metal-organic compounds
Poly[[[aqua(2,2′-bipyridine-κ2N,N′)zinc(II)]-μ-2-nitroterephthalato-κ2O1:O4] monohydrate]
aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China, and bShandong Polytechnic Vocational College, Jining 272017, People's Republic of China
*Correspondence e-mail: syyang@xmu.edu.cn
In the title compound, {[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2O}n, the ZnII ion is square-pyramidally coordinated, and bridged by 2-nitro-terephthalate ligands, forming a chain running along [10]. Intramolecular hydrogen bonds are formed between the coordinated water molecules and the nitro O atoms. Adjacent chains are linked by hydrogen bonds between the coordinated water molecules and the O atoms of the monodentate carboxyl groups.
Related literature
Benzene polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal synthesis, see: Huang et al. (2008); Ma et al. (2005); Song et al. (2006); Wang et al. (2005); Yang et al. (2002, 2003a,b,c); Zhang et al. (2003, 2007); Zhou et al. (2009a) The substituents on the benzene polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers, see: Prajapati et al. (2009); Zhou et al. (2009b).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810023615/kp2266sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810023615/kp2266Isup2.hkl
The suspension of 2-nitro-terephthalic acid (0.042 g, 0.20 mmol) and 2,2'-bipyridine (0.033 g, 0.20 mmol) in H2O (10 mL) was vigorously stirred, aqueous solution of sodium hydroxide (2 mol/L) was slowly added until the pH value was adjusted to 7, and then ZnCl2 (0.027 g, 0.20 mmol) was added. The solution was placed in a 20 mL Teflon-lined vessel, heated to 453 K at the rate of 0.2 K/min, and kept at 453 K for 3 days, and then slowly cooled down to room temperature at the rate of 0.1 K/min. Yellow block crystals (0.035 g, yield 38%) were separated by filtration, washed with deionized water and dried in air. Elemental Analysis: C18H15N3O8Zn, found (calc.) C 47.23 (46.32), H 3.30 (3.24), N 9.18 (9.00).
The position of the water H atom were refined with O–H distance restrained to 0.85 Å, with their temperature factors set to 1.2 times those of the parent atoms. The aromatic H atoms were generated geometrically (C–H 0.93 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.2 times those of the parent atoms.
Benzne polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal syntheses. (Huang et al., 2008; Ma et al., 2005; Song et al., 2006; Wang et al., 2005; Yang et al., 2002; Yang et al., 2003a,b,c; Zhang et al., 2007; Zhang et al., 2003; Zhou et al., 2009a) In some of the researches, the substituents on the benzne polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers (Prajapati et al., 2009; Zhou et al., 2009b) In this paper, we would like to report a coordination polymer, {[Zn(ntp)(H2O)(2,2'-bpy)](H2O)}n, 1 (ntp = 2-nitro-terephthalate, 2,2'-bpy = 2,2'-bipyridine) synthesized by hydrothermal reaction.
In the structure of I, the
contains one ZnII ion, one ntp ligand, one coordinated water molecule, one 2,2'-bpy and one solvent water molecule. (Fig. 1, Table 1) The ZnII ion is in a distorted square pyramidal geometry, coordinated by two carboxylate oxygen atoms from two ntp briding ligands, one oxygen atom from water molecule and two nitrogen atoms from 2,2'-bpy. In ntp, the carboxyl in the ortho position of nitro substituent adopts monodentate coordination mode, and the dihedral angle between it and the benzene ring is 45.96 °; the other carboxyl adopts semi-chelating mode, the dihedral angle is 11.35 °. In the semi-chelating mode, one of the coordination bond is very long and weak and is almost neglectable. (Zn1-O3i = 2.859 Å, i x - 1, y + 1, z) The ZnII ion is bridged by ntp ligands to form a one dimensional chain running along [1 -1 0] direction (Fig. 2). Intramolecular hydrogen bonds are formed between the coordinated water molecules and the nitro oxygen atoms. Adjacent chains also form intermolecular hydrogen bonds between the coordinated water molecules and the oxygen atoms of the monodentate carboxyl groups (Table 2).Benzene polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal synthesis, see: Huang et al. (2008); Ma et al. (2005); Song et al. (2006); Wang et al. (2005); Yang et al. (2002, 2003a,b,c); Zhang et al. (2003, 2007); Zhou et al. (2009a) The substituents on the benzene polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers, see: Prajapati et al. (2009); Zhou et al. (2009b).
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The coordination environment of zinc ion in I with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. Hydrogen bonds are showm in green dashed line. Symmetry codes: (i) x - 1, y + 1, z. | |
Fig. 2. A perspective view of the one-dimensional chain of I. |
[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2O | Z = 2 |
Mr = 466.70 | F(000) = 476 |
Triclinic, P1 | Dx = 1.744 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5570 (5) Å | Cell parameters from 4213 reflections |
b = 9.1074 (5) Å | θ = 2.3–28.5° |
c = 12.2060 (7) Å | µ = 1.44 mm−1 |
α = 84.558 (1)° | T = 297 K |
β = 76.863 (1)° | Block, yellow |
γ = 73.692 (1)° | 0.41 × 0.36 × 0.33 mm |
V = 888.58 (9) Å3 |
Bruker SMART APEX area-detector diffractometer | 3915 independent reflections |
Radiation source: fine-focus sealed tube | 3739 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
φ and ω scan | θmax = 28.6°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −10→10 |
Tmin = 0.590, Tmax = 0.648 | k = −11→11 |
5326 measured reflections | l = −15→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0588P)2 + 0.302P] where P = (Fo2 + 2Fc2)/3 |
3915 reflections | (Δ/σ)max = 0.001 |
285 parameters | Δρmax = 0.65 e Å−3 |
4 restraints | Δρmin = −0.39 e Å−3 |
[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2O | γ = 73.692 (1)° |
Mr = 466.70 | V = 888.58 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.5570 (5) Å | Mo Kα radiation |
b = 9.1074 (5) Å | µ = 1.44 mm−1 |
c = 12.2060 (7) Å | T = 297 K |
α = 84.558 (1)° | 0.41 × 0.36 × 0.33 mm |
β = 76.863 (1)° |
Bruker SMART APEX area-detector diffractometer | 3915 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 3739 reflections with I > 2σ(I) |
Tmin = 0.590, Tmax = 0.648 | Rint = 0.028 |
5326 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 4 restraints |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.65 e Å−3 |
3915 reflections | Δρmin = −0.39 e Å−3 |
285 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.10197 (3) | 0.50965 (3) | 0.27688 (2) | 0.02770 (12) | |
O1 | 0.3177 (2) | 0.3927 (2) | 0.31591 (17) | 0.0375 (4) | |
O1W | −0.0424 (3) | 0.4071 (2) | 0.40216 (18) | 0.0373 (4) | |
H1A | −0.131 (3) | 0.463 (3) | 0.440 (3) | 0.043 (10)* | |
H1B | −0.003 (4) | 0.340 (3) | 0.448 (2) | 0.043 (10)* | |
O2 | 0.3290 (3) | 0.4075 (3) | 0.49422 (19) | 0.0493 (6) | |
O2W | 0.4501 (5) | 0.3808 (4) | 0.6976 (2) | 0.0700 (8) | |
H2A | 0.425 (6) | 0.386 (6) | 0.634 (2) | 0.084* | |
H2B | 0.547 (3) | 0.392 (6) | 0.673 (4) | 0.084* | |
O3 | 1.0362 (3) | −0.2228 (3) | 0.4031 (2) | 0.0547 (6) | |
O4 | 0.9149 (3) | −0.3030 (2) | 0.2882 (2) | 0.0460 (5) | |
O5 | 0.2308 (3) | 0.1110 (3) | 0.3586 (2) | 0.0519 (6) | |
O6 | 0.3909 (4) | 0.0225 (4) | 0.2029 (3) | 0.0690 (8) | |
N1 | 0.2312 (3) | 0.6052 (2) | 0.12874 (19) | 0.0302 (4) | |
N2 | 0.0999 (3) | 0.3715 (2) | 0.15004 (19) | 0.0306 (5) | |
N3 | 0.3663 (3) | 0.0691 (3) | 0.2970 (2) | 0.0368 (5) | |
C1 | 0.5136 (3) | 0.2006 (3) | 0.3915 (2) | 0.0258 (5) | |
C2 | 0.5128 (3) | 0.0739 (3) | 0.3376 (2) | 0.0274 (5) | |
C3 | 0.6443 (3) | −0.0554 (3) | 0.3223 (2) | 0.0317 (5) | |
H3A | 0.6396 | −0.1378 | 0.2847 | 0.038* | |
C4 | 0.7833 (3) | −0.0609 (3) | 0.3636 (2) | 0.0304 (5) | |
C5 | 0.7895 (3) | 0.0643 (3) | 0.4159 (2) | 0.0343 (6) | |
H5A | 0.8840 | 0.0619 | 0.4422 | 0.041* | |
C6 | 0.6559 (3) | 0.1934 (3) | 0.4294 (2) | 0.0318 (5) | |
H6A | 0.6621 | 0.2771 | 0.4648 | 0.038* | |
C7 | 0.3725 (3) | 0.3455 (3) | 0.4030 (2) | 0.0283 (5) | |
C8 | 0.9233 (4) | −0.2058 (3) | 0.3517 (2) | 0.0376 (6) | |
C9 | 0.2869 (4) | 0.7290 (3) | 0.1244 (3) | 0.0378 (6) | |
H9A | 0.2710 | 0.7795 | 0.1904 | 0.045* | |
C10 | 0.3665 (4) | 0.7837 (3) | 0.0258 (3) | 0.0440 (7) | |
H10A | 0.4041 | 0.8703 | 0.0248 | 0.053* | |
C11 | 0.3905 (4) | 0.7090 (4) | −0.0723 (3) | 0.0448 (7) | |
H11A | 0.4457 | 0.7438 | −0.1402 | 0.054* | |
C12 | 0.3314 (4) | 0.5822 (3) | −0.0682 (2) | 0.0395 (6) | |
H12A | 0.3454 | 0.5303 | −0.1333 | 0.047* | |
C13 | 0.2514 (3) | 0.5336 (3) | 0.0338 (2) | 0.0302 (5) | |
C14 | 0.1825 (3) | 0.3991 (3) | 0.0464 (2) | 0.0306 (5) | |
C15 | 0.1997 (4) | 0.3087 (4) | −0.0424 (3) | 0.0438 (7) | |
H15A | 0.2559 | 0.3304 | −0.1140 | 0.053* | |
C16 | 0.1324 (5) | 0.1859 (4) | −0.0232 (3) | 0.0510 (8) | |
H16A | 0.1440 | 0.1225 | −0.0816 | 0.061* | |
C17 | 0.0489 (4) | 0.1579 (4) | 0.0818 (3) | 0.0464 (7) | |
H17A | 0.0020 | 0.0757 | 0.0960 | 0.056* | |
C18 | 0.0344 (4) | 0.2527 (3) | 0.1669 (3) | 0.0389 (6) | |
H18A | −0.0231 | 0.2332 | 0.2387 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02659 (18) | 0.02438 (17) | 0.02802 (18) | 0.00097 (12) | −0.00622 (12) | −0.00332 (11) |
O1 | 0.0309 (10) | 0.0370 (10) | 0.0351 (10) | 0.0057 (8) | −0.0081 (8) | 0.0037 (8) |
O1W | 0.0307 (10) | 0.0347 (10) | 0.0358 (11) | 0.0018 (8) | 0.0006 (8) | 0.0006 (8) |
O2 | 0.0432 (12) | 0.0515 (12) | 0.0397 (12) | 0.0159 (10) | −0.0096 (10) | −0.0196 (10) |
O2W | 0.096 (2) | 0.088 (2) | 0.0453 (15) | −0.0528 (19) | −0.0214 (15) | 0.0056 (14) |
O3 | 0.0361 (12) | 0.0516 (13) | 0.0633 (16) | 0.0094 (10) | −0.0150 (11) | 0.0090 (11) |
O4 | 0.0421 (12) | 0.0311 (10) | 0.0485 (13) | 0.0097 (9) | 0.0000 (10) | −0.0035 (9) |
O5 | 0.0312 (11) | 0.0619 (14) | 0.0611 (15) | −0.0123 (10) | −0.0113 (10) | 0.0092 (12) |
O6 | 0.0621 (17) | 0.0779 (18) | 0.0722 (18) | −0.0005 (14) | −0.0334 (15) | −0.0364 (15) |
N1 | 0.0317 (11) | 0.0271 (10) | 0.0298 (11) | −0.0043 (8) | −0.0068 (9) | −0.0017 (8) |
N2 | 0.0302 (11) | 0.0288 (10) | 0.0323 (11) | −0.0032 (8) | −0.0101 (9) | −0.0032 (8) |
N3 | 0.0367 (13) | 0.0285 (11) | 0.0477 (14) | −0.0062 (9) | −0.0173 (11) | 0.0000 (10) |
C1 | 0.0237 (11) | 0.0238 (10) | 0.0248 (11) | 0.0002 (9) | −0.0033 (9) | 0.0002 (9) |
C2 | 0.0265 (12) | 0.0262 (11) | 0.0287 (12) | −0.0051 (9) | −0.0073 (9) | 0.0015 (9) |
C3 | 0.0350 (14) | 0.0240 (11) | 0.0329 (13) | −0.0027 (10) | −0.0055 (11) | −0.0049 (9) |
C4 | 0.0285 (12) | 0.0254 (11) | 0.0293 (12) | 0.0010 (9) | −0.0016 (10) | 0.0027 (9) |
C5 | 0.0259 (12) | 0.0378 (13) | 0.0365 (14) | −0.0012 (10) | −0.0106 (11) | 0.0001 (11) |
C6 | 0.0300 (13) | 0.0291 (12) | 0.0356 (14) | −0.0027 (10) | −0.0103 (11) | −0.0057 (10) |
C7 | 0.0232 (11) | 0.0246 (11) | 0.0319 (13) | −0.0003 (9) | −0.0028 (10) | −0.0009 (9) |
C8 | 0.0333 (14) | 0.0281 (12) | 0.0368 (15) | 0.0039 (11) | 0.0036 (11) | 0.0064 (11) |
C9 | 0.0405 (15) | 0.0309 (13) | 0.0417 (16) | −0.0078 (11) | −0.0087 (12) | −0.0047 (11) |
C10 | 0.0459 (17) | 0.0334 (14) | 0.0508 (18) | −0.0131 (13) | −0.0053 (14) | 0.0033 (12) |
C11 | 0.0468 (17) | 0.0478 (17) | 0.0371 (16) | −0.0145 (14) | −0.0038 (13) | 0.0054 (13) |
C12 | 0.0451 (16) | 0.0413 (15) | 0.0301 (14) | −0.0093 (12) | −0.0055 (12) | −0.0035 (11) |
C13 | 0.0278 (12) | 0.0287 (11) | 0.0310 (13) | −0.0008 (10) | −0.0074 (10) | −0.0037 (10) |
C14 | 0.0297 (12) | 0.0288 (11) | 0.0317 (13) | −0.0017 (10) | −0.0096 (10) | −0.0039 (10) |
C15 | 0.0501 (18) | 0.0452 (16) | 0.0371 (15) | −0.0095 (14) | −0.0110 (13) | −0.0125 (13) |
C16 | 0.063 (2) | 0.0447 (17) | 0.053 (2) | −0.0159 (16) | −0.0197 (17) | −0.0158 (14) |
C17 | 0.0522 (19) | 0.0402 (15) | 0.0542 (19) | −0.0177 (14) | −0.0179 (15) | −0.0055 (14) |
C18 | 0.0406 (15) | 0.0386 (14) | 0.0385 (15) | −0.0108 (12) | −0.0105 (12) | 0.0001 (12) |
Zn1—O1 | 1.9922 (19) | C3—C4 | 1.381 (4) |
Zn1—O1W | 2.063 (2) | C3—H3A | 0.9300 |
Zn1—O4i | 1.976 (2) | C4—C5 | 1.377 (4) |
Zn1—N1 | 2.141 (2) | C4—C8 | 1.506 (3) |
Zn1—N2 | 2.091 (2) | C5—C6 | 1.383 (4) |
O1—C7 | 1.249 (3) | C5—H5A | 0.9300 |
O1W—H1A | 0.85 (3) | C6—H6A | 0.9300 |
O1W—H1B | 0.84 (3) | C9—C10 | 1.366 (4) |
O2—C7 | 1.230 (3) | C9—H9A | 0.9300 |
O2W—H2A | 0.85 (3) | C10—C11 | 1.379 (5) |
O2W—H2B | 0.85 (3) | C10—H10A | 0.9300 |
O3—C8 | 1.234 (4) | C11—C12 | 1.377 (4) |
O4—C8 | 1.257 (4) | C11—H11A | 0.9300 |
O4—Zn1ii | 1.976 (2) | C12—C13 | 1.376 (4) |
O5—N3 | 1.210 (3) | C12—H12A | 0.9300 |
O6—N3 | 1.215 (3) | C13—C14 | 1.483 (4) |
N1—C9 | 1.334 (4) | C14—C15 | 1.380 (4) |
N1—C13 | 1.337 (3) | C15—C16 | 1.374 (5) |
N2—C18 | 1.332 (4) | C15—H15A | 0.9300 |
N2—C14 | 1.340 (4) | C16—C17 | 1.357 (5) |
N3—C2 | 1.461 (3) | C16—H16A | 0.9300 |
C1—C6 | 1.381 (4) | C17—C18 | 1.375 (4) |
C1—C2 | 1.384 (3) | C17—H17A | 0.9300 |
C1—C7 | 1.510 (3) | C18—H18A | 0.9300 |
C2—C3 | 1.375 (3) | ||
O1—Zn1—O1W | 95.05 (8) | C1—C6—C5 | 121.3 (2) |
O1—Zn1—N1 | 90.59 (8) | C1—C6—H6A | 119.3 |
O1—Zn1—N2 | 98.69 (9) | C5—C6—H6A | 119.3 |
O1W—Zn1—N1 | 170.66 (9) | O2—C7—O1 | 127.0 (2) |
O1W—Zn1—N2 | 94.61 (9) | O2—C7—C1 | 117.3 (2) |
O4i—Zn1—O1 | 149.63 (10) | O1—C7—C1 | 115.6 (2) |
O4i—Zn1—O1W | 89.11 (9) | O3—C8—O4 | 124.5 (3) |
O4i—Zn1—N1 | 89.79 (9) | O3—C8—C4 | 119.8 (3) |
O4i—Zn1—N2 | 110.97 (10) | O4—C8—C4 | 115.8 (3) |
N1—Zn1—N2 | 77.14 (9) | N1—C9—C10 | 121.9 (3) |
C7—O1—Zn1 | 137.57 (18) | N1—C9—H9A | 119.1 |
Zn1—O1W—H1A | 118 (2) | C10—C9—H9A | 119.1 |
Zn1—O1W—H1B | 124 (2) | C9—C10—C11 | 119.2 (3) |
H1A—O1W—H1B | 106 (3) | C9—C10—H10A | 120.4 |
H2A—O2W—H2B | 96 (5) | C11—C10—H10A | 120.4 |
C8—O4—Zn1ii | 113.6 (2) | C12—C11—C10 | 119.0 (3) |
C9—N1—C13 | 119.3 (2) | C12—C11—H11A | 120.5 |
C9—N1—Zn1 | 125.6 (2) | C10—C11—H11A | 120.5 |
C13—N1—Zn1 | 115.06 (17) | C13—C12—C11 | 118.9 (3) |
C18—N2—C14 | 118.6 (2) | C13—C12—H12A | 120.6 |
C18—N2—Zn1 | 124.7 (2) | C11—C12—H12A | 120.6 |
C14—N2—Zn1 | 116.48 (18) | N1—C13—C12 | 121.7 (3) |
O5—N3—O6 | 124.9 (3) | N1—C13—C14 | 115.5 (2) |
O5—N3—C2 | 118.3 (3) | C12—C13—C14 | 122.8 (2) |
O6—N3—C2 | 116.7 (3) | N2—C14—C15 | 121.7 (3) |
C6—C1—C2 | 116.8 (2) | N2—C14—C13 | 115.6 (2) |
C6—C1—C7 | 120.2 (2) | C15—C14—C13 | 122.7 (3) |
C2—C1—C7 | 122.9 (2) | C16—C15—C14 | 118.9 (3) |
C3—C2—C1 | 123.1 (2) | C16—C15—H15A | 120.5 |
C3—C2—N3 | 116.1 (2) | C14—C15—H15A | 120.5 |
C1—C2—N3 | 120.8 (2) | C17—C16—C15 | 119.4 (3) |
C2—C3—C4 | 118.9 (2) | C17—C16—H16A | 120.3 |
C2—C3—H3A | 120.6 | C15—C16—H16A | 120.3 |
C4—C3—H3A | 120.6 | C16—C17—C18 | 119.2 (3) |
C5—C4—C3 | 119.6 (2) | C16—C17—H17A | 120.4 |
C5—C4—C8 | 121.8 (3) | C18—C17—H17A | 120.4 |
C3—C4—C8 | 118.6 (3) | N2—C18—C17 | 122.3 (3) |
C4—C5—C6 | 120.4 (3) | N2—C18—H18A | 118.9 |
C4—C5—H5A | 119.8 | C17—C18—H18A | 118.9 |
C6—C5—H5A | 119.8 | ||
O4i—Zn1—O1—C7 | 58.0 (4) | C6—C1—C7—O2 | −46.1 (4) |
O1W—Zn1—O1—C7 | −38.9 (3) | C2—C1—C7—O2 | 137.9 (3) |
N2—Zn1—O1—C7 | −134.3 (3) | C6—C1—C7—O1 | 130.8 (3) |
N1—Zn1—O1—C7 | 148.6 (3) | C2—C1—C7—O1 | −45.1 (3) |
O4i—Zn1—N1—C9 | 64.9 (2) | Zn1ii—O4—C8—O3 | 0.0 (4) |
O1—Zn1—N1—C9 | −84.8 (2) | Zn1ii—O4—C8—C4 | −179.80 (17) |
N2—Zn1—N1—C9 | 176.5 (2) | C5—C4—C8—O3 | 10.4 (4) |
O4i—Zn1—N1—C13 | −113.31 (19) | C3—C4—C8—O3 | −168.5 (3) |
O1—Zn1—N1—C13 | 97.06 (19) | C5—C4—C8—O4 | −169.8 (3) |
N2—Zn1—N1—C13 | −1.72 (18) | C3—C4—C8—O4 | 11.3 (4) |
O4i—Zn1—N2—C18 | −96.8 (2) | C13—N1—C9—C10 | −1.0 (4) |
O1—Zn1—N2—C18 | 89.8 (2) | Zn1—N1—C9—C10 | −179.1 (2) |
O1W—Zn1—N2—C18 | −6.0 (2) | N1—C9—C10—C11 | −0.1 (5) |
N1—Zn1—N2—C18 | 178.4 (2) | C9—C10—C11—C12 | 0.8 (5) |
O4i—Zn1—N2—C14 | 88.66 (19) | C10—C11—C12—C13 | −0.4 (5) |
O1—Zn1—N2—C14 | −84.70 (19) | C9—N1—C13—C12 | 1.4 (4) |
O1W—Zn1—N2—C14 | 179.47 (18) | Zn1—N1—C13—C12 | 179.7 (2) |
N1—Zn1—N2—C14 | 3.91 (18) | C9—N1—C13—C14 | −178.8 (2) |
C6—C1—C2—C3 | 0.8 (4) | Zn1—N1—C13—C14 | −0.5 (3) |
C7—C1—C2—C3 | 176.8 (2) | C11—C12—C13—N1 | −0.7 (4) |
C6—C1—C2—N3 | 178.4 (2) | C11—C12—C13—C14 | 179.5 (3) |
C7—C1—C2—N3 | −5.5 (4) | C18—N2—C14—C15 | 0.5 (4) |
O5—N3—C2—C3 | 132.7 (3) | Zn1—N2—C14—C15 | 175.4 (2) |
O6—N3—C2—C3 | −47.2 (4) | C18—N2—C14—C13 | 179.7 (2) |
O5—N3—C2—C1 | −45.1 (3) | Zn1—N2—C14—C13 | −5.4 (3) |
O6—N3—C2—C1 | 135.0 (3) | N1—C13—C14—N2 | 3.8 (3) |
C1—C2—C3—C4 | 0.8 (4) | C12—C13—C14—N2 | −176.4 (2) |
N3—C2—C3—C4 | −176.9 (2) | N1—C13—C14—C15 | −176.9 (3) |
C2—C3—C4—C5 | −2.0 (4) | C12—C13—C14—C15 | 2.9 (4) |
C2—C3—C4—C8 | 177.0 (2) | N2—C14—C15—C16 | −1.0 (5) |
C3—C4—C5—C6 | 1.5 (4) | C13—C14—C15—C16 | 179.8 (3) |
C8—C4—C5—C6 | −177.4 (2) | C14—C15—C16—C17 | 0.9 (5) |
C2—C1—C6—C5 | −1.2 (4) | C15—C16—C17—C18 | −0.4 (5) |
C7—C1—C6—C5 | −177.4 (2) | C14—N2—C18—C17 | 0.1 (4) |
C4—C5—C6—C1 | 0.1 (4) | Zn1—N2—C18—C17 | −174.4 (2) |
Zn1—O1—C7—O2 | −33.2 (5) | C16—C17—C18—N2 | −0.1 (5) |
Zn1—O1—C7—C1 | 150.2 (2) |
Symmetry codes: (i) x−1, y+1, z; (ii) x+1, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O2iii | 0.85 (3) | 1.83 (3) | 2.670 (3) | 174 (4) |
O1W—H1B···O3iv | 0.84 (3) | 2.02 (2) | 2.779 (3) | 150 (3) |
O1W—H1B···O5 | 0.84 (3) | 2.58 (3) | 3.031 (3) | 115 (3) |
O2W—H2A···O2 | 0.85 (3) | 2.03 (3) | 2.865 (4) | 171 (5) |
O2W—H2B···O1v | 0.85 (3) | 2.57 (4) | 3.213 (4) | 134 (4) |
Symmetry codes: (iii) −x, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C8H3NO6)(C10H8N2)(H2O)]·H2O |
Mr | 466.70 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 297 |
a, b, c (Å) | 8.5570 (5), 9.1074 (5), 12.2060 (7) |
α, β, γ (°) | 84.558 (1), 76.863 (1), 73.692 (1) |
V (Å3) | 888.58 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.44 |
Crystal size (mm) | 0.41 × 0.36 × 0.33 |
Data collection | |
Diffractometer | Bruker SMART APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.590, 0.648 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5326, 3915, 3739 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.674 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.119, 1.10 |
No. of reflections | 3915 |
No. of parameters | 285 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.65, −0.39 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).
Zn1—O1 | 1.9922 (19) | Zn1—N1 | 2.141 (2) |
Zn1—O1W | 2.063 (2) | Zn1—N2 | 2.091 (2) |
Zn1—O4i | 1.976 (2) | ||
O1—Zn1—O1W | 95.05 (8) | O4i—Zn1—O1 | 149.63 (10) |
O1—Zn1—N1 | 90.59 (8) | O4i—Zn1—O1W | 89.11 (9) |
O1—Zn1—N2 | 98.69 (9) | O4i—Zn1—N1 | 89.79 (9) |
O1W—Zn1—N1 | 170.66 (9) | O4i—Zn1—N2 | 110.97 (10) |
O1W—Zn1—N2 | 94.61 (9) | N1—Zn1—N2 | 77.14 (9) |
Symmetry code: (i) x−1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O2ii | 0.85 (3) | 1.83 (3) | 2.670 (3) | 174 (4) |
O1W—H1B···O3iii | 0.84 (3) | 2.02 (2) | 2.779 (3) | 150 (3) |
O1W—H1B···O5 | 0.84 (3) | 2.58 (3) | 3.031 (3) | 115 (3) |
O2W—H2A···O2 | 0.85 (3) | 2.03 (3) | 2.865 (4) | 171 (5) |
O2W—H2B···O1iv | 0.85 (3) | 2.57 (4) | 3.213 (4) | 134 (4) |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
We are grateful for financial support by the National Natural Science Foundation of China (grant No. 20471049) and Xiamen University.
References
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2002). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Huang, R.-Y., Kong, X.-J. & Liu, G.-X. (2008). J. Inorg. Organomet. Polym. 18, 304–308. Web of Science CSD CrossRef CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Ma, A.-Q., Zhu, L.-G. & Ng, S. W. (2005). Acta Cryst. E61, m483–m484. CrossRef IUCr Journals Google Scholar
Prajapati, R., Mishra, L., Kimura, K. & Raghavaiah, P. (2009). Polyhedron, 28, 600–608. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, Y.-S., Yan, B. & Chen, Z.-X. (2006). Appl. Organomet. Chem. 20, 44–50. Web of Science CSD CrossRef CAS Google Scholar
Wang, X.-L., Liu, F.-C., Li, J.-R. & Ng, S. W. (2005). Acta Cryst. E61, m123–m125. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, S.-Y., Hu, J.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003a). Appl. Organomet. Chem. 17, 815–816. Web of Science CSD CrossRef CAS Google Scholar
Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003b). Acta Cryst. E59, m731–m733. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003c). Appl. Organomet. Chem. 17, 877–878. Web of Science CSD CrossRef CAS Google Scholar
Yang, S.-Y., Long, L.-S., Tao, J., Huang, R.-B. & Zheng, L.-S. (2002). Main Group. Met. Chem. 25, 699–700. CAS Google Scholar
Zhang, K.-L., Gao, H.-Y., Pan, Z.-C., Liang, W. & Diao, G.-W. (2007). Polyhedron, 26, 5177–5184. Web of Science CSD CrossRef CAS Google Scholar
Zhang, X.-M., Tong, M.-L., Gong, M.-L. & Chen, X.-M. (2003). Eur. J. Inorg. Chem. pp. 138–142. CSD CrossRef Google Scholar
Zhou, D.-S., Sun, D., Yang, S.-Y. & Huang, R.-B. (2009a). Acta Cryst. E65, m1078–m1079. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhou, D.-S., Wang, F.-K., Yang, S.-Y., Xie, Z.-X. & Huang, R.-B. (2009b). CrystEngComm, 11, 2548–2554. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzne polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal syntheses. (Huang et al., 2008; Ma et al., 2005; Song et al., 2006; Wang et al., 2005; Yang et al., 2002; Yang et al., 2003a,b,c; Zhang et al., 2007; Zhang et al., 2003; Zhou et al., 2009a) In some of the researches, the substituents on the benzne polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers (Prajapati et al., 2009; Zhou et al., 2009b) In this paper, we would like to report a coordination polymer, {[Zn(ntp)(H2O)(2,2'-bpy)](H2O)}n, 1 (ntp = 2-nitro-terephthalate, 2,2'-bpy = 2,2'-bipyridine) synthesized by hydrothermal reaction.
In the structure of I, the asymmetric unit contains one ZnII ion, one ntp ligand, one coordinated water molecule, one 2,2'-bpy and one solvent water molecule. (Fig. 1, Table 1) The ZnII ion is in a distorted square pyramidal geometry, coordinated by two carboxylate oxygen atoms from two ntp briding ligands, one oxygen atom from water molecule and two nitrogen atoms from 2,2'-bpy. In ntp, the carboxyl in the ortho position of nitro substituent adopts monodentate coordination mode, and the dihedral angle between it and the benzene ring is 45.96 °; the other carboxyl adopts semi-chelating mode, the dihedral angle is 11.35 °. In the semi-chelating mode, one of the coordination bond is very long and weak and is almost neglectable. (Zn1-O3i = 2.859 Å, i x - 1, y + 1, z) The ZnII ion is bridged by ntp ligands to form a one dimensional chain running along [1 -1 0] direction (Fig. 2). Intramolecular hydrogen bonds are formed between the coordinated water molecules and the nitro oxygen atoms. Adjacent chains also form intermolecular hydrogen bonds between the coordinated water molecules and the oxygen atoms of the monodentate carboxyl groups (Table 2).