organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,5-Dimeth­­oxy­phen­yl)-3-(2-hy­dr­oxy­eth­yl)urea

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 12 July 2010; accepted 15 July 2010; online 24 July 2010)

In the title compound, C11H16N2O4, the 2,5-dimeth­oxy­phenyl moiety is almost planar, with an r.m.s. deviation of 0.026 Å. The dihedral angle between the benzene ring and the plane of the urea moiety is 13.86 (5)°. The mol­ecular structure is stabilized by a short intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For general background, see: Francisco et al. (2006[Francisco, S., Stefania, B., Mauro, P. & Ghanem, G. (2006). Pigment Cell Res. 19, 550-571.]); Jimenez et al. (2001[Jimenez, M., Chazarra, S., Escribano, J., Cabanes, J. & Garcia-Carmona, F. (2001). J. Agric. Food Chem. 49, 4060-4063.]); Korner & Pawelek (1982[Korner, A. M. & Pawelek, J. M. (1982). Science, 217, 1163-1165.]); Urabe et al. (1998[Urabe, K., Nakayama, J., Hori, Y., Norlund, J. J., Biossy, R. E., Hearing, V. J., King, R. A. & Ortonne, J. P. (1998). The Pigmentary System: Physiology and Pathophysiology, pp. 909-991. New York: Oxford University Press Inc.]). For the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Battaini et al. (2000[Battaini, G., Monzani, E., Casella, L., Santagostini, L. & Pagliarin, R. (2000). J. Biol. Inorg. Chem. 5, 262-268.]); Cabanes et al. (1994[Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982-985.]); Choi et al. (2010[Choi, H., Han, B. H., Lee, T., Kang, S. K. & Sung, C. K. (2010). Acta Cryst. E66, o1142.]); Germanas et al. (2007[Germanas, J. P., Wang, S., Miner, A., Hao, W. & Ready, J. M. (2007). Bioorg. Med. Chem. Lett. 17, 6871-6875.]); Hong et al. (2008[Hong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49.]); Kwak et al. (2010[Kwak, S. Y., Noh, J. M., Park, S. H., Byun, J. W. & Choi, H. R. (2010). Bioorg. Med. Chem. Lett. 20, 738-742.]); Lemic-Stojcevic et al. (1995[Lemic-Stojcevic, L., Nias, A. H. & Breathnach, A. S. (1995). Exp. Dermatol. 4, 79-81.]); Lee et al. (2007[Lee, C. W., Son, E. M., Kim, H. S. & Xu, P. (2007). Bioorg. Med. Chem. Lett. 17, 5462-5464.]); Liangli (2003[Liangli, Y. (2003). J. Agric. Food Chem. 51, 2344-2347.]); Thanigaimalai et al. (2010[Thanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991-2993.]); Yi et al. (2009[Yi, W., Cao, R. H., Chen, Z. Y. Yu. L. Ma. L. & Song, H. C. (2009). Chem. Pharm. Bull. 7, 1273-1277.], 2010[Yi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. (2010). Eur. J. Med. Chem. 45, 639-646.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16N2O4

  • Mr = 240.26

  • Monoclinic, P 21 /c

  • a = 10.8571 (9) Å

  • b = 11.5559 (10) Å

  • c = 9.9337 (8) Å

  • β = 109.514 (4)°

  • V = 1174.73 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.21 × 0.18 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 9411 measured reflections

  • 2352 independent reflections

  • 1982 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.07

  • 2352 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O14 0.870 (14) 2.153 (13) 2.5995 (12) 111.4 (11)
N7—H7⋯O13i 0.870 (14) 2.251 (14) 3.0473 (13) 152.3 (12)
N10—H10⋯O13i 0.856 (14) 2.156 (14) 2.9642 (12) 157.1 (12)
O13—H13⋯O9ii 0.887 (17) 1.858 (18) 2.7417 (11) 174.0 (15)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The melanin production is primarily responsible for the skin color, and melanin plays a vital role in the absorption of free radicals formed in cytoplasm and in protecting human skin from the harmful UV-radiation and from scavenging chemicals (Francisco et al., 2006). Tyrosinase is a multi-functional copper-containing enzyme widely distributed in microorganisms, plants and animals (Jimenez et al., 2001), and it is a key enzyme that catalyzes two distinct reactions of melanin synthesis; the hydroxylation of tyrosine by monophenolase action and the oxidation of L-dopa to o-dopaquinone by diphenolase action (Korner & Pawelek, 1982). The increased production and accumulation of melanin characterizes a large number of dermatological disorders, which include acquired hyper-pigmentation, causing melasma, freckles, post-inflammatory melanoderma, and solar lentigo (Urabe et al., 1998). Therefore, treatments using potent inhibitory agents on tyrosinase and melanin formation may be cosmetically useful. In recent years, various inhibitors were obtained from natural and synthetic sources with their industrial importance such as azelaic acid (Lemic-Stojcevic et al., 1995), kojic acid (Battaini et al., 2000), albutin (Cabanes et al., 1994), (R)-HTCCA (Liangli, 2003) and N-phenylthiourea (Thanigaimalai et al., 2010). They contain aromatic, methoxy, hyroxyl (Hong et al., 2008; Lee et al., 2007), aldehyde (Yi et al., 2010), amide (Kwak et al., 2010; Choi et al., 2010), thiosemicarbazone (Yi et al., 2009) and thiazole (Germanas et al., 2007) groups in their structure, and act as a specific functional group to make the skin whiter by inhibiting the production of melanin. However, most of them are not potent enough to put into practical use due to their weak individual activities, poor skin penetration, low stability of formulations, toxicity and/or safety concerns. Consequently, much research is needed to develop novel tyrosinase inhibitors with better activities together with lower side effects. To complement the inadequacy of current whitening agents mentioned above and maximize the inhibition of melanin creation, we have synthesized the title compound, 1-(2,5-dimethoxyphenyl)-3-(2-hydroxyethyl)urea, (I), from the reaction of ethanolamine and 2,5-dimethoxyphenyl isocyanate under ambient condition.

The 2,5-dimethoxyphenyl moiety is almost planar with r.m.s. deviation of 0.026 Å from the corresponding least-squares plane defined by the ten constituent atoms. The dihedral angle between the phenyl ring and the plane of urea moiety is 13.86 (5) °. The molecular structure is stabilized by a short intramolecular N7—H7···O14 hydrogen bond (Fig. 1). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network (Fig. 2).

Related literature top

For general background, see: Francisco et al. (2006); Jimenez et al. (2001); Korner & Pawelek (1982); Urabe et al. (1998). For the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Battaini et al. (2000); Cabanes et al. (1994); Choi et al. (2010); Germanas et al. (2007); Hong et al. (2008); Kwak et al. (2010); Lemic-Stojcevic et al. (1995); Lee et al. (2007); Liangli (2003); Thanigaimalai et al. (2010); Yi et al. (2009, 2010).

Experimental top

The ethanolamine and 2,5-dimethoxyphenyl isocyanate were purchased from Sigma Chemical Co. Solvents used for organic synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and were used without further purification. The title compound (I) was prepared from the reaction of ethanolamine (0.1 ml, 2 mmol) with 2,5-dimethoxyphenyl isocyanate (0.5 g, 3 mmol) in acetonitrile (6 ml). The reaction was completed within 10 min at room temperature. The reaction mixture was filtered rapidly with ether. Removal of the solvent gave a white solid (90% m.p. 419 K). Single crystals were obtained by slow evaporation of the ethanol at room temperature.

Refinement top

The H atoms of the NH and OH groups were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic and metylene, and 1.5Ueq(C) for methyl H atoms.

Structure description top

The melanin production is primarily responsible for the skin color, and melanin plays a vital role in the absorption of free radicals formed in cytoplasm and in protecting human skin from the harmful UV-radiation and from scavenging chemicals (Francisco et al., 2006). Tyrosinase is a multi-functional copper-containing enzyme widely distributed in microorganisms, plants and animals (Jimenez et al., 2001), and it is a key enzyme that catalyzes two distinct reactions of melanin synthesis; the hydroxylation of tyrosine by monophenolase action and the oxidation of L-dopa to o-dopaquinone by diphenolase action (Korner & Pawelek, 1982). The increased production and accumulation of melanin characterizes a large number of dermatological disorders, which include acquired hyper-pigmentation, causing melasma, freckles, post-inflammatory melanoderma, and solar lentigo (Urabe et al., 1998). Therefore, treatments using potent inhibitory agents on tyrosinase and melanin formation may be cosmetically useful. In recent years, various inhibitors were obtained from natural and synthetic sources with their industrial importance such as azelaic acid (Lemic-Stojcevic et al., 1995), kojic acid (Battaini et al., 2000), albutin (Cabanes et al., 1994), (R)-HTCCA (Liangli, 2003) and N-phenylthiourea (Thanigaimalai et al., 2010). They contain aromatic, methoxy, hyroxyl (Hong et al., 2008; Lee et al., 2007), aldehyde (Yi et al., 2010), amide (Kwak et al., 2010; Choi et al., 2010), thiosemicarbazone (Yi et al., 2009) and thiazole (Germanas et al., 2007) groups in their structure, and act as a specific functional group to make the skin whiter by inhibiting the production of melanin. However, most of them are not potent enough to put into practical use due to their weak individual activities, poor skin penetration, low stability of formulations, toxicity and/or safety concerns. Consequently, much research is needed to develop novel tyrosinase inhibitors with better activities together with lower side effects. To complement the inadequacy of current whitening agents mentioned above and maximize the inhibition of melanin creation, we have synthesized the title compound, 1-(2,5-dimethoxyphenyl)-3-(2-hydroxyethyl)urea, (I), from the reaction of ethanolamine and 2,5-dimethoxyphenyl isocyanate under ambient condition.

The 2,5-dimethoxyphenyl moiety is almost planar with r.m.s. deviation of 0.026 Å from the corresponding least-squares plane defined by the ten constituent atoms. The dihedral angle between the phenyl ring and the plane of urea moiety is 13.86 (5) °. The molecular structure is stabilized by a short intramolecular N7—H7···O14 hydrogen bond (Fig. 1). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network (Fig. 2).

For general background, see: Francisco et al. (2006); Jimenez et al. (2001); Korner & Pawelek (1982); Urabe et al. (1998). For the development of potent inhibitory agents of tyrosinase and melanin formation as whitening agents, see: Battaini et al. (2000); Cabanes et al. (1994); Choi et al. (2010); Germanas et al. (2007); Hong et al. (2008); Kwak et al. (2010); Lemic-Stojcevic et al. (1995); Lee et al. (2007); Liangli (2003); Thanigaimalai et al. (2010); Yi et al. (2009, 2010).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (l), showing the atom-numbering scheme and 50% probability ellipsoids. Intramolecular N—H···O bond is shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing 3-D network of molecules linked by intermolecular N—H···O and O—H···O hydrogen bonds.
(I) top
Crystal data top
C11H16N2O4F(000) = 512
Mr = 240.26Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4246 reflections
a = 10.8571 (9) Åθ = 2.8–28.2°
b = 11.5559 (10) ŵ = 0.10 mm1
c = 9.9337 (8) ÅT = 173 K
β = 109.514 (4)°Block, colourless
V = 1174.73 (17) Å30.21 × 0.18 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.062
φ and ω scansθmax = 26.5°, θmin = 2.7°
9411 measured reflectionsh = 613
2352 independent reflectionsk = 149
1982 reflections with I > 2σ(I)l = 127
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0526P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.19 e Å3
2352 reflectionsΔρmin = 0.25 e Å3
168 parameters
Crystal data top
C11H16N2O4V = 1174.73 (17) Å3
Mr = 240.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8571 (9) ŵ = 0.10 mm1
b = 11.5559 (10) ÅT = 173 K
c = 9.9337 (8) Å0.21 × 0.18 × 0.09 mm
β = 109.514 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1982 reflections with I > 2σ(I)
9411 measured reflectionsRint = 0.062
2352 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.19 e Å3
2352 reflectionsΔρmin = 0.25 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26322 (10)0.50237 (9)0.48181 (12)0.0208 (2)
C20.15431 (11)0.43224 (9)0.47055 (12)0.0220 (3)
C30.05312 (11)0.42372 (9)0.34222 (12)0.0252 (3)
H30.0190.37780.33570.03*
C40.05831 (11)0.48333 (9)0.22288 (13)0.0264 (3)
H40.01010.47780.13660.032*
C50.16604 (11)0.55102 (9)0.23333 (12)0.0242 (3)
C60.26888 (11)0.56150 (9)0.36195 (12)0.0228 (3)
H60.34070.60760.36770.027*
N70.36023 (9)0.50709 (8)0.61700 (10)0.0234 (2)
H70.3458 (12)0.4616 (12)0.6799 (15)0.035 (4)*
C80.45894 (10)0.58708 (9)0.66522 (12)0.0205 (2)
O90.48440 (8)0.65994 (6)0.58761 (8)0.0260 (2)
N100.52601 (9)0.57919 (8)0.80586 (11)0.0250 (2)
H100.5012 (13)0.5293 (11)0.8553 (15)0.033 (3)*
C110.62695 (11)0.66229 (10)0.87792 (12)0.0268 (3)
H11A0.58920.73910.86960.032*
H11B0.69360.66310.83290.032*
C120.68773 (11)0.63093 (10)1.03317 (13)0.0271 (3)
H12A0.73150.55681.04070.032*
H12B0.75310.68841.08010.032*
O130.59367 (8)0.62435 (7)1.10450 (9)0.0260 (2)
H130.5628 (15)0.6954 (15)1.1048 (16)0.054 (5)*
O140.15906 (8)0.37701 (6)0.59484 (9)0.0274 (2)
C150.05328 (12)0.30175 (10)0.58780 (14)0.0312 (3)
H15A0.02650.34540.56190.047*
H15B0.06860.26620.67930.047*
H15C0.04650.24290.51750.047*
O160.16393 (8)0.60560 (7)0.10891 (9)0.0329 (2)
C170.26678 (12)0.68455 (11)0.11745 (14)0.0343 (3)
H17A0.2670.74540.18330.051*
H17B0.25390.7170.02480.051*
H17C0.34890.64450.150.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0197 (5)0.0189 (5)0.0216 (6)0.0014 (4)0.0039 (5)0.0032 (4)
C20.0235 (6)0.0185 (5)0.0240 (6)0.0011 (4)0.0078 (5)0.0006 (4)
C30.0214 (6)0.0238 (6)0.0283 (7)0.0040 (5)0.0057 (5)0.0044 (5)
C40.0232 (6)0.0288 (6)0.0226 (7)0.0007 (5)0.0013 (5)0.0040 (5)
C50.0259 (6)0.0244 (6)0.0207 (6)0.0029 (5)0.0058 (5)0.0004 (4)
C60.0213 (6)0.0227 (5)0.0234 (6)0.0017 (4)0.0063 (5)0.0010 (5)
N70.0239 (5)0.0238 (5)0.0197 (5)0.0049 (4)0.0034 (5)0.0027 (4)
C80.0192 (6)0.0200 (5)0.0215 (6)0.0012 (4)0.0058 (5)0.0016 (4)
O90.0280 (5)0.0256 (4)0.0225 (5)0.0062 (3)0.0061 (4)0.0023 (3)
N100.0258 (5)0.0261 (5)0.0200 (6)0.0075 (4)0.0034 (5)0.0014 (4)
C110.0240 (6)0.0309 (6)0.0237 (7)0.0082 (5)0.0054 (5)0.0030 (5)
C120.0223 (6)0.0321 (6)0.0241 (7)0.0023 (5)0.0042 (5)0.0035 (5)
O130.0307 (5)0.0228 (4)0.0247 (5)0.0005 (3)0.0095 (4)0.0010 (3)
O140.0259 (4)0.0278 (4)0.0264 (5)0.0069 (3)0.0060 (4)0.0041 (3)
C150.0289 (6)0.0268 (6)0.0378 (7)0.0076 (5)0.0111 (6)0.0028 (5)
O160.0316 (5)0.0406 (5)0.0220 (5)0.0059 (4)0.0031 (4)0.0058 (4)
C170.0330 (7)0.0360 (7)0.0326 (7)0.0024 (5)0.0092 (6)0.0094 (6)
Geometric parameters (Å, º) top
C1—C61.3918 (15)N10—H100.856 (14)
C1—N71.4039 (15)C11—C121.5051 (16)
C1—C21.4068 (15)C11—H11A0.97
C2—O141.3754 (13)C11—H11B0.97
C2—C31.3806 (17)C12—O131.4262 (13)
C3—C41.3883 (16)C12—H12A0.97
C3—H30.93C12—H12B0.97
C4—C51.3819 (16)O13—H130.887 (17)
C4—H40.93O14—C151.4236 (13)
C5—O161.3809 (13)C15—H15A0.96
C5—C61.3931 (17)C15—H15B0.96
C6—H60.93C15—H15C0.96
N7—C81.3746 (14)O16—C171.4224 (14)
N7—H70.870 (14)C17—H17A0.96
C8—O91.2337 (12)C17—H17B0.96
C8—N101.3457 (15)C17—H17C0.96
N10—C111.4531 (14)
C6—C1—N7124.46 (10)N10—C11—C12110.24 (9)
C6—C1—C2119.40 (10)N10—C11—H11A109.6
N7—C1—C2116.14 (10)C12—C11—H11A109.6
O14—C2—C3125.13 (9)N10—C11—H11B109.6
O14—C2—C1114.68 (10)C12—C11—H11B109.6
C3—C2—C1120.19 (10)H11A—C11—H11B108.1
C2—C3—C4120.42 (10)O13—C12—C11112.35 (10)
C2—C3—H3119.8O13—C12—H12A109.1
C4—C3—H3119.8C11—C12—H12A109.1
C5—C4—C3119.44 (11)O13—C12—H12B109.1
C5—C4—H4120.3C11—C12—H12B109.1
C3—C4—H4120.3H12A—C12—H12B107.9
O16—C5—C4115.51 (10)C12—O13—H13106.6 (10)
O16—C5—C6123.35 (10)C2—O14—C15116.85 (9)
C4—C5—C6121.13 (10)O14—C15—H15A109.5
C1—C6—C5119.41 (10)O14—C15—H15B109.5
C1—C6—H6120.3H15A—C15—H15B109.5
C5—C6—H6120.3O14—C15—H15C109.5
C8—N7—C1127.44 (9)H15A—C15—H15C109.5
C8—N7—H7117.6 (9)H15B—C15—H15C109.5
C1—N7—H7114.0 (9)C5—O16—C17117.49 (9)
O9—C8—N10122.59 (10)O16—C17—H17A109.5
O9—C8—N7123.54 (10)O16—C17—H17B109.5
N10—C8—N7113.87 (9)H17A—C17—H17B109.5
C8—N10—C11121.61 (9)O16—C17—H17C109.5
C8—N10—H10118.4 (9)H17A—C17—H17C109.5
C11—N10—H10119.5 (9)H17B—C17—H17C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O140.870 (14)2.153 (13)2.5995 (12)111.4 (11)
N7—H7···O13i0.870 (14)2.251 (14)3.0473 (13)152.3 (12)
N10—H10···O13i0.856 (14)2.156 (14)2.9642 (12)157.1 (12)
O13—H13···O9ii0.887 (17)1.858 (18)2.7417 (11)174.0 (15)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H16N2O4
Mr240.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.8571 (9), 11.5559 (10), 9.9337 (8)
β (°) 109.514 (4)
V3)1174.73 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.21 × 0.18 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9411, 2352, 1982
Rint0.062
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.07
No. of reflections2352
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2010), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O140.870 (14)2.153 (13)2.5995 (12)111.4 (11)
N7—H7···O13i0.870 (14)2.251 (14)3.0473 (13)152.3 (12)
N10—H10···O13i0.856 (14)2.156 (14)2.9642 (12)157.1 (12)
O13—H13···O9ii0.887 (17)1.858 (18)2.7417 (11)174.0 (15)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

We wish to thank the DBIO company for partial support of this work.

References

First citationBattaini, G., Monzani, E., Casella, L., Santagostini, L. & Pagliarin, R. (2000). J. Biol. Inorg. Chem. 5, 262–268.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985.  CrossRef CAS PubMed Google Scholar
First citationChoi, H., Han, B. H., Lee, T., Kang, S. K. & Sung, C. K. (2010). Acta Cryst. E66, o1142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrancisco, S., Stefania, B., Mauro, P. & Ghanem, G. (2006). Pigment Cell Res. 19, 550–571.  Web of Science PubMed Google Scholar
First citationGermanas, J. P., Wang, S., Miner, A., Hao, W. & Ready, J. M. (2007). Bioorg. Med. Chem. Lett. 17, 6871–6875.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJimenez, M., Chazarra, S., Escribano, J., Cabanes, J. & Garcia-Carmona, F. (2001). J. Agric. Food Chem. 49, 4060–4063.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKorner, A. M. & Pawelek, J. M. (1982). Science, 217, 1163–1165.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKwak, S. Y., Noh, J. M., Park, S. H., Byun, J. W. & Choi, H. R. (2010). Bioorg. Med. Chem. Lett. 20, 738–742.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, C. W., Son, E. M., Kim, H. S. & Xu, P. (2007). Bioorg. Med. Chem. Lett. 17, 5462–5464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLemic-Stojcevic, L., Nias, A. H. & Breathnach, A. S. (1995). Exp. Dermatol. 4, 79–81.  CrossRef CAS PubMed Google Scholar
First citationLiangli, Y. (2003). J. Agric. Food Chem. 51, 2344–2347.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991–2993.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUrabe, K., Nakayama, J., Hori, Y., Norlund, J. J., Biossy, R. E., Hearing, V. J., King, R. A. & Ortonne, J. P. (1998). The Pigmentary System: Physiology and Pathophysiology, pp. 909–991. New York: Oxford University Press Inc.  Google Scholar
First citationYi, W., Cao, R. H., Chen, Z. Y. Yu. L. Ma. L. & Song, H. C. (2009). Chem. Pharm. Bull. 7, 1273–1277.  CrossRef Google Scholar
First citationYi, W., Cao, R., Peng, W., Wen, H., Yan, Q., Zhou, B., Ma, L. & Song, H. (2010). Eur. J. Med. Chem. 45, 639–646.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds