organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3,6,6-Tetra­methyl-9-(2-nitro­phen­yl)-3,4,6,7-tetra­hydro-2H-xanthene-1,8(5H,9H)-dione

aDepartment of Enviromental and Chemistry Engineering, Tianjin Polytechnic University, State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin 300160, People's Republic of China
*Correspondence e-mail: chemhong@126.com

(Received 19 July 2010; accepted 22 July 2010; online 31 July 2010)

In the title compound, C23H25NO5, the pyran ring adopts a flattened boat conformation, while the two cyclo­hexenone rings are in envelope conformations. The 3-nitro­phenyl ring is almost perpendicular to the pyran ring, making a dihedral angle of 87.1 (3)°.

Related literature

For the use of xanthenes as dyes and fluorescent materials for visualization of biomolecules and in laser technologies, see: Menchen et al. (2003[Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. U. S. (2003). US Patent 6 583 168.]); Banerjee & Mukherjee (1981[Banerjee, A. & Mukherjee, A. K. (1981). Stain Technol. 56, 83-85.]). They can be converted by oxidation into xanthylium salts, which are also effective as dyes and fluorescent materials, see: Nogradi (2003[Nogradi, M. (2003). Sci. Synth. 14, 201-273.]); Kamel & Shoeb (1964[Kamel, M. & Shoeb, H. (1964). Tetrahedron, 20, 491-495.]). For the biological and pharmaceutical properties of xanthenes, see: Hideo (1981[Hideo, T. (1981). Jpn Tokkyo Koho JP 56 005 480.]); Lambert et al. (1997[Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.]); Poupelin et al. (1978[Poupelin, J. P., Saint-Rut, G., Foussard-Blanpin, O., Narcisse, G., Uchida- Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67-71.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25NO5

  • Mr = 395.44

  • Orthorhombic, P b c a

  • a = 12.199 (2) Å

  • b = 10.510 (2) Å

  • c = 32.484 (7) Å

  • V = 4164.9 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.983, Tmax = 0.991

  • 21559 measured reflections

  • 3670 independent reflections

  • 3242 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.144

  • S = 1.16

  • 3670 reflections

  • 267 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Xanthenes are an important class of organic compounds that find use as dyes, fluorescent materials for visualization of biomolecules and in laser technologies, due to their useful spectroscopic properties (Menchen et al., 2003; Banerjee & Mukherjee, 1981). Oxidation of these compounds can be converted to the corresponding xanthylium salts, which are also effective as dyes and fluorescent materials (Nogradi, 2003; Kamel & Shoeb, 1964). Xanthenes have also received considerable attention from many pharmaceuticals and organic chemists, actually because of the broad spectrum of their biological and pharmaceutical properties such as agricultural bactericide effects (Hideo, 1981), photodynamic therapy, anti-inflammatory activities (Poupelin et al., 1978) and antiviral effects (Lambert et al., 1997). In view of the importance of the title compound,(I), we report herein its crystal structure.

The pyran ring of the title molecule (Fig. 1) adopts a flattened boat conformation. The two cyclohexenone rings adope envelope conformation with atom C3 and C11 at the flap. The 3-nitrophenyl ring and the planar part of the pyran ring (C1/C6/C8/C13) are nearly perpendicular to each other, with a dihedral angle of 87.1 (3)°.

Related literature top

For the use of xanthenes as dyes and fluorescent materials for visualization of biomolecules and in laser technologies, see: Menchen et al. (2003); Banerjee & Mukherjee (1981). They can be converted by oxidation into xanthylium salts, which are also effective as dyes and fluorescent materials, see: Nogradi (2003); Kamel & Shoeb (1964). For the biological and pharmaceutical properties of xanthenes, see: Hideo (1981); Lambert et al. (1997); Poupelin et al. (1978).

Experimental top

A mixture of 2-nitrobenzaldehyde (212 mg, 2 mmol), dimedone (560 mg, 4 mmol), p-TSA (2 mg, 5 mol%), 4 ml of MeOH containing 2 ml of water was heated to 50 ° C in an atmosphere of argon for about 20 min. After completion of the reaction (as indicated by TLC), the reaction mixture was poured into crushed ice and stirred for about 1 h.The solid separated was filtered through a sintered funnel under suction, washed with ice-cold water (30 ml) and then recrystallized from hot ethanol to afford the product (0.213 g, 80%). A single-crystal was obtained by slow evaporation of a EtOH solution.

Refinement top

The H atoms bonded to C atoms were included in the refinement in the riding model approximation, with C–H = 0.93–0.97 Å and Uiso (H) = 1.2 Ueq (C atom). For the H atoms attached to C atoms of methyl groups, their Uiso(H) =1.5Ueq(C).

Structure description top

Xanthenes are an important class of organic compounds that find use as dyes, fluorescent materials for visualization of biomolecules and in laser technologies, due to their useful spectroscopic properties (Menchen et al., 2003; Banerjee & Mukherjee, 1981). Oxidation of these compounds can be converted to the corresponding xanthylium salts, which are also effective as dyes and fluorescent materials (Nogradi, 2003; Kamel & Shoeb, 1964). Xanthenes have also received considerable attention from many pharmaceuticals and organic chemists, actually because of the broad spectrum of their biological and pharmaceutical properties such as agricultural bactericide effects (Hideo, 1981), photodynamic therapy, anti-inflammatory activities (Poupelin et al., 1978) and antiviral effects (Lambert et al., 1997). In view of the importance of the title compound,(I), we report herein its crystal structure.

The pyran ring of the title molecule (Fig. 1) adopts a flattened boat conformation. The two cyclohexenone rings adope envelope conformation with atom C3 and C11 at the flap. The 3-nitrophenyl ring and the planar part of the pyran ring (C1/C6/C8/C13) are nearly perpendicular to each other, with a dihedral angle of 87.1 (3)°.

For the use of xanthenes as dyes and fluorescent materials for visualization of biomolecules and in laser technologies, see: Menchen et al. (2003); Banerjee & Mukherjee (1981). They can be converted by oxidation into xanthylium salts, which are also effective as dyes and fluorescent materials, see: Nogradi (2003); Kamel & Shoeb (1964). For the biological and pharmaceutical properties of xanthenes, see: Hideo (1981); Lambert et al. (1997); Poupelin et al. (1978).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the Structure of (I), Showing the atom-numbering scheme. Dispacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title molecule.
3,3,6,6-Tetramethyl-9-(2-nitrophenyl)-3,4,6,7-tetrahydro-2H-xanthene-1, 8(5H,9H)-dione top
Crystal data top
C23H25NO5Dx = 1.261 Mg m3
Mr = 395.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9106 reflections
a = 12.199 (2) Åθ = 1.9–28.1°
b = 10.510 (2) ŵ = 0.09 mm1
c = 32.484 (7) ÅT = 113 K
V = 4164.9 (14) Å3Prism, white
Z = 80.20 × 0.16 × 0.10 mm
F(000) = 1680
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3670 independent reflections
Radiation source: rotating anode3242 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.053
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω and φ scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
k = 1012
Tmin = 0.983, Tmax = 0.991l = 3836
21559 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0574P)2 + 1.5964P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
3670 reflectionsΔρmax = 0.22 e Å3
267 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0098 (8)
Crystal data top
C23H25NO5V = 4164.9 (14) Å3
Mr = 395.44Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.199 (2) ŵ = 0.09 mm1
b = 10.510 (2) ÅT = 113 K
c = 32.484 (7) Å0.20 × 0.16 × 0.10 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3670 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
3242 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.991Rint = 0.053
21559 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.16Δρmax = 0.22 e Å3
3670 reflectionsΔρmin = 0.24 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54601 (12)0.17933 (14)0.36579 (4)0.0237 (4)
O20.25719 (14)0.45727 (16)0.40103 (5)0.0387 (5)
O30.49229 (13)0.50696 (15)0.26800 (4)0.0306 (4)
O40.77268 (15)0.56112 (18)0.42780 (6)0.0474 (5)
O50.78206 (14)0.76618 (17)0.42061 (5)0.0400 (5)
N10.73522 (16)0.66330 (19)0.41615 (5)0.0299 (5)
C10.56412 (18)0.2415 (2)0.32907 (6)0.0219 (5)
C20.64378 (18)0.1708 (2)0.30297 (6)0.0227 (5)
H2A0.60540.09960.28920.027*
H2B0.70150.13400.32080.027*
C30.69762 (18)0.2553 (2)0.27026 (6)0.0226 (5)
C40.60627 (18)0.3304 (2)0.24887 (6)0.0246 (5)
H4A0.63980.38970.22880.029*
H4B0.55960.27020.23330.029*
C50.53483 (18)0.4053 (2)0.27790 (6)0.0244 (5)
C60.51360 (17)0.3502 (2)0.31886 (6)0.0214 (5)
C70.43583 (17)0.4193 (2)0.34753 (6)0.0230 (5)
H70.36680.43800.33210.028*
C80.40825 (17)0.3317 (2)0.38289 (6)0.0238 (5)
C90.31381 (19)0.3637 (2)0.40908 (7)0.0296 (5)
C100.2868 (2)0.2742 (2)0.44399 (7)0.0343 (6)
H10A0.23610.20780.43370.041*
H10B0.24810.32240.46580.041*
C110.3870 (2)0.2095 (2)0.46289 (6)0.0298 (6)
C120.44987 (19)0.1422 (2)0.42801 (6)0.0261 (5)
H12A0.52270.11560.43830.031*
H12B0.40940.06470.41980.031*
C130.46462 (17)0.2256 (2)0.39124 (6)0.0227 (5)
C140.75809 (19)0.1729 (2)0.23874 (6)0.0278 (5)
H14A0.81820.12760.25240.042*
H14B0.78780.22720.21690.042*
H14C0.70700.11120.22680.042*
C150.78024 (19)0.3455 (2)0.29057 (7)0.0295 (5)
H15A0.83870.29570.30350.044*
H15B0.74290.39680.31150.044*
H15C0.81190.40170.26960.044*
C160.4605 (2)0.3084 (2)0.48427 (7)0.0421 (7)
H16A0.41850.35190.50580.063*
H16B0.48590.37080.46400.063*
H16C0.52380.26560.49660.063*
C170.3501 (2)0.1099 (2)0.49439 (7)0.0395 (7)
H17A0.30460.04580.48070.059*
H17B0.30750.15140.51610.059*
H17C0.41460.06870.50650.059*
C180.48347 (18)0.5456 (2)0.36303 (6)0.0237 (5)
C190.42695 (19)0.6595 (2)0.35885 (6)0.0281 (5)
H190.35650.65920.34640.034*
C200.4708 (2)0.7741 (2)0.37241 (7)0.0318 (6)
H200.43050.85070.36890.038*
C210.57294 (19)0.7774 (2)0.39100 (6)0.0296 (5)
H210.60430.85510.40020.035*
C220.62764 (18)0.6625 (2)0.39566 (6)0.0250 (5)
C230.58551 (18)0.5471 (2)0.38256 (6)0.0241 (5)
H230.62520.47040.38680.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0265 (9)0.0227 (9)0.0221 (7)0.0030 (7)0.0026 (6)0.0018 (6)
O20.0319 (10)0.0312 (10)0.0529 (10)0.0085 (8)0.0103 (8)0.0031 (8)
O30.0332 (10)0.0266 (10)0.0319 (8)0.0075 (8)0.0029 (7)0.0042 (7)
O40.0405 (12)0.0360 (12)0.0655 (12)0.0072 (9)0.0202 (9)0.0157 (9)
O50.0310 (10)0.0320 (11)0.0572 (11)0.0071 (8)0.0037 (8)0.0187 (8)
N10.0283 (11)0.0318 (12)0.0297 (10)0.0046 (10)0.0018 (8)0.0044 (8)
C10.0237 (12)0.0211 (12)0.0209 (10)0.0029 (10)0.0028 (8)0.0011 (8)
C20.0260 (12)0.0187 (12)0.0232 (10)0.0014 (10)0.0016 (8)0.0011 (8)
C30.0248 (12)0.0183 (12)0.0246 (10)0.0003 (10)0.0008 (8)0.0002 (8)
C40.0275 (12)0.0234 (12)0.0228 (10)0.0001 (10)0.0001 (9)0.0000 (9)
C50.0220 (12)0.0227 (13)0.0286 (11)0.0012 (10)0.0045 (9)0.0003 (9)
C60.0214 (12)0.0191 (12)0.0236 (10)0.0002 (9)0.0016 (8)0.0018 (8)
C70.0198 (11)0.0230 (12)0.0261 (11)0.0015 (10)0.0030 (8)0.0012 (9)
C80.0229 (12)0.0224 (12)0.0262 (10)0.0018 (10)0.0014 (9)0.0016 (9)
C90.0277 (13)0.0249 (13)0.0362 (12)0.0018 (11)0.0035 (10)0.0045 (10)
C100.0342 (14)0.0283 (14)0.0403 (13)0.0020 (12)0.0134 (10)0.0021 (10)
C110.0347 (14)0.0253 (13)0.0293 (11)0.0053 (11)0.0079 (10)0.0030 (10)
C120.0272 (12)0.0237 (13)0.0273 (11)0.0023 (10)0.0032 (9)0.0004 (9)
C130.0194 (11)0.0232 (13)0.0253 (10)0.0035 (10)0.0016 (8)0.0047 (9)
C140.0305 (13)0.0264 (13)0.0266 (11)0.0005 (11)0.0043 (9)0.0008 (9)
C150.0302 (13)0.0247 (13)0.0336 (11)0.0027 (11)0.0029 (9)0.0019 (10)
C160.0536 (17)0.0411 (17)0.0318 (12)0.0137 (14)0.0024 (11)0.0090 (11)
C170.0483 (17)0.0366 (16)0.0337 (12)0.0024 (13)0.0133 (11)0.0013 (11)
C180.0280 (12)0.0224 (13)0.0207 (10)0.0004 (10)0.0026 (8)0.0021 (8)
C190.0286 (13)0.0261 (14)0.0296 (11)0.0041 (11)0.0028 (9)0.0000 (9)
C200.0393 (15)0.0213 (13)0.0349 (12)0.0077 (11)0.0005 (10)0.0017 (10)
C210.0364 (14)0.0240 (13)0.0283 (11)0.0024 (11)0.0042 (10)0.0028 (9)
C220.0255 (12)0.0261 (13)0.0236 (10)0.0030 (10)0.0021 (8)0.0004 (8)
C230.0265 (12)0.0211 (12)0.0246 (10)0.0021 (10)0.0018 (9)0.0004 (9)
Geometric parameters (Å, º) top
O1—C11.378 (2)C11—C171.531 (3)
O1—C131.381 (2)C11—C161.538 (3)
O2—C91.230 (3)C11—C121.540 (3)
O3—C51.230 (3)C12—C131.492 (3)
O4—N11.227 (2)C12—H12A0.9900
O5—N11.231 (2)C12—H12B0.9900
N1—C221.472 (3)C14—H14A0.9800
C1—C61.340 (3)C14—H14B0.9800
C1—C21.488 (3)C14—H14C0.9800
C2—C31.533 (3)C15—H15A0.9800
C2—H2A0.9900C15—H15B0.9800
C2—H2B0.9900C15—H15C0.9800
C3—C141.531 (3)C16—H16A0.9800
C3—C41.532 (3)C16—H16B0.9800
C3—C151.533 (3)C16—H16C0.9800
C4—C51.507 (3)C17—H17A0.9800
C4—H4A0.9900C17—H17B0.9800
C4—H4B0.9900C17—H17C0.9800
C5—C61.474 (3)C18—C191.389 (3)
C6—C71.515 (3)C18—C231.397 (3)
C7—C81.510 (3)C19—C201.389 (3)
C7—C181.534 (3)C19—H190.9500
C7—H71.0000C20—C211.385 (3)
C8—C131.338 (3)C20—H200.9500
C8—C91.471 (3)C21—C221.388 (3)
C9—C101.510 (3)C21—H210.9500
C10—C111.528 (3)C22—C231.385 (3)
C10—H10A0.9900C23—H230.9500
C10—H10B0.9900
C1—O1—C13117.83 (17)C17—C11—C12108.93 (19)
O4—N1—O5124.0 (2)C16—C11—C12110.6 (2)
O4—N1—C22117.83 (19)C13—C12—C11112.29 (18)
O5—N1—C22118.1 (2)C13—C12—H12A109.1
C6—C1—O1123.00 (18)C11—C12—H12A109.1
C6—C1—C2125.82 (18)C13—C12—H12B109.1
O1—C1—C2111.17 (17)C11—C12—H12B109.1
C1—C2—C3112.65 (18)H12A—C12—H12B107.9
C1—C2—H2A109.1C8—C13—O1122.81 (19)
C3—C2—H2A109.1C8—C13—C12126.15 (19)
C1—C2—H2B109.1O1—C13—C12111.04 (18)
C3—C2—H2B109.1C3—C14—H14A109.5
H2A—C2—H2B107.8C3—C14—H14B109.5
C14—C3—C4109.77 (17)H14A—C14—H14B109.5
C14—C3—C15108.71 (18)C3—C14—H14C109.5
C4—C3—C15110.81 (18)H14A—C14—H14C109.5
C14—C3—C2110.01 (17)H14B—C14—H14C109.5
C4—C3—C2107.53 (18)C3—C15—H15A109.5
C15—C3—C2109.99 (17)C3—C15—H15B109.5
C5—C4—C3113.96 (17)H15A—C15—H15B109.5
C5—C4—H4A108.8C3—C15—H15C109.5
C3—C4—H4A108.8H15A—C15—H15C109.5
C5—C4—H4B108.8H15B—C15—H15C109.5
C3—C4—H4B108.8C11—C16—H16A109.5
H4A—C4—H4B107.7C11—C16—H16B109.5
O3—C5—C6120.21 (19)H16A—C16—H16B109.5
O3—C5—C4122.31 (19)C11—C16—H16C109.5
C6—C5—C4117.45 (19)H16A—C16—H16C109.5
C1—C6—C5118.54 (19)H16B—C16—H16C109.5
C1—C6—C7123.00 (18)C11—C17—H17A109.5
C5—C6—C7118.46 (18)C11—C17—H17B109.5
C8—C7—C6108.39 (18)H17A—C17—H17B109.5
C8—C7—C18111.21 (16)C11—C17—H17C109.5
C6—C7—C18112.29 (18)H17A—C17—H17C109.5
C8—C7—H7108.3H17B—C17—H17C109.5
C6—C7—H7108.3C19—C18—C23118.5 (2)
C18—C7—H7108.3C19—C18—C7121.75 (19)
C13—C8—C9118.4 (2)C23—C18—C7119.76 (19)
C13—C8—C7123.21 (19)C18—C19—C20121.7 (2)
C9—C8—C7118.37 (19)C18—C19—H19119.2
O2—C9—C8120.0 (2)C20—C19—H19119.2
O2—C9—C10122.4 (2)C21—C20—C19120.4 (2)
C8—C9—C10117.6 (2)C21—C20—H20119.8
C9—C10—C11113.83 (19)C19—C20—H20119.8
C9—C10—H10A108.8C20—C21—C22117.3 (2)
C11—C10—H10A108.8C20—C21—H21121.4
C9—C10—H10B108.8C22—C21—H21121.4
C11—C10—H10B108.8C23—C22—C21123.4 (2)
H10A—C10—H10B107.7C23—C22—N1118.3 (2)
C10—C11—C17109.7 (2)C21—C22—N1118.3 (2)
C10—C11—C16110.3 (2)C22—C23—C18118.7 (2)
C17—C11—C16109.38 (19)C22—C23—H23120.7
C10—C11—C12107.88 (18)C18—C23—H23120.7
C13—O1—C1—C66.2 (3)C8—C9—C10—C1132.6 (3)
C13—O1—C1—C2172.70 (17)C9—C10—C11—C17173.52 (19)
C6—C1—C2—C322.0 (3)C9—C10—C11—C1665.9 (2)
O1—C1—C2—C3159.20 (17)C9—C10—C11—C1255.0 (3)
C1—C2—C3—C14167.45 (17)C10—C11—C12—C1346.8 (2)
C1—C2—C3—C447.9 (2)C17—C11—C12—C13165.81 (19)
C1—C2—C3—C1572.8 (2)C16—C11—C12—C1373.9 (2)
C14—C3—C4—C5174.59 (18)C9—C8—C13—O1172.13 (18)
C15—C3—C4—C565.3 (2)C7—C8—C13—O17.0 (3)
C2—C3—C4—C554.9 (2)C9—C8—C13—C127.8 (3)
C3—C4—C5—O3148.0 (2)C7—C8—C13—C12173.1 (2)
C3—C4—C5—C634.1 (3)C1—O1—C13—C84.3 (3)
O1—C1—C6—C5176.97 (18)C1—O1—C13—C12175.67 (17)
C2—C1—C6—C51.8 (3)C11—C12—C13—C817.4 (3)
O1—C1—C6—C73.2 (3)C11—C12—C13—O1162.64 (18)
C2—C1—C6—C7178.1 (2)C8—C7—C18—C19112.2 (2)
O3—C5—C6—C1177.9 (2)C6—C7—C18—C19126.2 (2)
C4—C5—C6—C14.3 (3)C8—C7—C18—C2366.7 (2)
O3—C5—C6—C72.0 (3)C6—C7—C18—C2354.9 (2)
C4—C5—C6—C7175.89 (18)C23—C18—C19—C202.0 (3)
C1—C6—C7—C812.4 (3)C7—C18—C19—C20179.1 (2)
C5—C6—C7—C8167.72 (18)C18—C19—C20—C210.6 (3)
C1—C6—C7—C18110.8 (2)C19—C20—C21—C220.6 (3)
C5—C6—C7—C1869.0 (2)C20—C21—C22—C230.4 (3)
C6—C7—C8—C1314.3 (3)C20—C21—C22—N1178.68 (18)
C18—C7—C8—C13109.6 (2)O4—N1—C22—C2313.9 (3)
C6—C7—C8—C9164.80 (18)O5—N1—C22—C23166.23 (19)
C18—C7—C8—C971.3 (2)O4—N1—C22—C21165.2 (2)
C13—C8—C9—O2176.5 (2)O5—N1—C22—C2114.7 (3)
C7—C8—C9—O22.6 (3)C21—C22—C23—C181.0 (3)
C13—C8—C9—C100.2 (3)N1—C22—C23—C18179.92 (17)
C7—C8—C9—C10179.30 (19)C19—C18—C23—C222.2 (3)
O2—C9—C10—C11150.8 (2)C7—C18—C23—C22178.92 (18)

Experimental details

Crystal data
Chemical formulaC23H25NO5
Mr395.44
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)12.199 (2), 10.510 (2), 32.484 (7)
V3)4164.9 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.983, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
21559, 3670, 3242
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.144, 1.16
No. of reflections3670
No. of parameters267
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Tianjin Natural Science Foundation (07JCYBJC02200) for financial support.

References

First citationBanerjee, A. & Mukherjee, A. K. (1981). Stain Technol. 56, 83–85.  CAS PubMed Web of Science Google Scholar
First citationHideo, T. (1981). Jpn Tokkyo Koho JP 56 005 480.  Google Scholar
First citationKamel, M. & Shoeb, H. (1964). Tetrahedron, 20, 491–495.  CrossRef CAS Web of Science Google Scholar
First citationLambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.  Google Scholar
First citationMenchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. U. S. (2003). US Patent 6 583 168.  Google Scholar
First citationNogradi, M. (2003). Sci. Synth. 14, 201–273.  CAS Google Scholar
First citationPoupelin, J. P., Saint-Rut, G., Foussard-Blanpin, O., Narcisse, G., Uchida- Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.  CAS Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds