organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo-2-(10β-di­hydro­artemisin­­oxy)ethane

aDepartment of Pharmaceutical Chemistry, North-West University, PO NWU 2520, Potchefstroom, South Africa, and bMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
*Correspondence e-mail: 13014196@nwu.ac.za

(Received 7 June 2010; accepted 21 July 2010; online 31 July 2010)

The title compound, C17H27BrO5, DEB, is a derivative of artemisinin which is used in malara therapy. The OR-group at C12 is cis to the CH3-group at C11 and axially oriented on ring D which has a chair conformation. The crystal packing is stabilized by several weak inter­molecular C—H⋯O inter­actions, which combine to form a C—H—O bonded network parallel to (001).

Related literature

For background to malaria, see: World Health Organisation (2008[World Health Organisation (2008). World malaria report. http://www.who.int/malaria/publications/atoz/9789241563697/en/index.html.]). For the effective of artemisinin analogs against malaria, see: Ploypradith (2004[Ploypradith, P. (2004). Acta Trop. 89, 329-342.]). For the crystal structure of artemisinin, see: Kuhn & Wang (2008[Kuhn, T. & Wang, Y. (2008). Fortschr. Arzneimittelforsch. 66, 383-422.]) and of dihydro­artemisinin (DHA), see: Luo et al. (1984[Luo, X., Yeh, H. J. C., Brossi, A., Flippen-Anderson, J. L. & Gilardi, R. (1984). Helv. Chim. Acta, 67, 1515-1522.]). Jasinski et al. (2008a[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Sreevidya, T. V. (2008a). Acta Cryst. E64, o89-o90.]) redetermined the structure of DHA as well as characterizing the second polymer of β-arteether (Jasinski et al., 2008b[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Sreevidya, T. V. (2008b). Acta Cryst. E64, o585-o586.]). For the reaction of DEB with amines, see: Li et al. (2000[Li, Y., Zhu, Y., Jiang, H., Pan, J., Wu, G., Wu, J., Shi, Y., Yang, J. & Wu, B. (2000). J. Med. Chem. 43, 1635-1640.]). For the synthesis of artemisinin hybrids, see: Walsh et al. (2007[Walsh, J. J., Coughlan, D., Heneghan, N., Gaynor, C. & Bell, A. (2007). Bioorg. Med. Chem. Lett. 17, 3599-3602.]); Basco et al. (2001[Basco, L. K., Dechy-Cabaret, O., Ndounga, M., Meche, F. S., Robert, A. & Meunier, B. (2001). Antimicrob. Agents Chemother. 45, 1886-1888.]); Grelepois et al. (2005[Grelepois, F., Grellier, P., Bonnet-Delpon, D. & Begue, J. (2005). ChemBioChem, 6, 648-652.]); Gupta et al. (2002[Gupta, S., Thapar, M. M., Mariga, S. T., Wernsdorfer, W. H. & Bjōrkman, A. (2002). Exp. Parasitol. 100, 28-35.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Evans & Boeyens (1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]).

[Scheme 1]

Experimental

Crystal data
  • C17H27BrO5

  • Mr = 391.30

  • Monoclinic, P 21

  • a = 9.2836 (2) Å

  • b = 9.1103 (2) Å

  • c = 10.2999 (2) Å

  • β = 90.395 (1)°

  • V = 871.11 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 173 K

  • 0.44 × 0.41 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2005[Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.420, Tmax = 0.832

  • 13762 measured reflections

  • 4196 independent reflections

  • 3432 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.078

  • S = 0.95

  • 4196 reflections

  • 211 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1966 Friedel pairs

  • Flack parameter: −0.012 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O2i 0.98 2.50 3.434 (3) 159
C16—H16A⋯O3ii 0.99 2.46 3.285 (3) 141
C17—H17B⋯O4ii 0.99 2.50 3.282 (3) 136
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) [-x, y-{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Malaria is one of the top three priority diseases of the WHO and is becoming a worldwide threat because of its wide spread resistance to current anti-malaria drugs (World Health Organization, 2008). Artemisinin and its derivatives currently represent the most effective group of compounds against multidrug-resistant malaria with a rapid onset of action and a short half life. However, when artemisinin analogs are used as monotherapy it results in significant recrudescence (Ploypradith, 2004). Therefore it is recommended by the WHO that all uncomplicated P. falciparum infections should be treated with an artemisinin-based combination therapy (ACT).

When DHA is prepared from artemisinin by reduction, it exists as a mixture of α- and β-isomers. Luo and co-workers (Luo et al. 1984) determined that these isomers can exist in two conformations of ring D, a half-chair form and a half-boat form. DEB was tested in vitro against Plasmodium falciparum sensitive (D10) and resistant (Dd2) strains, but did not show any improved activity with respect to the reference drug: dihydroartemisinin (DHA).

The title compound, C17H27BrO5 or 2-(10β-dihydroartemisinoxy)ethylbromide (DEB), is a derivative of artemisinin. DEB was synthesized from the reaction of DHA with bromoethanol. DHA was supplied as a mixture of anomers. With the formation of DEB the OR-group at C12 is positioned cis to the CH3-group at C11 and axially oriented on ring D. Therefore, DEB can be assigned to the β-chair series. The rings in the title compound have also been previously labeled as rings A, B, C and D (scheme). Ring A has a twist boat conformation with puckering parameters (Cremer & Pople, 1975) Q, θ and φ of 0.739 (2), 94.21 (15)° and 274.46 (16)°, respectively (Fig. 1). Ring B has a distorted boat conformation and ring C is in a slightly distorted chair conformation with puckering parameters Q, θ and φ of 0.539 (3), 8.6 (3)° and 195.6 (18)°. Ring D is in a chair conformation with puckering parameters Q, θ and φ of 0.532 (2), 178.2 (3)° and 73 (11)°. Crystal packing in DEB is stabilized by a several C—H···O weak intermolecular interactions (Table 1) some of which are shown in Fig 2. These combine to form a C—H—O bonded network parallel to (001).

Related literature top

For background to malaria, see: World Health Organisation (2008). For the effective of artemisinin analogs against malaria, see: Ploypradith (2004). For the crystal structure of artemisinin, see: Kuhn & Wang (2008) and of dihydroartemisinin (DHA), see: Luo et al. (1984). Jasinski et al. (2008a) redetermined the structure of DHA as well as characterizing the second polymer of β-arteether (Jasinski et al., 2008b). For the reaction of DEB with amines, see: Li et al. (2000). For the synthesis of artemisinin hybrids, see: Walsh et al. (2007); Basco et al. (2001); Grelepois et al. (2005); Gupta et al. (2002). For puckering analysis, see: Cremer & Pople (1975); Evans & Boeyens (1989).

Experimental top

The title compound was prepared as described by Li and co-workers (Li et al., 2000). The product was recrystallized from methanol using a slow evaporation technique at room temperature with a 71% yield of white needle-like crystals. IC50 (ng/ml) of the title compound (DEB): D10 = 41.39, Dd2 = 129.47 IC50 (ng/ml) of Dihydroartemisinin: D10 = 1.45, Dd2 = 0.59.

Refinement top

All H atoms were positioned geometrically, and allowed to ride on their parent atoms, with Atom—H bond lengths of 1.00 Å (CH), 0.99 Å (CH2), or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 times (CH and CH2) or 1.5 times (CH3) Ueq of the parent atom.

Structure description top

Malaria is one of the top three priority diseases of the WHO and is becoming a worldwide threat because of its wide spread resistance to current anti-malaria drugs (World Health Organization, 2008). Artemisinin and its derivatives currently represent the most effective group of compounds against multidrug-resistant malaria with a rapid onset of action and a short half life. However, when artemisinin analogs are used as monotherapy it results in significant recrudescence (Ploypradith, 2004). Therefore it is recommended by the WHO that all uncomplicated P. falciparum infections should be treated with an artemisinin-based combination therapy (ACT).

When DHA is prepared from artemisinin by reduction, it exists as a mixture of α- and β-isomers. Luo and co-workers (Luo et al. 1984) determined that these isomers can exist in two conformations of ring D, a half-chair form and a half-boat form. DEB was tested in vitro against Plasmodium falciparum sensitive (D10) and resistant (Dd2) strains, but did not show any improved activity with respect to the reference drug: dihydroartemisinin (DHA).

The title compound, C17H27BrO5 or 2-(10β-dihydroartemisinoxy)ethylbromide (DEB), is a derivative of artemisinin. DEB was synthesized from the reaction of DHA with bromoethanol. DHA was supplied as a mixture of anomers. With the formation of DEB the OR-group at C12 is positioned cis to the CH3-group at C11 and axially oriented on ring D. Therefore, DEB can be assigned to the β-chair series. The rings in the title compound have also been previously labeled as rings A, B, C and D (scheme). Ring A has a twist boat conformation with puckering parameters (Cremer & Pople, 1975) Q, θ and φ of 0.739 (2), 94.21 (15)° and 274.46 (16)°, respectively (Fig. 1). Ring B has a distorted boat conformation and ring C is in a slightly distorted chair conformation with puckering parameters Q, θ and φ of 0.539 (3), 8.6 (3)° and 195.6 (18)°. Ring D is in a chair conformation with puckering parameters Q, θ and φ of 0.532 (2), 178.2 (3)° and 73 (11)°. Crystal packing in DEB is stabilized by a several C—H···O weak intermolecular interactions (Table 1) some of which are shown in Fig 2. These combine to form a C—H—O bonded network parallel to (001).

For background to malaria, see: World Health Organisation (2008). For the effective of artemisinin analogs against malaria, see: Ploypradith (2004). For the crystal structure of artemisinin, see: Kuhn & Wang (2008) and of dihydroartemisinin (DHA), see: Luo et al. (1984). Jasinski et al. (2008a) redetermined the structure of DHA as well as characterizing the second polymer of β-arteether (Jasinski et al., 2008b). For the reaction of DEB with amines, see: Li et al. (2000). For the synthesis of artemisinin hybrids, see: Walsh et al. (2007); Basco et al. (2001); Grelepois et al. (2005); Gupta et al. (2002). For puckering analysis, see: Cremer & Pople (1975); Evans & Boeyens (1989).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of C17H27BrO5 (DEB), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of C17H27BrO5 showing the weak intermolecular C—H···O hydrogen bonding network where chains of molecules run parallel to (001).
1-Bromo-2-(10β-dihydroartemisinoxy)ethane top
Crystal data top
C17H27BrO5F(000) = 408
Mr = 391.30Dx = 1.492 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6155 reflections
a = 9.2836 (2) Åθ = 2.9–28.2°
b = 9.1103 (2) ŵ = 2.38 mm1
c = 10.2999 (2) ÅT = 173 K
β = 90.395 (1)°Plate, colourless
V = 871.11 (3) Å30.44 × 0.41 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
4196 independent reflections
Radiation source: fine-focus sealed tube3432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
φ and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: integration
(XPREP; Bruker, 2005)
h = 1212
Tmin = 0.420, Tmax = 0.832k = 1212
13762 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0405P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
4196 reflectionsΔρmax = 0.61 e Å3
211 parametersΔρmin = 0.35 e Å3
1 restraintAbsolute structure: Flack (1983), 1966 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (7)
Crystal data top
C17H27BrO5V = 871.11 (3) Å3
Mr = 391.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.2836 (2) ŵ = 2.38 mm1
b = 9.1103 (2) ÅT = 173 K
c = 10.2999 (2) Å0.44 × 0.41 × 0.08 mm
β = 90.395 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4196 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2005)
3432 reflections with I > 2σ(I)
Tmin = 0.420, Tmax = 0.832Rint = 0.068
13762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.61 e Å3
S = 0.95Δρmin = 0.35 e Å3
4196 reflectionsAbsolute structure: Flack (1983), 1966 Friedel pairs
211 parametersAbsolute structure parameter: 0.012 (7)
1 restraint
Special details top

Experimental. 1H NMR (600.17 MHz; CDCl3; Me4Si): δH 5.46 (s, 1H, H-5), 4.82 (d, J = 3.4 Hz, 1H, H-12), 4.09 (ddd, J = 11.8, 6.6, 5.5 Hz, 1H, H-16α), 3.79 – 3.73 (m, 1H, H-16β), 3.51 – 3.47 (m, 2H, H-17), 2.66 – 2.59 (m, 1H, H-11), 2.39 – 2.30 (m, 1H, H-3α), 2.01 (ddd, J = 14.6, 4.7, 3.1 Hz, 1H, H-3β), 1.92 – 1.81 (m, 2H, H-2α; H-8α), 1.73 (ddd, J = 14.2, 7.7, 3.6 Hz, 1H, H-8β), 1.62 (dq, J = 13.2, 3.3 Hz, 1H, H-9β), 1.47 (qdd, J = 12.0, 8.9, 4.1 Hz, 2H, H-2α; H-7), 1.41 (s, 3H, H-15), 1.36 – 1.28 (m, 1H, H-10), 1.22 (td, J = 11.5, 6.6 Hz, 1H, H-1), 0.93 (d, J = 6.4 Hz, 3H, H-13), 0.91 (d, J = 7.4 Hz, 3H, H-14), 0.87 (dd, J = 13.3, 3.6 Hz, 3H, H-9α). 13C NMR (150.913 MHz; CDCl3; Me4Si): δC 104.10 (C-4), 102.02 (C-12), 88.12 (C-5), 81.07 (C-6), 68.14 (C-16), 52.54 (C-1), 44.33 (C-7), 37.36 (C-10), 36.37 (C-3), 34.63 (C-11), 31.41 (C-17), 30.86 (C-11), 26.12 (C-15), 24.62 (C-2), 24.33 (C-8), 20.34 (C-14), 12.95 (C-13).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4624 (2)0.8858 (2)0.7096 (2)0.0219 (6)
H10.49710.98250.67590.026*
C20.5821 (3)0.8288 (3)0.8003 (2)0.0240 (5)
H2A0.56670.72240.81420.029*
H2B0.67560.84040.75580.029*
C30.5930 (2)0.9028 (3)0.9323 (2)0.0254 (5)
H3A0.61881.00720.91960.030*
H3B0.67170.85610.98280.030*
C40.4535 (2)0.8946 (3)1.0112 (2)0.0236 (6)
C50.2721 (2)0.7966 (3)0.8734 (2)0.0193 (5)
H50.25840.70470.82170.023*
C60.3193 (2)0.9184 (3)0.7817 (2)0.0199 (4)
C70.1958 (2)0.9600 (3)0.6879 (2)0.0221 (5)
H70.22311.05580.64760.027*
C80.1822 (3)0.8494 (3)0.5770 (2)0.0293 (6)
H8A0.15530.75230.61260.035*
H8B0.10460.88120.51680.035*
C90.3227 (3)0.8356 (3)0.5027 (2)0.0286 (6)
H9A0.31010.76400.43120.034*
H9B0.34720.93170.46380.034*
C100.4453 (3)0.7860 (3)0.5903 (2)0.0268 (6)
H100.42300.68470.62150.032*
C110.0559 (3)0.9877 (3)0.7641 (2)0.0246 (5)
H110.07581.07410.82140.030*
C120.0223 (3)0.8610 (3)0.8544 (2)0.0230 (5)
H120.06160.88980.90920.028*
C130.0724 (3)1.0314 (3)0.6780 (3)0.0347 (6)
H13A0.10370.94650.62660.052*
H13B0.04361.11100.61960.052*
H13C0.15201.06470.73270.052*
C140.5866 (3)0.7794 (4)0.5130 (3)0.0378 (7)
H14A0.57100.72320.43310.057*
H14B0.66130.73170.56580.057*
H14C0.61730.87920.49110.057*
C150.4802 (3)0.8852 (3)1.1564 (2)0.0318 (7)
H15A0.54600.96381.18320.048*
H15B0.52310.78981.17760.048*
H15C0.38860.89591.20220.048*
C160.0657 (3)0.6166 (3)0.8603 (2)0.0281 (6)
H16A0.16150.63950.89660.034*
H16B0.00260.60170.93330.034*
C170.0743 (3)0.4798 (3)0.7792 (3)0.0290 (6)
H17A0.13260.49950.70030.035*
H17B0.12270.40140.82920.035*
Br10.11699 (3)0.41341 (4)0.72890 (3)0.04547 (10)
O10.37137 (18)0.76784 (19)0.97365 (16)0.0221 (4)
O20.34641 (18)1.05261 (18)0.85662 (16)0.0241 (4)
O30.3660 (2)1.02082 (18)0.99572 (17)0.0234 (4)
O40.13965 (17)0.82985 (18)0.93755 (15)0.0225 (4)
O50.01788 (17)0.73579 (18)0.78053 (15)0.0235 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0195 (11)0.0211 (16)0.0252 (11)0.0027 (9)0.0061 (9)0.0001 (10)
C20.0186 (12)0.0237 (12)0.0298 (13)0.0011 (10)0.0059 (10)0.0033 (11)
C30.0193 (10)0.0246 (12)0.0322 (12)0.0011 (13)0.0004 (9)0.0026 (14)
C40.0208 (11)0.0207 (15)0.0292 (12)0.0039 (11)0.0004 (9)0.0050 (11)
C50.0199 (12)0.0195 (12)0.0185 (12)0.0010 (10)0.0003 (10)0.0001 (10)
C60.0187 (9)0.0162 (9)0.0250 (11)0.0016 (13)0.0032 (8)0.0007 (13)
C70.0211 (11)0.0202 (12)0.0250 (13)0.0024 (9)0.0015 (10)0.0066 (10)
C80.0266 (14)0.0357 (13)0.0255 (13)0.0069 (11)0.0003 (11)0.0059 (12)
C90.0343 (15)0.0308 (14)0.0206 (13)0.0052 (11)0.0046 (11)0.0010 (11)
C100.0322 (14)0.0241 (12)0.0243 (13)0.0034 (11)0.0078 (11)0.0021 (11)
C110.0199 (12)0.0233 (12)0.0307 (14)0.0003 (10)0.0024 (11)0.0005 (11)
C120.0174 (11)0.0239 (11)0.0277 (13)0.0015 (9)0.0029 (10)0.0020 (10)
C130.0219 (13)0.0359 (16)0.0463 (17)0.0016 (11)0.0030 (12)0.0072 (14)
C140.0356 (16)0.0446 (17)0.0331 (15)0.0036 (13)0.0099 (13)0.0098 (13)
C150.0280 (12)0.0380 (19)0.0294 (13)0.0083 (11)0.0025 (10)0.0077 (12)
C160.0265 (13)0.0291 (14)0.0287 (14)0.0081 (10)0.0059 (11)0.0050 (11)
C170.0243 (12)0.0301 (13)0.0326 (14)0.0061 (11)0.0003 (11)0.0075 (11)
Br10.03348 (15)0.03086 (14)0.0721 (2)0.00014 (15)0.00489 (12)0.00932 (17)
O10.0188 (9)0.0213 (9)0.0262 (10)0.0004 (7)0.0008 (7)0.0009 (8)
O20.0249 (9)0.0177 (8)0.0296 (10)0.0009 (7)0.0010 (8)0.0022 (7)
O30.0239 (9)0.0236 (10)0.0228 (9)0.0051 (7)0.0001 (7)0.0055 (8)
O40.0188 (8)0.0270 (9)0.0219 (8)0.0001 (7)0.0026 (7)0.0006 (7)
O50.0195 (8)0.0254 (9)0.0255 (9)0.0045 (7)0.0014 (7)0.0030 (7)
Geometric parameters (Å, º) top
C1—C101.536 (3)C9—H9B0.9900
C1—C21.538 (3)C10—C141.539 (3)
C1—C61.556 (3)C10—H101.0000
C1—H11.0000C11—C121.515 (3)
C2—C31.520 (3)C11—C131.533 (4)
C2—H2A0.9900C11—H111.0000
C2—H2B0.9900C12—O41.410 (3)
C3—C41.535 (3)C12—O51.420 (3)
C3—H3A0.9900C12—H121.0000
C3—H3B0.9900C13—H13A0.9800
C4—O31.416 (3)C13—H13B0.9800
C4—O11.435 (3)C13—H13C0.9800
C4—C151.517 (3)C14—H14A0.9800
C5—O11.404 (3)C14—H14B0.9800
C5—O41.433 (3)C14—H14C0.9800
C5—C61.523 (3)C15—H15A0.9800
C5—H51.0000C15—H15B0.9800
C6—O21.467 (3)C15—H15C0.9800
C6—C71.541 (3)C16—O51.434 (3)
C7—C81.528 (4)C16—C171.502 (4)
C7—C111.543 (4)C16—H16A0.9900
C7—H71.0000C16—H16B0.9900
C8—C91.522 (4)C17—Br11.949 (3)
C8—H8A0.9900C17—H17A0.9900
C8—H8B0.9900C17—H17B0.9900
C9—C101.517 (4)O2—O31.472 (2)
C9—H9A0.9900
C10—C1—C2110.89 (19)C9—C10—C1111.9 (2)
C10—C1—C6114.27 (19)C9—C10—C14110.0 (2)
C2—C1—C6112.98 (18)C1—C10—C14110.7 (2)
C10—C1—H1106.0C9—C10—H10108.0
C2—C1—H1106.0C1—C10—H10108.0
C6—C1—H1106.0C14—C10—H10108.0
C3—C2—C1115.91 (19)C12—C11—C13113.0 (2)
C3—C2—H2A108.3C12—C11—C7111.41 (19)
C1—C2—H2A108.3C13—C11—C7113.7 (2)
C3—C2—H2B108.3C12—C11—H11106.0
C1—C2—H2B108.3C13—C11—H11106.0
H2A—C2—H2B107.4C7—C11—H11106.0
C2—C3—C4113.6 (2)O4—C12—O5111.26 (19)
C2—C3—H3A108.8O4—C12—C11111.38 (19)
C4—C3—H3A108.8O5—C12—C11109.76 (19)
C2—C3—H3B108.8O4—C12—H12108.1
C4—C3—H3B108.8O5—C12—H12108.1
H3A—C3—H3B107.7C11—C12—H12108.1
O3—C4—O1108.64 (17)C11—C13—H13A109.5
O3—C4—C15104.26 (19)C11—C13—H13B109.5
O1—C4—C15107.6 (2)H13A—C13—H13B109.5
O3—C4—C3112.7 (2)C11—C13—H13C109.5
O1—C4—C3110.2 (2)H13A—C13—H13C109.5
C15—C4—C3113.08 (19)H13B—C13—H13C109.5
O1—C5—O4105.13 (17)C10—C14—H14A109.5
O1—C5—C6113.71 (18)C10—C14—H14B109.5
O4—C5—C6112.52 (18)H14A—C14—H14B109.5
O1—C5—H5108.4C10—C14—H14C109.5
O4—C5—H5108.4H14A—C14—H14C109.5
C6—C5—H5108.4H14B—C14—H14C109.5
O2—C6—C5109.27 (16)C4—C15—H15A109.5
O2—C6—C7104.4 (2)C4—C15—H15B109.5
C5—C6—C7110.62 (18)H15A—C15—H15B109.5
O2—C6—C1105.43 (17)C4—C15—H15C109.5
C5—C6—C1114.0 (2)H15A—C15—H15C109.5
C7—C6—C1112.44 (17)H15B—C15—H15C109.5
C8—C7—C6111.4 (2)O5—C16—C17109.00 (18)
C8—C7—C11115.0 (2)O5—C16—H16A109.9
C6—C7—C11110.25 (19)C17—C16—H16A109.9
C8—C7—H7106.6O5—C16—H16B109.9
C6—C7—H7106.6C17—C16—H16B109.9
C11—C7—H7106.6H16A—C16—H16B108.3
C9—C8—C7111.3 (2)C16—C17—Br1111.10 (18)
C9—C8—H8A109.4C16—C17—H17A109.4
C7—C8—H8A109.4Br1—C17—H17A109.4
C9—C8—H8B109.4C16—C17—H17B109.4
C7—C8—H8B109.4Br1—C17—H17B109.4
H8A—C8—H8B108.0H17A—C17—H17B108.0
C10—C9—C8111.6 (2)C5—O1—C4113.13 (18)
C10—C9—H9A109.3C6—O2—O3111.59 (16)
C8—C9—H9A109.3C4—O3—O2109.64 (16)
C10—C9—H9B109.3C12—O4—C5115.10 (17)
C8—C9—H9B109.3C12—O5—C16112.52 (17)
H9A—C9—H9B108.0
C10—C1—C2—C3170.2 (2)C2—C1—C10—C1459.8 (3)
C6—C1—C2—C340.4 (3)C6—C1—C10—C14171.1 (2)
C1—C2—C3—C457.3 (3)C8—C7—C11—C1275.3 (3)
C2—C3—C4—O394.8 (3)C6—C7—C11—C1251.6 (3)
C2—C3—C4—O126.8 (3)C8—C7—C11—C1353.7 (3)
C2—C3—C4—C15147.3 (2)C6—C7—C11—C13179.4 (2)
O1—C5—C6—O256.7 (2)C13—C11—C12—O4176.3 (2)
O4—C5—C6—O262.7 (2)C7—C11—C12—O454.3 (3)
O1—C5—C6—C7171.20 (19)C13—C11—C12—O560.0 (3)
O4—C5—C6—C751.8 (3)C7—C11—C12—O569.4 (2)
O1—C5—C6—C160.9 (2)O5—C16—C17—Br168.7 (2)
O4—C5—C6—C1179.69 (19)O4—C5—O1—C493.8 (2)
C10—C1—C6—O2159.21 (19)C6—C5—O1—C429.7 (3)
C2—C1—C6—O272.8 (2)O3—C4—O1—C532.8 (2)
C10—C1—C6—C580.9 (2)C15—C4—O1—C5145.10 (19)
C2—C1—C6—C547.1 (3)C3—C4—O1—C591.2 (2)
C10—C1—C6—C746.0 (3)C5—C6—O2—O318.1 (2)
C2—C1—C6—C7174.0 (2)C7—C6—O2—O3136.50 (16)
O2—C6—C7—C8163.64 (17)C1—C6—O2—O3104.81 (18)
C5—C6—C7—C878.9 (2)O1—C4—O3—O272.2 (2)
C1—C6—C7—C849.8 (3)C15—C4—O3—O2173.27 (17)
O2—C6—C7—C1167.5 (2)C3—C4—O3—O250.3 (2)
C5—C6—C7—C1150.0 (3)C6—O2—O3—C442.6 (2)
C1—C6—C7—C11178.7 (2)O5—C12—O4—C565.7 (2)
C6—C7—C8—C956.9 (3)C11—C12—O4—C557.1 (2)
C11—C7—C8—C9176.8 (2)O1—C5—O4—C12179.24 (18)
C7—C8—C9—C1059.5 (3)C6—C5—O4—C1256.5 (2)
C8—C9—C10—C154.3 (3)O4—C12—O5—C1662.4 (2)
C8—C9—C10—C14177.7 (2)C11—C12—O5—C16173.86 (19)
C2—C1—C10—C9177.06 (19)C17—C16—O5—C12167.5 (2)
C6—C1—C10—C948.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.982.503.434 (3)159
C16—H16A···O3ii0.992.463.285 (3)141
C17—H17B···O4ii0.992.503.282 (3)136
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC17H27BrO5
Mr391.30
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)9.2836 (2), 9.1103 (2), 10.2999 (2)
β (°) 90.395 (1)
V3)871.11 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.44 × 0.41 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionIntegration
(XPREP; Bruker, 2005)
Tmin, Tmax0.420, 0.832
No. of measured, independent and
observed [I > 2σ(I)] reflections
13762, 4196, 3432
Rint0.068
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.078, 0.95
No. of reflections4196
No. of parameters211
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.35
Absolute structureFlack (1983), 1966 Friedel pairs
Absolute structure parameter0.012 (7)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL99 (Keller, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···O2i0.982.503.434 (3)159
C16—H16A···O3ii0.992.463.285 (3)141
C17—H17B···O4ii0.992.503.282 (3)136
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x, y1/2, z+2.
 

Acknowledgements

This work was supported by the National Research Foundation, North-West University and the University of the Witwatersrand.

References

First citationBasco, L. K., Dechy-Cabaret, O., Ndounga, M., Meche, F. S., Robert, A. & Meunier, B. (2001). Antimicrob. Agents Chemother. 45, 1886–1888.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrelepois, F., Grellier, P., Bonnet-Delpon, D. & Begue, J. (2005). ChemBioChem, 6, 648–652.  Web of Science CrossRef PubMed Google Scholar
First citationGupta, S., Thapar, M. M., Mariga, S. T., Wernsdorfer, W. H. & Bjōrkman, A. (2002). Exp. Parasitol. 100, 28–35.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Sreevidya, T. V. (2008a). Acta Cryst. E64, o89–o90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Sreevidya, T. V. (2008b). Acta Cryst. E64, o585–o586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiburg, Germany.  Google Scholar
First citationKuhn, T. & Wang, Y. (2008). Fortschr. Arzneimittelforsch. 66, 383–422.  Google Scholar
First citationLi, Y., Zhu, Y., Jiang, H., Pan, J., Wu, G., Wu, J., Shi, Y., Yang, J. & Wu, B. (2000). J. Med. Chem. 43, 1635–1640.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuo, X., Yeh, H. J. C., Brossi, A., Flippen-Anderson, J. L. & Gilardi, R. (1984). Helv. Chim. Acta, 67, 1515–1522.  CSD CrossRef CAS Web of Science Google Scholar
First citationPloypradith, P. (2004). Acta Trop. 89, 329–342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalsh, J. J., Coughlan, D., Heneghan, N., Gaynor, C. & Bell, A. (2007). Bioorg. Med. Chem. Lett. 17, 3599–3602.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWorld Health Organisation (2008). World malaria report. http://www.who.int/malaria/publications/atoz/9789241563697/en/index.htmlGoogle Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds