organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phosmet: O,O-di­methyl S-phthalimido­methyl phospho­rodi­thio­ate

aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr, jekim@gnu.ac.kr

(Received 21 July 2010; accepted 23 July 2010; online 31 July 2010)

In the title compound, C11H12NO4PS2, the dihedral angle between the phthalimidyl ring plane and the PS2 plane of the phospho­rodithio­ate group is 60.41 (3)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds and S⋯S inter­actions [3.3825 (9) Å] contribute to the stabilization of the packing.

Related literature

For information on the toxicity and insecticidal properties of the title compound, see: Song et al. (2009[Song, Y., Ge, Y., Zhan, Y., Liu, B. & Lu, Y. (2009). Anal. Bioanal. Chem. 393, 2001-2008.]). For related structures, see: Baughman & Allen (1995[Baughman, R. G. & Allen, J. L. (1995). Acta Cryst. C51, 521-523.]); Rohrbaugh et al. (1976[Rohrbaugh, W. J., Meyers, E. K. & Jacobson, R. A. (1976). J. Agric. Food Chem. 24, 713-717.]). For the synthesis, see: Sinderhauf & Schwack (2004[Sinderhauf, K. & Schwack, W. (2004). J. Label Compd. Radiopharm. 47, 509-512.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12NO4PS2

  • Mr = 317.31

  • Triclinic, [P \overline 1]

  • a = 8.3428 (18) Å

  • b = 8.6014 (19) Å

  • c = 10.218 (2) Å

  • α = 85.253 (10)°

  • β = 81.478 (10)°

  • γ = 83.961 (9)°

  • V = 719.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 173 K

  • 0.29 × 0.25 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.871, Tmax = 0.930

  • 13076 measured reflections

  • 3613 independent reflections

  • 3404 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.095

  • S = 1.04

  • 3613 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O3i 0.98 2.57 3.272 (2) 128
C2—H2C⋯O4ii 0.98 2.70 3.420 (2) 130
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phosmet (systematic name: O,O-dimethyl S-phthalimidomethyl phosphorodithioate), is a well known organothiophosphate acaricides and isoindole organothiophosphate insecticides used on plants and animals (Song et al., 2009). However, it's crystal structure has not been reported yet.

In the title compound (Scheme 1, Fig.1), the dihedral angle between the phthalimidyl ring plane and the S1/P1/S2 plane of phosphorodithioate group is 60.41 (3)°. All bond lengths and bond angles of phosphorodithioate group are are comparable to those observed in similar structures (Baughman & Allen, 1995; Rohrbaugh et al., 1976).

In the crystal structure, as shown in Fig. 2, weak C—H···O hydrogen bonds are observed [C2—H2B···O3; H2B···O3 = 2.57 Å; C2—H2B···O3 = 128°; C2···O3 = 3.272 (2) Å; -x + 1, -y + 1, -z and C2—H2C···O4; H2C···O4 = 2.70 Å; C2—H2C···O4 = 130°; C2···O4 = 3.420 (2) Å; -x + 1, -y + 1, -z + 1]. Weak intermolecular S···S interactions with 3.3825 (9) Å also exist. These intermolecular interactions may be contribute to the stabilization of the packing.

Related literature top

For information on the toxicity and insecticidal properties of the title compound, see: Song et al. (2009). For related structures, see: Baughman & Allen (1995); Rohrbaugh et al. (1976). For the synthesis, see: Sinderhauf & Schwack (2004).

Experimental top

The title compound was purchased from the Dr. Ehrenstorfer GmbH Company. Slow evaporation of a CH2Cl2 solution gave single crystals suitable for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic and 0.98 Å, Uiso = 1.5Ueq(C) for the d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for CH3 groups.

Structure description top

Phosmet (systematic name: O,O-dimethyl S-phthalimidomethyl phosphorodithioate), is a well known organothiophosphate acaricides and isoindole organothiophosphate insecticides used on plants and animals (Song et al., 2009). However, it's crystal structure has not been reported yet.

In the title compound (Scheme 1, Fig.1), the dihedral angle between the phthalimidyl ring plane and the S1/P1/S2 plane of phosphorodithioate group is 60.41 (3)°. All bond lengths and bond angles of phosphorodithioate group are are comparable to those observed in similar structures (Baughman & Allen, 1995; Rohrbaugh et al., 1976).

In the crystal structure, as shown in Fig. 2, weak C—H···O hydrogen bonds are observed [C2—H2B···O3; H2B···O3 = 2.57 Å; C2—H2B···O3 = 128°; C2···O3 = 3.272 (2) Å; -x + 1, -y + 1, -z and C2—H2C···O4; H2C···O4 = 2.70 Å; C2—H2C···O4 = 130°; C2···O4 = 3.420 (2) Å; -x + 1, -y + 1, -z + 1]. Weak intermolecular S···S interactions with 3.3825 (9) Å also exist. These intermolecular interactions may be contribute to the stabilization of the packing.

For information on the toxicity and insecticidal properties of the title compound, see: Song et al. (2009). For related structures, see: Baughman & Allen (1995); Rohrbaugh et al. (1976). For the synthesis, see: Sinderhauf & Schwack (2004).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound with intermolecular C—H···O and S···S interactions shown as dashed lines. H atoms not involved in intermolecular interactions have been omitted for clarity. (Symmetry codes: i) -x + 1, -y, -z + 1; ii) -x + 1, -y + 1, -z; iii) -x + 1, -y + 1, -z + 1)
O,O-Dimethyl S-phthalimidomethyl phosphorodithioate top
Crystal data top
C11H12NO4PS2Z = 2
Mr = 317.31F(000) = 328
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3428 (18) ÅCell parameters from 9755 reflections
b = 8.6014 (19) Åθ = 2.4–28.5°
c = 10.218 (2) ŵ = 0.49 mm1
α = 85.253 (10)°T = 173 K
β = 81.478 (10)°Block, colourless
γ = 83.961 (9)°0.29 × 0.25 × 0.15 mm
V = 719.4 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3613 independent reflections
Radiation source: fine-focus sealed tube3404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.871, Tmax = 0.930k = 1111
13076 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.2633P]
where P = (Fo2 + 2Fc2)/3
3613 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C11H12NO4PS2γ = 83.961 (9)°
Mr = 317.31V = 719.4 (3) Å3
Triclinic, P1Z = 2
a = 8.3428 (18) ÅMo Kα radiation
b = 8.6014 (19) ŵ = 0.49 mm1
c = 10.218 (2) ÅT = 173 K
α = 85.253 (10)°0.29 × 0.25 × 0.15 mm
β = 81.478 (10)°
Data collection top
Bruker APEXII CCD
diffractometer
3613 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3404 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.930Rint = 0.025
13076 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
3613 reflectionsΔρmin = 0.44 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.09888 (5)0.15933 (5)0.28102 (5)0.03924 (12)
S20.43827 (4)0.15124 (4)0.39691 (3)0.02668 (10)
P10.32713 (4)0.16877 (4)0.22735 (3)0.02349 (10)
O10.41933 (14)0.04388 (11)0.13285 (10)0.0328 (2)
O20.38169 (14)0.31782 (11)0.13866 (10)0.0306 (2)
O30.75419 (15)0.31462 (15)0.07640 (10)0.0384 (3)
O40.72161 (16)0.33782 (15)0.52567 (10)0.0419 (3)
N10.71376 (14)0.29623 (13)0.30631 (11)0.0258 (2)
C10.4028 (2)0.12177 (17)0.16526 (19)0.0450 (4)
H1A0.43670.15230.25230.067*
H1B0.47160.18300.09790.067*
H1C0.28890.14180.16740.067*
C20.3344 (2)0.47159 (17)0.18799 (18)0.0412 (4)
H2A0.21540.48900.20490.062*
H2B0.37670.55180.12180.062*
H2C0.37910.47800.27060.062*
C30.65366 (16)0.14476 (16)0.32840 (14)0.0273 (3)
H3A0.71780.07910.39000.033*
H3B0.67040.09420.24320.033*
C40.76056 (16)0.36963 (16)0.18021 (13)0.0271 (3)
C50.82125 (17)0.51897 (16)0.20613 (14)0.0286 (3)
C60.8801 (2)0.63735 (19)0.11828 (17)0.0377 (3)
H60.88150.63510.02530.045*
C70.9376 (2)0.76105 (19)0.1734 (2)0.0453 (4)
H70.97790.84560.11650.054*
C80.9370 (2)0.76272 (19)0.3089 (2)0.0446 (4)
H80.97880.84740.34280.053*
C90.8763 (2)0.64295 (19)0.39698 (17)0.0380 (3)
H90.87580.64420.48990.046*
C100.81732 (17)0.52298 (17)0.34284 (14)0.0290 (3)
C110.74723 (17)0.38001 (17)0.40935 (13)0.0286 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02281 (18)0.0388 (2)0.0582 (3)0.00383 (14)0.00798 (16)0.01070 (17)
S20.02212 (17)0.03314 (18)0.02380 (16)0.00471 (12)0.00268 (11)0.00543 (12)
P10.02404 (18)0.01980 (16)0.02735 (17)0.00243 (12)0.00559 (12)0.00190 (12)
O10.0399 (6)0.0230 (5)0.0348 (5)0.0046 (4)0.0011 (4)0.0068 (4)
O20.0425 (6)0.0219 (4)0.0278 (5)0.0033 (4)0.0083 (4)0.0022 (3)
O30.0422 (6)0.0503 (6)0.0252 (5)0.0161 (5)0.0042 (4)0.0026 (4)
O40.0488 (7)0.0529 (7)0.0246 (5)0.0133 (5)0.0027 (4)0.0001 (5)
N10.0242 (5)0.0295 (5)0.0237 (5)0.0068 (4)0.0021 (4)0.0008 (4)
C10.0568 (11)0.0217 (6)0.0540 (10)0.0065 (7)0.0052 (8)0.0085 (6)
C20.0593 (11)0.0198 (6)0.0460 (9)0.0006 (6)0.0155 (7)0.0001 (6)
C30.0209 (6)0.0269 (6)0.0331 (7)0.0025 (5)0.0031 (5)0.0027 (5)
C40.0217 (6)0.0339 (6)0.0255 (6)0.0062 (5)0.0031 (5)0.0026 (5)
C50.0233 (6)0.0297 (6)0.0321 (7)0.0039 (5)0.0022 (5)0.0014 (5)
C60.0334 (8)0.0370 (7)0.0407 (8)0.0067 (6)0.0020 (6)0.0080 (6)
C70.0356 (8)0.0301 (7)0.0672 (11)0.0081 (6)0.0004 (8)0.0072 (7)
C80.0343 (8)0.0304 (7)0.0693 (12)0.0063 (6)0.0008 (7)0.0130 (7)
C90.0327 (8)0.0365 (7)0.0456 (8)0.0039 (6)0.0010 (6)0.0141 (6)
C100.0236 (6)0.0296 (6)0.0334 (7)0.0033 (5)0.0006 (5)0.0042 (5)
C110.0249 (6)0.0336 (7)0.0270 (6)0.0039 (5)0.0016 (5)0.0023 (5)
Geometric parameters (Å, º) top
S1—P11.9103 (6)C2—H2B0.9800
S2—C31.8261 (14)C2—H2C0.9800
S2—P12.0706 (6)C3—H3A0.9900
P1—O11.5671 (10)C3—H3B0.9900
P1—O21.5749 (10)C4—C51.4864 (19)
O1—C11.4520 (18)C5—C61.381 (2)
O2—C21.4494 (17)C5—C101.396 (2)
O3—C41.2070 (18)C6—C71.402 (2)
O4—C111.2081 (18)C6—H60.9500
N1—C111.4003 (18)C7—C81.386 (3)
N1—C41.4069 (17)C7—H70.9500
N1—C31.4335 (17)C8—C91.396 (2)
C1—H1A0.9800C8—H80.9500
C1—H1B0.9800C9—C101.377 (2)
C1—H1C0.9800C9—H90.9500
C2—H2A0.9800C10—C111.4870 (19)
C3—S2—P1102.12 (5)N1—C3—H3B108.9
O1—P1—O296.75 (6)S2—C3—H3B108.9
O1—P1—S1118.01 (5)H3A—C3—H3B107.7
O2—P1—S1117.12 (5)O3—C4—N1124.76 (13)
O1—P1—S2107.80 (5)O3—C4—C5129.98 (13)
O2—P1—S2108.52 (4)N1—C4—C5105.23 (11)
S1—P1—S2107.86 (3)C6—C5—C10121.80 (14)
C1—O1—P1120.26 (10)C6—C5—C4129.95 (14)
C2—O2—P1119.12 (10)C10—C5—C4108.20 (12)
C11—N1—C4112.65 (11)C5—C6—C7116.55 (16)
C11—N1—C3122.77 (11)C5—C6—H6121.7
C4—N1—C3124.30 (12)C7—C6—H6121.7
O1—C1—H1A109.5C8—C7—C6121.44 (15)
O1—C1—H1B109.5C8—C7—H7119.3
H1A—C1—H1B109.5C6—C7—H7119.3
O1—C1—H1C109.5C7—C8—C9121.56 (15)
H1A—C1—H1C109.5C7—C8—H8119.2
H1B—C1—H1C109.5C9—C8—H8119.2
O2—C2—H2A109.5C10—C9—C8116.89 (16)
O2—C2—H2B109.5C10—C9—H9121.6
H2A—C2—H2B109.5C8—C9—H9121.6
O2—C2—H2C109.5C9—C10—C5121.73 (14)
H2A—C2—H2C109.5C9—C10—C11129.60 (14)
H2B—C2—H2C109.5C5—C10—C11108.65 (12)
N1—C3—S2113.49 (9)O4—C11—N1124.50 (14)
N1—C3—H3A108.9O4—C11—C10130.34 (14)
S2—C3—H3A108.9N1—C11—C10105.15 (11)
C3—S2—P1—O146.79 (6)C10—C5—C6—C70.8 (2)
C3—S2—P1—O256.96 (6)C4—C5—C6—C7176.42 (15)
C3—S2—P1—S1175.23 (5)C5—C6—C7—C80.8 (3)
O2—P1—O1—C1176.64 (13)C6—C7—C8—C91.2 (3)
S1—P1—O1—C150.98 (14)C7—C8—C9—C100.1 (2)
S2—P1—O1—C171.40 (13)C8—C9—C10—C51.5 (2)
O1—P1—O2—C2176.16 (12)C8—C9—C10—C11179.35 (15)
S1—P1—O2—C257.54 (12)C6—C5—C10—C92.0 (2)
S2—P1—O2—C264.80 (12)C4—C5—C10—C9175.78 (14)
C11—N1—C3—S275.68 (15)C6—C5—C10—C11179.78 (13)
C4—N1—C3—S2110.89 (13)C4—C5—C10—C112.49 (16)
P1—S2—C3—N190.77 (10)C4—N1—C11—O4178.01 (14)
C11—N1—C4—O3174.74 (14)C3—N1—C11—O43.9 (2)
C3—N1—C4—O30.7 (2)C4—N1—C11—C101.89 (15)
C11—N1—C4—C53.36 (15)C3—N1—C11—C10176.00 (12)
C3—N1—C4—C5177.37 (12)C9—C10—C11—O42.3 (3)
O3—C4—C5—C63.1 (3)C5—C10—C11—O4179.63 (16)
N1—C4—C5—C6178.98 (15)C9—C10—C11—N1177.61 (15)
O3—C4—C5—C10174.42 (15)C5—C10—C11—N10.48 (15)
N1—C4—C5—C103.54 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O3i0.982.573.272 (2)128
C2—H2C···O4ii0.982.703.420 (2)130
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H12NO4PS2
Mr317.31
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.3428 (18), 8.6014 (19), 10.218 (2)
α, β, γ (°)85.253 (10), 81.478 (10), 83.961 (9)
V3)719.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.29 × 0.25 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.871, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
13076, 3613, 3404
Rint0.025
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.095, 1.04
No. of reflections3613
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.44

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O3i0.982.573.272 (2)128
C2—H2C···O4ii0.982.703.420 (2)130
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010–0016386).

References

First citationBaughman, R. G. & Allen, J. L. (1995). Acta Cryst. C51, 521–523.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRohrbaugh, W. J., Meyers, E. K. & Jacobson, R. A. (1976). J. Agric. Food Chem. 24, 713–717.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinderhauf, K. & Schwack, W. (2004). J. Label Compd. Radiopharm. 47, 509–512.  Web of Science CrossRef CAS Google Scholar
First citationSong, Y., Ge, Y., Zhan, Y., Liu, B. & Lu, Y. (2009). Anal. Bioanal. Chem. 393, 2001–2008.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds