.141 (1)°

  • V = 1035.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 298 K

  • 0.37 × 0.27 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.759

  • 5208 measured reflections

  • 1877 independent reflections

  • 1608 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.160

  • S = 1.26

  • 1865 reflections

  • 142 parameters

  • 11 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5W—H9W⋯O2i 0.84 1.94 2.774 (8) 177
O4W—H8W⋯O3ii 0.84 2.10 2.856 (7) 150
O4W—H7W⋯O5W 0.84 2.26 3.025 (9) 152
O3W—H5W⋯O2iii 0.84 2.65 3.306 (7) 136
O3—H3⋯O1iv 0.82 1.99 2.810 (7) 175
O1W—H2W⋯O3Wv 0.84 1.94 2.770 (9) 172
O1W—H1W⋯O5Wv 0.84 1.97 2.725 (10) 150
O2W—H3W⋯O1vi 0.84 2.02 2.810 (7) 155
O2W—H4W⋯O2iii 0.84 1.83 2.663 (7) 169
O3W—H5W⋯O1iii 0.84 1.87 2.699 (6) 169
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) x-1, y, z-1; (iv) -x+2, -y+1, -z+2; (v) x+1, y, z; (vi) x, y, z-1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Current interest in polymeric coordination networks is rapidly expanding for their intriguing architectures (Carlucci et al., 2003) and potential applications (Rosi et al., 2003). thus, we have reacted the ligand with Zn(NO3)2 under hydrothermal conditions to obtain new metal-organic complexes and the structure will be reported here.

As illustrated in figure 1, the title compound (C16H12O6)[Zn6H2O]. H2O is isostructural to a Mn complex based on the same ligand (Hao et al., 2010), containing one 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate anions ligand, one [Zn6H2O]2+ dicationic complex and a solvent water molecule, The carboxyl group lies in the plane of the benzene ring as indicated by the O1—C1—C2—C3 and O2—C1—C2—C7 torsion angles of -0.2 (10) ° and 176.8 (6) °, and the two benzene rings are parallel to each other. In the crystal packing, a three-dimensional network was stabilized by a wide range of O—H···O hydrogen bonds involving the [Mn6H2O]2+ cations, 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate anions and solvent water molecules.

Related literature top

For the architectures and potential application of polymeric coordination networks, see: Carlucci et al. (2003); Rosi et al. (2003). For the isostructural Mn complex, see: Hao et al. (2010).

Experimental top

A mixture of Zn(NO3)2 (0.1 mmol, 0.02 g) and 1,2-diol-1,2-bis(4-Carboxyphenyl) (0.1 mmol, 0.03 g) and 10 ml of H2O was loaded in a 20 ml Telflon-lined stainless steel vessel and heated at 303k for 2 days. Colorless crystals were obtained when the solution was cooled to room temperature slowly.

Refinement top

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). H atoms of water molecule were located in a difference Fourier map and refined as riding, with Uiso(H) = 1.2Ueq(O)

Structure description top

Current interest in polymeric coordination networks is rapidly expanding for their intriguing architectures (Carlucci et al., 2003) and potential applications (Rosi et al., 2003). thus, we have reacted the ligand with Zn(NO3)2 under hydrothermal conditions to obtain new metal-organic complexes and the structure will be reported here.

As illustrated in figure 1, the title compound (C16H12O6)[Zn6H2O]. H2O is isostructural to a Mn complex based on the same ligand (Hao et al., 2010), containing one 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate anions ligand, one [Zn6H2O]2+ dicationic complex and a solvent water molecule, The carboxyl group lies in the plane of the benzene ring as indicated by the O1—C1—C2—C3 and O2—C1—C2—C7 torsion angles of -0.2 (10) ° and 176.8 (6) °, and the two benzene rings are parallel to each other. In the crystal packing, a three-dimensional network was stabilized by a wide range of O—H···O hydrogen bonds involving the [Mn6H2O]2+ cations, 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate anions and solvent water molecules.

For the architectures and potential application of polymeric coordination networks, see: Carlucci et al. (2003); Rosi et al. (2003). For the isostructural Mn complex, see: Hao et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids (H atoms are omitted for clarity). [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) x, 1.5-y, z.]
[Figure 2] Fig. 2. View of the three-dimensional network constructed by O—H···O hydrogen bonding interactions(the H atoms is not shown in the picture for clarity)
Hexaaquazinc(II) 4,4'-(1,2-dihydroxyethane-1,2-diyl)dibenzoate monohydrate top
Crystal data top
[Zn(H2O)6](C16H12O6)·H2OF(000) = 512
Mr = 491.76Dx = 1.577 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 2215 reflections
a = 6.0356 (9) Åθ = 2.5–24.0°
b = 20.508 (2) ŵ = 1.25 mm1
c = 8.626 (1) ÅT = 298 K
β = 104.141 (1)°Block, colourless
V = 1035.4 (2) Å30.37 × 0.27 × 0.22 mm
Z = 2
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1877 independent reflections
Radiation source: fine-focus sealed tube1608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 77
Tmin = 0.673, Tmax = 0.759k = 2224
5208 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.P)2 + 7.6103P]
where P = (Fo2 + 2Fc2)/3
1865 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.65 e Å3
11 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zn(H2O)6](C16H12O6)·H2OV = 1035.4 (2) Å3
Mr = 491.76Z = 2
Monoclinic, P21/mMo Kα radiation
a = 6.0356 (9) ŵ = 1.25 mm1
b = 20.508 (2) ÅT = 298 K
c = 8.626 (1) Å0.37 × 0.27 × 0.22 mm
β = 104.141 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1877 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1608 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.759Rint = 0.035
5208 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06811 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.26Δρmax = 0.65 e Å3
1865 reflectionsΔρmin = 0.45 e Å3
142 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.64994 (18)0.75000.45837 (12)0.0273 (3)
O11.0813 (8)0.6420 (2)1.2091 (6)0.0434 (13)
O21.3273 (9)0.6522 (3)1.0577 (6)0.0551 (15)
O30.6711 (9)0.4276 (2)0.5239 (6)0.0513 (15)
H30.73560.40580.60160.077*
C11.1427 (12)0.6326 (3)1.0801 (9)0.0390 (18)
C20.9861 (11)0.5948 (3)0.9467 (8)0.0323 (16)
C31.0476 (12)0.5830 (3)0.8047 (9)0.0401 (18)
H3A1.18380.60000.79000.048*
C40.9090 (12)0.5462 (3)0.6841 (9)0.0424 (18)
H40.95150.53900.58900.051*
C50.7052 (11)0.5202 (3)0.7064 (8)0.0355 (17)
C60.6432 (12)0.5318 (3)0.8475 (8)0.0384 (17)
H60.50710.51470.86240.046*
C70.7824 (12)0.5687 (3)0.9672 (8)0.0379 (17)
H70.73920.57611.06210.046*
C80.5501 (12)0.4796 (3)0.5750 (8)0.0382 (17)
H80.42480.46160.61550.046*
O1W0.9972 (11)0.75000.5576 (8)0.051 (2)
H2W1.09630.75000.50430.076*
H1W1.05650.75000.65640.076*
O2W0.6821 (8)0.6753 (3)0.3037 (6)0.0552 (16)
H3W0.79490.65450.28790.083*
H4W0.57020.67350.22330.083*
O3W0.2891 (10)0.75000.3548 (7)0.0258 (13)
H5W0.23680.71680.30150.039*
O4W0.5898 (9)0.8184 (2)0.6248 (6)0.0453 (13)
H7W0.50080.81290.68460.068*
H8W0.55690.85180.56770.068*
O5W0.3294 (15)0.75000.8358 (10)0.090 (4)
H9W0.33420.72070.90460.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0228 (6)0.0323 (6)0.0253 (6)0.0000.0031 (4)0.000
O10.033 (3)0.043 (3)0.046 (3)0.001 (2)0.007 (2)0.011 (2)
O20.030 (3)0.066 (4)0.061 (4)0.012 (3)0.004 (2)0.025 (3)
O30.053 (3)0.032 (3)0.056 (3)0.003 (2)0.010 (3)0.006 (2)
C10.030 (4)0.030 (4)0.045 (4)0.007 (3)0.013 (3)0.011 (3)
C20.026 (4)0.026 (3)0.036 (4)0.005 (3)0.010 (3)0.007 (3)
C30.024 (4)0.038 (4)0.050 (5)0.000 (3)0.006 (3)0.010 (3)
C40.039 (4)0.039 (4)0.042 (4)0.005 (3)0.005 (3)0.011 (3)
C50.028 (4)0.020 (3)0.045 (4)0.002 (3)0.016 (3)0.004 (3)
C60.035 (4)0.029 (4)0.042 (4)0.009 (3)0.007 (3)0.001 (3)
C70.035 (4)0.033 (4)0.038 (4)0.000 (3)0.006 (3)0.007 (3)
C80.037 (4)0.029 (4)0.036 (4)0.001 (3)0.016 (3)0.007 (3)
O1W0.019 (4)0.104 (7)0.025 (4)0.0000.003 (3)0.000
O2W0.023 (3)0.075 (4)0.059 (3)0.011 (3)0.005 (2)0.036 (3)
O3W0.022 (3)0.025 (3)0.029 (3)0.0000.002 (3)0.000
O4W0.051 (3)0.043 (3)0.040 (3)0.001 (2)0.008 (2)0.012 (2)
O5W0.054 (6)0.180 (12)0.036 (5)0.0000.011 (4)0.000
Geometric parameters (Å, º) top
Zn1—O1W2.061 (6)C4—H40.9300
Zn1—O2W2.071 (5)C5—C61.379 (10)
Zn1—O2Wi2.071 (5)C5—C81.528 (8)
Zn1—O4Wi2.101 (5)C6—C71.386 (9)
Zn1—O4W2.101 (5)C6—H60.9300
Zn1—O3W2.142 (6)C7—H70.9300
O1—C11.270 (9)C8—C8ii1.535 (13)
O2—C11.243 (9)C8—H80.9800
O3—C81.422 (8)O1W—H2W0.8387
O3—H30.8200O1W—H1W0.8393
C1—C21.512 (9)O2W—H3W0.8423
C2—C31.384 (10)O2W—H4W0.8423
C2—C71.392 (10)O3W—H5W0.8393
C3—C41.388 (9)O4W—H7W0.8385
C3—H3A0.9300O4W—H8W0.8383
C4—C51.396 (10)O5W—H9W0.8396
O1W—Zn1—O2W91.25 (19)C5—C4—H4120.2
O1W—Zn1—O2Wi91.25 (19)C6—C5—C4119.6 (6)
O2W—Zn1—O2Wi95.3 (3)C6—C5—C8120.0 (7)
O1W—Zn1—O4Wi92.5 (2)C4—C5—C8120.5 (7)
O2W—Zn1—O4Wi90.3 (2)C5—C6—C7120.4 (7)
O2Wi—Zn1—O4Wi173.1 (2)C5—C6—H6119.8
O1W—Zn1—O4W92.5 (2)C7—C6—H6119.8
O2W—Zn1—O4W173.1 (2)C6—C7—C2120.6 (7)
O2Wi—Zn1—O4W90.3 (2)C6—C7—H7119.7
O4Wi—Zn1—O4W83.8 (3)C2—C7—H7119.7
O1W—Zn1—O3W179.9 (3)O3—C8—C5111.7 (6)
O2W—Zn1—O3W88.69 (17)O3—C8—C8ii105.9 (7)
O2Wi—Zn1—O3W88.69 (17)C5—C8—C8ii111.8 (7)
O4Wi—Zn1—O3W87.55 (18)O3—C8—H8109.1
O4W—Zn1—O3W87.55 (18)C5—C8—H8109.1
C8—O3—H3109.5C8ii—C8—H8109.1
O2—C1—O1123.4 (6)Zn1—O1W—H2W124.1
O2—C1—C2117.7 (7)Zn1—O1W—H1W124.0
O1—C1—C2118.9 (7)H2W—O1W—H1W111.9
C3—C2—C7118.8 (6)Zn1—O2W—H3W133.3
C3—C2—C1120.7 (7)Zn1—O2W—H4W112.4
C7—C2—C1120.5 (6)H3W—O2W—H4W111.2
C2—C3—C4121.0 (7)Zn1—O3W—H5W115.9
C2—C3—H3A119.5Zn1—O4W—H7W125.1
C4—C3—H3A119.5Zn1—O4W—H8W101.5
C3—C4—C5119.7 (7)H7W—O4W—H8W112.0
C3—C4—H4120.2
O2—C1—C2—C30.2 (10)C4—C5—C6—C70.4 (10)
O1—C1—C2—C3179.5 (6)C8—C5—C6—C7179.8 (6)
O2—C1—C2—C7176.8 (6)C5—C6—C7—C20.3 (10)
O1—C1—C2—C72.5 (10)C3—C2—C7—C60.3 (10)
C7—C2—C3—C40.4 (10)C1—C2—C7—C6177.3 (6)
C1—C2—C3—C4177.4 (6)C6—C5—C8—O3127.4 (7)
C2—C3—C4—C50.5 (11)C4—C5—C8—O353.2 (8)
C3—C4—C5—C60.6 (10)C6—C5—C8—C8ii114.1 (9)
C3—C4—C5—C8179.9 (6)C4—C5—C8—C8ii65.3 (10)
Symmetry codes: (i) x, y+3/2, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5W—H9W···O2iii0.841.942.774 (8)177
O4W—H8W···O3iv0.842.102.856 (7)150
O4W—H7W···O5W0.842.263.025 (9)152
O3W—H5W···O2v0.842.653.306 (7)136
O3—H3···O1vi0.821.992.810 (7)175
O1W—H2W···O3Wvii0.841.942.770 (9)172
O1W—H1W···O5Wvii0.841.972.725 (10)150
O2W—H3W···O1viii0.842.022.810 (7)155
O2W—H4W···O2v0.841.832.663 (7)169
O3W—H5W···O1v0.841.872.699 (6)169
Symmetry codes: (iii) x1, y, z; (iv) x+1, y+1/2, z+1; (v) x1, y, z1; (vi) x+2, y+1, z+2; (vii) x+1, y, z; (viii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Zn(H2O)6](C16H12O6)·H2O
Mr491.76
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)6.0356 (9), 20.508 (2), 8.626 (1)
β (°) 104.141 (1)
V3)1035.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.37 × 0.27 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.673, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
5208, 1877, 1608
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.160, 1.26
No. of reflections1865
No. of parameters142
No. of restraints11
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.45

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5W—H9W···O2i0.841.942.774 (8)176.8
O4W—H8W···O3ii0.842.102.856 (7)150.0
O4W—H7W···O5W0.842.263.025 (9)152.2
O3W—H5W···O2iii0.842.653.306 (7)135.8
O3—H3···O1iv0.821.992.810 (7)174.6
O1W—H2W···O3Wv0.841.942.770 (9)171.9
O1W—H1W···O5Wv0.841.972.725 (10)150.0
O2W—H3W···O1vi0.842.022.810 (7)155.3
O2W—H4W···O2iii0.841.832.663 (7)168.7
O3W—H5W···O1iii0.841.872.699 (6)168.8
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1; (iii) x1, y, z1; (iv) x+2, y+1, z+2; (v) x+1, y, z; (vi) x, y, z1.
 

Acknowledgements

The authors acknowledge Henan University of Urban Construction for supporting this work.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289.  Web of Science CrossRef CAS Google Scholar
First citationHao, C.-J. & Cao, Y.-L. (2010). Acta Cryst. E66, m809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds