organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(Benzyl­sulfamo­yl)phen­yl]acetamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 July 2010; accepted 13 July 2010; online 17 July 2010)

A folded conformation is found for the title compound, C15H16N2O3S, whereby the benzene rings come into close proximity [centroid–centroid distance = 4.0357 (12) Å and the dihedral angle between them = 24.37 (10)°]. The amide group is coplanar with the benzene ring to which it is bound [C—C—N—C torsion angle = 11.1 (3)°]. In the crystal packing, two-dimensional arrays in the (101) plane are formed via N—H⋯O hydrogen bonding.

Related literature

For background to the pharmacological uses of sulfonamides, see: Beate et al. (1998[Beate, G., Nadenik, P. & Wagner, H. (1998). WO Patent No. 9855481.]); Kazmierski et al. (2004[Kazmierski, W. M., Aquino, C. J., Bifulco, N., Boros, E. E., Chauder, B. A., Chong, P. Y., Duan, M., Deanda, F. Jr, Koble, C. S., Mclean, E. W., Peckham, J. P., Perkins, A. C., Thompson, J. B. & Vanderwall, D. (2004). WO Patent No. 2004054974.]). For related structures, see: Khan et al. (2010[Khan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.]); Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O3S

  • Mr = 304.37

  • Monoclinic, P 21 /n

  • a = 9.0646 (9) Å

  • b = 13.6888 (14) Å

  • c = 12.1651 (12) Å

  • β = 98.635 (5)°

  • V = 1492.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.19 × 0.09 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.868, Tmax = 0.948

  • 13777 measured reflections

  • 3577 independent reflections

  • 2689 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.02

  • 3577 reflections

  • 197 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O3i 0.89 (2) 2.00 (2) 2.877 (2) 168 (2)
N2—H2n⋯O2ii 0.90 (2) 2.03 (2) 2.921 (2) 172 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamide drugs are used, for example, as inhibitors of HIV infection (Kazmierski et al., 2004) and as anti-hypertensive drugs (Beate et al., 1998). In connection with on-going structural studies of sulfonamides (Khan et al., 2010; Sharif et al., 2010), the crystal and molecular structure of the title compound, C15H16N2O3S, was investigated.

The molecule of C15H16N2O3S has a folded conformation with the benzene ring of the benzyl group somewhat orientated over the S-bound benzene ring. The rings are approximately parallel, forming a dihedral angle of 24.37 (10) °; the distance between the ring centroids is 4.0357 (12) Å. The amide group is essentially co-planar with the ring to which it is bound as seen in the C10–C11–N2–C14 torsion angle of 11.1 (3) °.

The crystal packing is dominated by N–H···O hydrogen bonds whereby the N1–H atom forms a hydrogen bond to the amide-carbonyl, and the amide N2–H forms a contact with the S-bound O2 atom, Table 1. The former leads to centrosymmetric aggregates and these are connected by the latter into a 2-D array in the (1 0 1) plane, Fig. 2.

Related literature top

For background to the pharmacological uses of sulfonamides, see: Beate et al. (1998); Kazmierski et al. (2004). For related structures, see: Khan et al. (2010); Sharif et al. (2010).

Experimental top

To 4-acetamidobenzenesulfonyl chloride (498 mg, 2.14 mmol) in distilled water (10 ml) was added benzylamine (234 ml, 2.14 mmol), the reaction mixture was stirred at room temperature while maintaining the pH of the reaction mixture at 8 using 3% sodium carbonate. The progress of the reaction was monitored by TLC. After consumption of all the reactants, the precipitates were filtered, dried and crystallized from methanol to yield colourless crystals.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H atom was refined with the distance restraint N–H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Structure description top

Sulfonamide drugs are used, for example, as inhibitors of HIV infection (Kazmierski et al., 2004) and as anti-hypertensive drugs (Beate et al., 1998). In connection with on-going structural studies of sulfonamides (Khan et al., 2010; Sharif et al., 2010), the crystal and molecular structure of the title compound, C15H16N2O3S, was investigated.

The molecule of C15H16N2O3S has a folded conformation with the benzene ring of the benzyl group somewhat orientated over the S-bound benzene ring. The rings are approximately parallel, forming a dihedral angle of 24.37 (10) °; the distance between the ring centroids is 4.0357 (12) Å. The amide group is essentially co-planar with the ring to which it is bound as seen in the C10–C11–N2–C14 torsion angle of 11.1 (3) °.

The crystal packing is dominated by N–H···O hydrogen bonds whereby the N1–H atom forms a hydrogen bond to the amide-carbonyl, and the amide N2–H forms a contact with the S-bound O2 atom, Table 1. The former leads to centrosymmetric aggregates and these are connected by the latter into a 2-D array in the (1 0 1) plane, Fig. 2.

For background to the pharmacological uses of sulfonamides, see: Beate et al. (1998); Kazmierski et al. (2004). For related structures, see: Khan et al. (2010); Sharif et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of C15H16N2O3S showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the supramolecular 2-D array in the (1 0 1) plane mediated by N–H···O hydrogen bonding (orange dashed lines) in C15H16N2O3S. Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
N-[4-(Benzylsulfamoyl)phenyl]acetamide top
Crystal data top
C15H16N2O3SF(000) = 640
Mr = 304.37Dx = 1.355 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4154 reflections
a = 9.0646 (9) Åθ = 2.6–27.9°
b = 13.6888 (14) ŵ = 0.23 mm1
c = 12.1651 (12) ÅT = 293 K
β = 98.635 (5)°Prism, colourless
V = 1492.4 (3) Å30.19 × 0.09 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3577 independent reflections
Radiation source: fine-focus sealed tube2689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 28.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.868, Tmax = 0.948k = 1817
13777 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.3076P]
where P = (Fo2 + 2Fc2)/3
3577 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.25 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H16N2O3SV = 1492.4 (3) Å3
Mr = 304.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0646 (9) ŵ = 0.23 mm1
b = 13.6888 (14) ÅT = 293 K
c = 12.1651 (12) Å0.19 × 0.09 × 0.07 mm
β = 98.635 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3577 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2689 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.948Rint = 0.036
13777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.25 e Å3
3577 reflectionsΔρmin = 0.24 e Å3
197 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11090 (5)0.33181 (3)0.82483 (3)0.03999 (15)
O10.21873 (16)0.27094 (10)0.88809 (10)0.0536 (4)
O20.04454 (15)0.31532 (11)0.82667 (12)0.0594 (4)
O30.02478 (16)0.40834 (11)0.26180 (11)0.0596 (4)
N10.14186 (17)0.44201 (11)0.86867 (12)0.0448 (4)
H1N0.0786 (18)0.4846 (12)0.8311 (15)0.054*
N20.20419 (16)0.31175 (10)0.35277 (11)0.0399 (3)
H2N0.2876 (15)0.2778 (12)0.3473 (16)0.048*
C10.2944 (2)0.47687 (16)0.90443 (16)0.0559 (5)
H1A0.34090.43470.96380.067*
H1B0.28880.54180.93550.067*
C20.3944 (2)0.48133 (13)0.81674 (15)0.0464 (4)
C30.3606 (2)0.54229 (14)0.72574 (17)0.0532 (5)
H30.27480.58050.71840.064*
C40.4533 (3)0.54678 (16)0.6461 (2)0.0661 (6)
H40.42950.58800.58520.079*
C50.5799 (3)0.49141 (18)0.6555 (2)0.0732 (7)
H50.64160.49450.60110.088*
C60.6154 (3)0.43158 (18)0.7452 (2)0.0745 (7)
H60.70210.39430.75230.089*
C70.5230 (2)0.42612 (15)0.8254 (2)0.0611 (6)
H70.54770.38480.88600.073*
C80.13636 (18)0.32476 (11)0.68406 (13)0.0354 (3)
C90.0308 (2)0.36444 (16)0.60359 (15)0.0499 (5)
H90.05390.39340.62380.060*
C100.0494 (2)0.36167 (15)0.49303 (15)0.0496 (5)
H100.02230.38880.43900.059*
C110.17580 (18)0.31823 (11)0.46307 (13)0.0343 (3)
C120.2803 (2)0.27757 (14)0.54465 (14)0.0436 (4)
H120.36470.24770.52500.052*
C130.26102 (19)0.28078 (13)0.65483 (14)0.0426 (4)
H130.33210.25330.70910.051*
C140.1335 (2)0.35627 (13)0.26110 (14)0.0418 (4)
C150.1978 (3)0.33645 (17)0.15660 (16)0.0605 (6)
H15A0.16350.27410.12700.091*
H15B0.30480.33600.17300.091*
H15C0.16640.38650.10290.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0444 (3)0.0476 (3)0.0295 (2)0.00397 (18)0.01067 (17)0.00348 (17)
O10.0718 (10)0.0527 (7)0.0358 (6)0.0085 (6)0.0066 (6)0.0080 (6)
O20.0492 (8)0.0830 (10)0.0502 (8)0.0168 (7)0.0209 (6)0.0030 (7)
O30.0599 (9)0.0774 (10)0.0420 (7)0.0218 (7)0.0096 (6)0.0121 (7)
N10.0510 (9)0.0497 (9)0.0341 (7)0.0033 (7)0.0079 (6)0.0005 (6)
N20.0407 (8)0.0491 (8)0.0312 (7)0.0066 (6)0.0094 (6)0.0011 (6)
C10.0667 (13)0.0620 (12)0.0363 (9)0.0135 (10)0.0015 (9)0.0055 (9)
C20.0470 (10)0.0429 (9)0.0467 (10)0.0085 (8)0.0014 (8)0.0028 (8)
C30.0547 (12)0.0492 (10)0.0555 (11)0.0010 (8)0.0081 (9)0.0034 (9)
C40.0772 (16)0.0596 (13)0.0634 (14)0.0104 (11)0.0167 (12)0.0071 (11)
C50.0672 (15)0.0670 (14)0.0917 (18)0.0175 (12)0.0319 (14)0.0142 (13)
C60.0467 (13)0.0666 (14)0.109 (2)0.0009 (10)0.0096 (13)0.0133 (14)
C70.0554 (13)0.0516 (11)0.0706 (14)0.0016 (9)0.0091 (11)0.0039 (10)
C80.0362 (9)0.0418 (8)0.0290 (7)0.0043 (6)0.0079 (6)0.0004 (6)
C90.0395 (10)0.0759 (13)0.0357 (9)0.0162 (9)0.0105 (7)0.0016 (9)
C100.0420 (10)0.0736 (12)0.0329 (9)0.0161 (9)0.0050 (7)0.0031 (9)
C110.0351 (8)0.0379 (8)0.0305 (7)0.0024 (6)0.0074 (6)0.0015 (6)
C120.0397 (9)0.0541 (10)0.0383 (9)0.0122 (8)0.0098 (7)0.0001 (8)
C130.0408 (10)0.0523 (10)0.0341 (8)0.0080 (8)0.0038 (7)0.0044 (7)
C140.0461 (10)0.0468 (9)0.0327 (8)0.0030 (8)0.0063 (7)0.0006 (7)
C150.0711 (14)0.0797 (15)0.0328 (9)0.0057 (11)0.0145 (9)0.0024 (9)
Geometric parameters (Å, º) top
S1—O11.4199 (13)C5—C61.363 (4)
S1—O21.4304 (14)C5—H50.9300
S1—N11.6105 (16)C6—C71.380 (3)
S1—C81.7647 (16)C6—H60.9300
O3—C141.217 (2)C7—H70.9300
N1—C11.466 (2)C8—C91.374 (2)
N1—H1N0.893 (9)C8—C131.373 (2)
N2—C141.346 (2)C9—C101.381 (2)
N2—C111.4064 (19)C9—H90.9300
N2—H2N0.899 (9)C10—C111.387 (2)
C1—C21.501 (3)C10—H100.9300
C1—H1A0.9700C11—C121.382 (2)
C1—H1B0.9700C12—C131.378 (2)
C2—C71.380 (3)C12—H120.9300
C2—C31.383 (3)C13—H130.9300
C3—C41.376 (3)C14—C151.501 (2)
C3—H30.9300C15—H15A0.9600
C4—C51.366 (3)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
O1—S1—O2119.90 (9)C7—C6—H6119.9
O1—S1—N1107.38 (8)C2—C7—C6120.8 (2)
O2—S1—N1105.41 (9)C2—C7—H7119.6
O1—S1—C8108.31 (8)C6—C7—H7119.6
O2—S1—C8106.21 (8)C9—C8—C13120.05 (15)
N1—S1—C8109.33 (8)C9—C8—S1119.43 (13)
C1—N1—S1120.86 (14)C13—C8—S1120.52 (13)
C1—N1—H1N116.3 (13)C8—C9—C10120.62 (16)
S1—N1—H1N112.0 (13)C8—C9—H9119.7
C14—N2—C11129.01 (14)C10—C9—H9119.7
C14—N2—H2N118.3 (13)C9—C10—C11119.62 (16)
C11—N2—H2N112.4 (13)C9—C10—H10120.2
N1—C1—C2116.46 (15)C11—C10—H10120.2
N1—C1—H1A108.2C12—C11—C10119.21 (15)
C2—C1—H1A108.2C12—C11—N2117.12 (14)
N1—C1—H1B108.2C10—C11—N2123.66 (15)
C2—C1—H1B108.2C13—C12—C11120.82 (15)
H1A—C1—H1B107.3C13—C12—H12119.6
C7—C2—C3118.3 (2)C11—C12—H12119.6
C7—C2—C1121.10 (19)C8—C13—C12119.68 (16)
C3—C2—C1120.57 (18)C8—C13—H13120.2
C4—C3—C2120.4 (2)C12—C13—H13120.2
C4—C3—H3119.8O3—C14—N2123.00 (16)
C2—C3—H3119.8O3—C14—C15121.99 (17)
C5—C4—C3120.7 (2)N2—C14—C15115.01 (16)
C5—C4—H4119.7C14—C15—H15A109.5
C3—C4—H4119.7C14—C15—H15B109.5
C6—C5—C4119.7 (2)H15A—C15—H15B109.5
C6—C5—H5120.2C14—C15—H15C109.5
C4—C5—H5120.2H15A—C15—H15C109.5
C5—C6—C7120.2 (2)H15B—C15—H15C109.5
C5—C6—H6119.9
O1—S1—N1—C135.74 (15)O1—S1—C8—C1311.08 (17)
O2—S1—N1—C1164.65 (14)O2—S1—C8—C13141.10 (15)
C8—S1—N1—C181.56 (15)N1—S1—C8—C13105.63 (15)
S1—N1—C1—C264.4 (2)C13—C8—C9—C100.8 (3)
N1—C1—C2—C7118.2 (2)S1—C8—C9—C10178.69 (16)
N1—C1—C2—C362.7 (2)C8—C9—C10—C110.1 (3)
C7—C2—C3—C40.4 (3)C9—C10—C11—C120.6 (3)
C1—C2—C3—C4179.41 (19)C9—C10—C11—N2179.85 (18)
C2—C3—C4—C50.1 (3)C14—N2—C11—C12169.65 (17)
C3—C4—C5—C60.5 (4)C14—N2—C11—C1011.1 (3)
C4—C5—C6—C70.7 (4)C10—C11—C12—C130.8 (3)
C3—C2—C7—C60.1 (3)N2—C11—C12—C13179.98 (16)
C1—C2—C7—C6179.14 (19)C9—C8—C13—C120.6 (3)
C5—C6—C7—C20.5 (3)S1—C8—C13—C12178.81 (14)
O1—S1—C8—C9169.47 (15)C11—C12—C13—C80.1 (3)
O2—S1—C8—C939.45 (17)C11—N2—C14—O33.2 (3)
N1—S1—C8—C973.82 (16)C11—N2—C14—C15177.27 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O3i0.89 (2)2.00 (2)2.877 (2)168 (2)
N2—H2n···O2ii0.90 (2)2.03 (2)2.921 (2)172 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H16N2O3S
Mr304.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.0646 (9), 13.6888 (14), 12.1651 (12)
β (°) 98.635 (5)
V3)1492.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.19 × 0.09 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.868, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
13777, 3577, 2689
Rint0.036
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.02
No. of reflections3577
No. of parameters197
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O3i0.894 (17)1.996 (17)2.877 (2)168.2 (16)
N2—H2n···O2ii0.898 (15)2.029 (15)2.921 (2)171.5 (16)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: iuklodhi@yahoo.com.

Acknowledgements

We are grateful to Mr Munawar Hussain, Engineering Cell GC University, Lahore, for providing support services to the Materials Chemistry Laboratory.

References

First citationBeate, G., Nadenik, P. & Wagner, H. (1998). WO Patent No. 9855481.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKazmierski, W. M., Aquino, C. J., Bifulco, N., Boros, E. E., Chauder, B. A., Chong, P. Y., Duan, M., Deanda, F. Jr, Koble, C. S., Mclean, E. W., Peckham, J. P., Perkins, A. C., Thompson, J. B. & Vanderwall, D. (2004). WO Patent No. 2004054974.  Google Scholar
First citationKhan, I. U., Mariam, I., Zia-ur-Rehman, M., Arif Sajjad, M. & Sharif, S. (2010). Acta Cryst. E66, o1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds