metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[[aqua(2,2′-bi­pyridine-κ2N,N′)zinc(II)]-μ-2-nitroterephthalato-κ2O1:O4] monohydrate]

aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China, and bShandong Polytechnic Vocational College, Jining 272017, People's Republic of China
*Correspondence e-mail: syyang@xmu.edu.cn

(Received 10 June 2010; accepted 18 June 2010; online 21 July 2010)

In the title compound, {[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2O}n, the ZnII ion is square-pyramidally coordinated, and bridged by 2-nitro-terephthalate ligands, forming a chain running along [1[\overline{1}]0]. Intra­molecular hydrogen bonds are formed between the coordinated water mol­ecules and the nitro O atoms. Adjacent chains are linked by hydrogen bonds between the coordinated water mol­ecules and the O atoms of the monodentate carboxyl groups.

Related literature

Benzene polycarb­oxy­lic acids and nitro­gen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydro­thermal synthesis, see: Huang et al. (2008[Huang, R.-Y., Kong, X.-J. & Liu, G.-X. (2008). J. Inorg. Organomet. Polym. 18, 304-308.]); Ma et al. (2005[Ma, A.-Q., Zhu, L.-G. & Ng, S. W. (2005). Acta Cryst. E61, m483-m484.]); Song et al. (2006[Song, Y.-S., Yan, B. & Chen, Z.-X. (2006). Appl. Organomet. Chem. 20, 44-50.]); Wang et al. (2005[Wang, X.-L., Liu, F.-C., Li, J.-R. & Ng, S. W. (2005). Acta Cryst. E61, m123-m125.]); Yang et al. (2002[Yang, S.-Y., Long, L.-S., Tao, J., Huang, R.-B. & Zheng, L.-S. (2002). Main Group. Met. Chem. 25, 699-700.], 2003a[Yang, S.-Y., Hu, J.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003a). Appl. Organomet. Chem. 17, 815-816.],b[Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003b). Acta Cryst. E59, m731-m733.],c[Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003c). Appl. Organomet. Chem. 17, 877-878.]); Zhang et al. (2003[Zhang, X.-M., Tong, M.-L., Gong, M.-L. & Chen, X.-M. (2003). Eur. J. Inorg. Chem. pp. 138-142.], 2007[Zhang, K.-L., Gao, H.-Y., Pan, Z.-C., Liang, W. & Diao, G.-W. (2007). Polyhedron, 26, 5177-5184.]); Zhou et al. (2009a[Zhou, D.-S., Sun, D., Yang, S.-Y. & Huang, R.-B. (2009a). Acta Cryst. E65, m1078-m1079.]) The substituents on the benzene polycarb­oxy­lic acids have been found to play important roles in determining the structures of the coordination polymers, see: Prajapati et al. (2009[Prajapati, R., Mishra, L., Kimura, K. & Raghavaiah, P. (2009). Polyhedron, 28, 600-608.]); Zhou et al. (2009b[Zhou, D.-S., Wang, F.-K., Yang, S.-Y., Xie, Z.-X. & Huang, R.-B. (2009b). CrystEngComm, 11, 2548-2554.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H3NO6)(C10H8N2)(H2O)]·H2O

  • Mr = 466.70

  • Triclinic, [P \overline 1]

  • a = 8.5570 (5) Å

  • b = 9.1074 (5) Å

  • c = 12.2060 (7) Å

  • α = 84.558 (1)°

  • β = 76.863 (1)°

  • γ = 73.692 (1)°

  • V = 888.58 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 297 K

  • 0.41 × 0.36 × 0.33 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.590, Tmax = 0.648

  • 5326 measured reflections

  • 3915 independent reflections

  • 3739 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.10

  • 3915 reflections

  • 285 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.9922 (19)
Zn1—O1W 2.063 (2)
Zn1—O4i 1.976 (2)
Zn1—N1 2.141 (2)
Zn1—N2 2.091 (2)
O1—Zn1—O1W 95.05 (8)
O1—Zn1—N1 90.59 (8)
O1—Zn1—N2 98.69 (9)
O1W—Zn1—N1 170.66 (9)
O1W—Zn1—N2 94.61 (9)
O4i—Zn1—O1 149.63 (10)
O4i—Zn1—O1W 89.11 (9)
O4i—Zn1—N1 89.79 (9)
O4i—Zn1—N2 110.97 (10)
N1—Zn1—N2 77.14 (9)
Symmetry code: (i) x-1, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2ii 0.85 (3) 1.83 (3) 2.670 (3) 174 (4)
O1W—H1B⋯O3iii 0.84 (3) 2.02 (2) 2.779 (3) 150 (3)
O1W—H1B⋯O5 0.84 (3) 2.58 (3) 3.031 (3) 115 (3)
O2W—H2A⋯O2 0.85 (3) 2.03 (3) 2.865 (4) 171 (5)
O2W—H2B⋯O1iv 0.85 (3) 2.57 (4) 3.213 (4) 134 (4)
Symmetry codes: (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzne polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal syntheses. (Huang et al., 2008; Ma et al., 2005; Song et al., 2006; Wang et al., 2005; Yang et al., 2002; Yang et al., 2003a,b,c; Zhang et al., 2007; Zhang et al., 2003; Zhou et al., 2009a) In some of the researches, the substituents on the benzne polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers (Prajapati et al., 2009; Zhou et al., 2009b) In this paper, we would like to report a coordination polymer, {[Zn(ntp)(H2O)(2,2'-bpy)](H2O)}n, 1 (ntp = 2-nitro-terephthalate, 2,2'-bpy = 2,2'-bipyridine) synthesized by hydrothermal reaction.

In the structure of I, the asymmetric unit contains one ZnII ion, one ntp ligand, one coordinated water molecule, one 2,2'-bpy and one solvent water molecule. (Fig. 1, Table 1) The ZnII ion is in a distorted square pyramidal geometry, coordinated by two carboxylate oxygen atoms from two ntp briding ligands, one oxygen atom from water molecule and two nitrogen atoms from 2,2'-bpy. In ntp, the carboxyl in the ortho position of nitro substituent adopts monodentate coordination mode, and the dihedral angle between it and the benzene ring is 45.96 °; the other carboxyl adopts semi-chelating mode, the dihedral angle is 11.35 °. In the semi-chelating mode, one of the coordination bond is very long and weak and is almost neglectable. (Zn1-O3i = 2.859 Å, i x - 1, y + 1, z) The ZnII ion is bridged by ntp ligands to form a one dimensional chain running along [1 -1 0] direction (Fig. 2). Intramolecular hydrogen bonds are formed between the coordinated water molecules and the nitro oxygen atoms. Adjacent chains also form intermolecular hydrogen bonds between the coordinated water molecules and the oxygen atoms of the monodentate carboxyl groups (Table 2).

Related literature top

Benzene polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal synthesis, see: Huang et al. (2008); Ma et al. (2005); Song et al. (2006); Wang et al. (2005); Yang et al. (2002, 2003a,b,c); Zhang et al. (2003, 2007); Zhou et al. (2009a) The substituents on the benzene polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers, see: Prajapati et al. (2009); Zhou et al. (2009b).

Experimental top

The suspension of 2-nitro-terephthalic acid (0.042 g, 0.20 mmol) and 2,2'-bipyridine (0.033 g, 0.20 mmol) in H2O (10 mL) was vigorously stirred, aqueous solution of sodium hydroxide (2 mol/L) was slowly added until the pH value was adjusted to 7, and then ZnCl2 (0.027 g, 0.20 mmol) was added. The solution was placed in a 20 mL Teflon-lined vessel, heated to 453 K at the rate of 0.2 K/min, and kept at 453 K for 3 days, and then slowly cooled down to room temperature at the rate of 0.1 K/min. Yellow block crystals (0.035 g, yield 38%) were separated by filtration, washed with deionized water and dried in air. Elemental Analysis: C18H15N3O8Zn, found (calc.) C 47.23 (46.32), H 3.30 (3.24), N 9.18 (9.00).

Refinement top

The position of the water H atom were refined with O–H distance restrained to 0.85 Å, with their temperature factors set to 1.2 times those of the parent atoms. The aromatic H atoms were generated geometrically (C–H 0.93 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.2 times those of the parent atoms.

Structure description top

Benzne polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal syntheses. (Huang et al., 2008; Ma et al., 2005; Song et al., 2006; Wang et al., 2005; Yang et al., 2002; Yang et al., 2003a,b,c; Zhang et al., 2007; Zhang et al., 2003; Zhou et al., 2009a) In some of the researches, the substituents on the benzne polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers (Prajapati et al., 2009; Zhou et al., 2009b) In this paper, we would like to report a coordination polymer, {[Zn(ntp)(H2O)(2,2'-bpy)](H2O)}n, 1 (ntp = 2-nitro-terephthalate, 2,2'-bpy = 2,2'-bipyridine) synthesized by hydrothermal reaction.

In the structure of I, the asymmetric unit contains one ZnII ion, one ntp ligand, one coordinated water molecule, one 2,2'-bpy and one solvent water molecule. (Fig. 1, Table 1) The ZnII ion is in a distorted square pyramidal geometry, coordinated by two carboxylate oxygen atoms from two ntp briding ligands, one oxygen atom from water molecule and two nitrogen atoms from 2,2'-bpy. In ntp, the carboxyl in the ortho position of nitro substituent adopts monodentate coordination mode, and the dihedral angle between it and the benzene ring is 45.96 °; the other carboxyl adopts semi-chelating mode, the dihedral angle is 11.35 °. In the semi-chelating mode, one of the coordination bond is very long and weak and is almost neglectable. (Zn1-O3i = 2.859 Å, i x - 1, y + 1, z) The ZnII ion is bridged by ntp ligands to form a one dimensional chain running along [1 -1 0] direction (Fig. 2). Intramolecular hydrogen bonds are formed between the coordinated water molecules and the nitro oxygen atoms. Adjacent chains also form intermolecular hydrogen bonds between the coordinated water molecules and the oxygen atoms of the monodentate carboxyl groups (Table 2).

Benzene polycarboxylic acids and nitrogen hetero aromatic ligands have been used to construct ZnII coordination polymers by hydrothermal synthesis, see: Huang et al. (2008); Ma et al. (2005); Song et al. (2006); Wang et al. (2005); Yang et al. (2002, 2003a,b,c); Zhang et al. (2003, 2007); Zhou et al. (2009a) The substituents on the benzene polycarboxylic acids have been found to play important roles in determining the structures of the coordination polymers, see: Prajapati et al. (2009); Zhou et al. (2009b).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of zinc ion in I with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. Hydrogen bonds are showm in green dashed line. Symmetry codes: (i) x - 1, y + 1, z.
[Figure 2] Fig. 2. A perspective view of the one-dimensional chain of I.
Poly[[[aqua(2,2'-bipyridine-κ2N,N')zinc(II)]-µ- 2-nitroterephthalato-κ2O1:O4] monohydrate] top
Crystal data top
[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2OZ = 2
Mr = 466.70F(000) = 476
Triclinic, P1Dx = 1.744 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5570 (5) ÅCell parameters from 4213 reflections
b = 9.1074 (5) Åθ = 2.3–28.5°
c = 12.2060 (7) ŵ = 1.44 mm1
α = 84.558 (1)°T = 297 K
β = 76.863 (1)°Block, yellow
γ = 73.692 (1)°0.41 × 0.36 × 0.33 mm
V = 888.58 (9) Å3
Data collection top
Bruker SMART APEX area-detector
diffractometer
3915 independent reflections
Radiation source: fine-focus sealed tube3739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scanθmax = 28.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.590, Tmax = 0.648k = 1111
5326 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.302P]
where P = (Fo2 + 2Fc2)/3
3915 reflections(Δ/σ)max = 0.001
285 parametersΔρmax = 0.65 e Å3
4 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2Oγ = 73.692 (1)°
Mr = 466.70V = 888.58 (9) Å3
Triclinic, P1Z = 2
a = 8.5570 (5) ÅMo Kα radiation
b = 9.1074 (5) ŵ = 1.44 mm1
c = 12.2060 (7) ÅT = 297 K
α = 84.558 (1)°0.41 × 0.36 × 0.33 mm
β = 76.863 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
3915 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3739 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 0.648Rint = 0.028
5326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0414 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.65 e Å3
3915 reflectionsΔρmin = 0.39 e Å3
285 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.10197 (3)0.50965 (3)0.27688 (2)0.02770 (12)
O10.3177 (2)0.3927 (2)0.31591 (17)0.0375 (4)
O1W0.0424 (3)0.4071 (2)0.40216 (18)0.0373 (4)
H1A0.131 (3)0.463 (3)0.440 (3)0.043 (10)*
H1B0.003 (4)0.340 (3)0.448 (2)0.043 (10)*
O20.3290 (3)0.4075 (3)0.49422 (19)0.0493 (6)
O2W0.4501 (5)0.3808 (4)0.6976 (2)0.0700 (8)
H2A0.425 (6)0.386 (6)0.634 (2)0.084*
H2B0.547 (3)0.392 (6)0.673 (4)0.084*
O31.0362 (3)0.2228 (3)0.4031 (2)0.0547 (6)
O40.9149 (3)0.3030 (2)0.2882 (2)0.0460 (5)
O50.2308 (3)0.1110 (3)0.3586 (2)0.0519 (6)
O60.3909 (4)0.0225 (4)0.2029 (3)0.0690 (8)
N10.2312 (3)0.6052 (2)0.12874 (19)0.0302 (4)
N20.0999 (3)0.3715 (2)0.15004 (19)0.0306 (5)
N30.3663 (3)0.0691 (3)0.2970 (2)0.0368 (5)
C10.5136 (3)0.2006 (3)0.3915 (2)0.0258 (5)
C20.5128 (3)0.0739 (3)0.3376 (2)0.0274 (5)
C30.6443 (3)0.0554 (3)0.3223 (2)0.0317 (5)
H3A0.63960.13780.28470.038*
C40.7833 (3)0.0609 (3)0.3636 (2)0.0304 (5)
C50.7895 (3)0.0643 (3)0.4159 (2)0.0343 (6)
H5A0.88400.06190.44220.041*
C60.6559 (3)0.1934 (3)0.4294 (2)0.0318 (5)
H6A0.66210.27710.46480.038*
C70.3725 (3)0.3455 (3)0.4030 (2)0.0283 (5)
C80.9233 (4)0.2058 (3)0.3517 (2)0.0376 (6)
C90.2869 (4)0.7290 (3)0.1244 (3)0.0378 (6)
H9A0.27100.77950.19040.045*
C100.3665 (4)0.7837 (3)0.0258 (3)0.0440 (7)
H10A0.40410.87030.02480.053*
C110.3905 (4)0.7090 (4)0.0723 (3)0.0448 (7)
H11A0.44570.74380.14020.054*
C120.3314 (4)0.5822 (3)0.0682 (2)0.0395 (6)
H12A0.34540.53030.13330.047*
C130.2514 (3)0.5336 (3)0.0338 (2)0.0302 (5)
C140.1825 (3)0.3991 (3)0.0464 (2)0.0306 (5)
C150.1997 (4)0.3087 (4)0.0424 (3)0.0438 (7)
H15A0.25590.33040.11400.053*
C160.1324 (5)0.1859 (4)0.0232 (3)0.0510 (8)
H16A0.14400.12250.08160.061*
C170.0489 (4)0.1579 (4)0.0818 (3)0.0464 (7)
H17A0.00200.07570.09600.056*
C180.0344 (4)0.2527 (3)0.1669 (3)0.0389 (6)
H18A0.02310.23320.23870.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02659 (18)0.02438 (17)0.02802 (18)0.00097 (12)0.00622 (12)0.00332 (11)
O10.0309 (10)0.0370 (10)0.0351 (10)0.0057 (8)0.0081 (8)0.0037 (8)
O1W0.0307 (10)0.0347 (10)0.0358 (11)0.0018 (8)0.0006 (8)0.0006 (8)
O20.0432 (12)0.0515 (12)0.0397 (12)0.0159 (10)0.0096 (10)0.0196 (10)
O2W0.096 (2)0.088 (2)0.0453 (15)0.0528 (19)0.0214 (15)0.0056 (14)
O30.0361 (12)0.0516 (13)0.0633 (16)0.0094 (10)0.0150 (11)0.0090 (11)
O40.0421 (12)0.0311 (10)0.0485 (13)0.0097 (9)0.0000 (10)0.0035 (9)
O50.0312 (11)0.0619 (14)0.0611 (15)0.0123 (10)0.0113 (10)0.0092 (12)
O60.0621 (17)0.0779 (18)0.0722 (18)0.0005 (14)0.0334 (15)0.0364 (15)
N10.0317 (11)0.0271 (10)0.0298 (11)0.0043 (8)0.0068 (9)0.0017 (8)
N20.0302 (11)0.0288 (10)0.0323 (11)0.0032 (8)0.0101 (9)0.0032 (8)
N30.0367 (13)0.0285 (11)0.0477 (14)0.0062 (9)0.0173 (11)0.0000 (10)
C10.0237 (11)0.0238 (10)0.0248 (11)0.0002 (9)0.0033 (9)0.0002 (9)
C20.0265 (12)0.0262 (11)0.0287 (12)0.0051 (9)0.0073 (9)0.0015 (9)
C30.0350 (14)0.0240 (11)0.0329 (13)0.0027 (10)0.0055 (11)0.0049 (9)
C40.0285 (12)0.0254 (11)0.0293 (12)0.0010 (9)0.0016 (10)0.0027 (9)
C50.0259 (12)0.0378 (13)0.0365 (14)0.0012 (10)0.0106 (11)0.0001 (11)
C60.0300 (13)0.0291 (12)0.0356 (14)0.0027 (10)0.0103 (11)0.0057 (10)
C70.0232 (11)0.0246 (11)0.0319 (13)0.0003 (9)0.0028 (10)0.0009 (9)
C80.0333 (14)0.0281 (12)0.0368 (15)0.0039 (11)0.0036 (11)0.0064 (11)
C90.0405 (15)0.0309 (13)0.0417 (16)0.0078 (11)0.0087 (12)0.0047 (11)
C100.0459 (17)0.0334 (14)0.0508 (18)0.0131 (13)0.0053 (14)0.0033 (12)
C110.0468 (17)0.0478 (17)0.0371 (16)0.0145 (14)0.0038 (13)0.0054 (13)
C120.0451 (16)0.0413 (15)0.0301 (14)0.0093 (12)0.0055 (12)0.0035 (11)
C130.0278 (12)0.0287 (11)0.0310 (13)0.0008 (10)0.0074 (10)0.0037 (10)
C140.0297 (12)0.0288 (11)0.0317 (13)0.0017 (10)0.0096 (10)0.0039 (10)
C150.0501 (18)0.0452 (16)0.0371 (15)0.0095 (14)0.0110 (13)0.0125 (13)
C160.063 (2)0.0447 (17)0.053 (2)0.0159 (16)0.0197 (17)0.0158 (14)
C170.0522 (19)0.0402 (15)0.0542 (19)0.0177 (14)0.0179 (15)0.0055 (14)
C180.0406 (15)0.0386 (14)0.0385 (15)0.0108 (12)0.0105 (12)0.0001 (12)
Geometric parameters (Å, º) top
Zn1—O11.9922 (19)C3—C41.381 (4)
Zn1—O1W2.063 (2)C3—H3A0.9300
Zn1—O4i1.976 (2)C4—C51.377 (4)
Zn1—N12.141 (2)C4—C81.506 (3)
Zn1—N22.091 (2)C5—C61.383 (4)
O1—C71.249 (3)C5—H5A0.9300
O1W—H1A0.85 (3)C6—H6A0.9300
O1W—H1B0.84 (3)C9—C101.366 (4)
O2—C71.230 (3)C9—H9A0.9300
O2W—H2A0.85 (3)C10—C111.379 (5)
O2W—H2B0.85 (3)C10—H10A0.9300
O3—C81.234 (4)C11—C121.377 (4)
O4—C81.257 (4)C11—H11A0.9300
O4—Zn1ii1.976 (2)C12—C131.376 (4)
O5—N31.210 (3)C12—H12A0.9300
O6—N31.215 (3)C13—C141.483 (4)
N1—C91.334 (4)C14—C151.380 (4)
N1—C131.337 (3)C15—C161.374 (5)
N2—C181.332 (4)C15—H15A0.9300
N2—C141.340 (4)C16—C171.357 (5)
N3—C21.461 (3)C16—H16A0.9300
C1—C61.381 (4)C17—C181.375 (4)
C1—C21.384 (3)C17—H17A0.9300
C1—C71.510 (3)C18—H18A0.9300
C2—C31.375 (3)
O1—Zn1—O1W95.05 (8)C1—C6—C5121.3 (2)
O1—Zn1—N190.59 (8)C1—C6—H6A119.3
O1—Zn1—N298.69 (9)C5—C6—H6A119.3
O1W—Zn1—N1170.66 (9)O2—C7—O1127.0 (2)
O1W—Zn1—N294.61 (9)O2—C7—C1117.3 (2)
O4i—Zn1—O1149.63 (10)O1—C7—C1115.6 (2)
O4i—Zn1—O1W89.11 (9)O3—C8—O4124.5 (3)
O4i—Zn1—N189.79 (9)O3—C8—C4119.8 (3)
O4i—Zn1—N2110.97 (10)O4—C8—C4115.8 (3)
N1—Zn1—N277.14 (9)N1—C9—C10121.9 (3)
C7—O1—Zn1137.57 (18)N1—C9—H9A119.1
Zn1—O1W—H1A118 (2)C10—C9—H9A119.1
Zn1—O1W—H1B124 (2)C9—C10—C11119.2 (3)
H1A—O1W—H1B106 (3)C9—C10—H10A120.4
H2A—O2W—H2B96 (5)C11—C10—H10A120.4
C8—O4—Zn1ii113.6 (2)C12—C11—C10119.0 (3)
C9—N1—C13119.3 (2)C12—C11—H11A120.5
C9—N1—Zn1125.6 (2)C10—C11—H11A120.5
C13—N1—Zn1115.06 (17)C13—C12—C11118.9 (3)
C18—N2—C14118.6 (2)C13—C12—H12A120.6
C18—N2—Zn1124.7 (2)C11—C12—H12A120.6
C14—N2—Zn1116.48 (18)N1—C13—C12121.7 (3)
O5—N3—O6124.9 (3)N1—C13—C14115.5 (2)
O5—N3—C2118.3 (3)C12—C13—C14122.8 (2)
O6—N3—C2116.7 (3)N2—C14—C15121.7 (3)
C6—C1—C2116.8 (2)N2—C14—C13115.6 (2)
C6—C1—C7120.2 (2)C15—C14—C13122.7 (3)
C2—C1—C7122.9 (2)C16—C15—C14118.9 (3)
C3—C2—C1123.1 (2)C16—C15—H15A120.5
C3—C2—N3116.1 (2)C14—C15—H15A120.5
C1—C2—N3120.8 (2)C17—C16—C15119.4 (3)
C2—C3—C4118.9 (2)C17—C16—H16A120.3
C2—C3—H3A120.6C15—C16—H16A120.3
C4—C3—H3A120.6C16—C17—C18119.2 (3)
C5—C4—C3119.6 (2)C16—C17—H17A120.4
C5—C4—C8121.8 (3)C18—C17—H17A120.4
C3—C4—C8118.6 (3)N2—C18—C17122.3 (3)
C4—C5—C6120.4 (3)N2—C18—H18A118.9
C4—C5—H5A119.8C17—C18—H18A118.9
C6—C5—H5A119.8
O4i—Zn1—O1—C758.0 (4)C6—C1—C7—O246.1 (4)
O1W—Zn1—O1—C738.9 (3)C2—C1—C7—O2137.9 (3)
N2—Zn1—O1—C7134.3 (3)C6—C1—C7—O1130.8 (3)
N1—Zn1—O1—C7148.6 (3)C2—C1—C7—O145.1 (3)
O4i—Zn1—N1—C964.9 (2)Zn1ii—O4—C8—O30.0 (4)
O1—Zn1—N1—C984.8 (2)Zn1ii—O4—C8—C4179.80 (17)
N2—Zn1—N1—C9176.5 (2)C5—C4—C8—O310.4 (4)
O4i—Zn1—N1—C13113.31 (19)C3—C4—C8—O3168.5 (3)
O1—Zn1—N1—C1397.06 (19)C5—C4—C8—O4169.8 (3)
N2—Zn1—N1—C131.72 (18)C3—C4—C8—O411.3 (4)
O4i—Zn1—N2—C1896.8 (2)C13—N1—C9—C101.0 (4)
O1—Zn1—N2—C1889.8 (2)Zn1—N1—C9—C10179.1 (2)
O1W—Zn1—N2—C186.0 (2)N1—C9—C10—C110.1 (5)
N1—Zn1—N2—C18178.4 (2)C9—C10—C11—C120.8 (5)
O4i—Zn1—N2—C1488.66 (19)C10—C11—C12—C130.4 (5)
O1—Zn1—N2—C1484.70 (19)C9—N1—C13—C121.4 (4)
O1W—Zn1—N2—C14179.47 (18)Zn1—N1—C13—C12179.7 (2)
N1—Zn1—N2—C143.91 (18)C9—N1—C13—C14178.8 (2)
C6—C1—C2—C30.8 (4)Zn1—N1—C13—C140.5 (3)
C7—C1—C2—C3176.8 (2)C11—C12—C13—N10.7 (4)
C6—C1—C2—N3178.4 (2)C11—C12—C13—C14179.5 (3)
C7—C1—C2—N35.5 (4)C18—N2—C14—C150.5 (4)
O5—N3—C2—C3132.7 (3)Zn1—N2—C14—C15175.4 (2)
O6—N3—C2—C347.2 (4)C18—N2—C14—C13179.7 (2)
O5—N3—C2—C145.1 (3)Zn1—N2—C14—C135.4 (3)
O6—N3—C2—C1135.0 (3)N1—C13—C14—N23.8 (3)
C1—C2—C3—C40.8 (4)C12—C13—C14—N2176.4 (2)
N3—C2—C3—C4176.9 (2)N1—C13—C14—C15176.9 (3)
C2—C3—C4—C52.0 (4)C12—C13—C14—C152.9 (4)
C2—C3—C4—C8177.0 (2)N2—C14—C15—C161.0 (5)
C3—C4—C5—C61.5 (4)C13—C14—C15—C16179.8 (3)
C8—C4—C5—C6177.4 (2)C14—C15—C16—C170.9 (5)
C2—C1—C6—C51.2 (4)C15—C16—C17—C180.4 (5)
C7—C1—C6—C5177.4 (2)C14—N2—C18—C170.1 (4)
C4—C5—C6—C10.1 (4)Zn1—N2—C18—C17174.4 (2)
Zn1—O1—C7—O233.2 (5)C16—C17—C18—N20.1 (5)
Zn1—O1—C7—C1150.2 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2iii0.85 (3)1.83 (3)2.670 (3)174 (4)
O1W—H1B···O3iv0.84 (3)2.02 (2)2.779 (3)150 (3)
O1W—H1B···O50.84 (3)2.58 (3)3.031 (3)115 (3)
O2W—H2A···O20.85 (3)2.03 (3)2.865 (4)171 (5)
O2W—H2B···O1v0.85 (3)2.57 (4)3.213 (4)134 (4)
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C8H3NO6)(C10H8N2)(H2O)]·H2O
Mr466.70
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)8.5570 (5), 9.1074 (5), 12.2060 (7)
α, β, γ (°)84.558 (1), 76.863 (1), 73.692 (1)
V3)888.58 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.41 × 0.36 × 0.33
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.590, 0.648
No. of measured, independent and
observed [I > 2σ(I)] reflections
5326, 3915, 3739
Rint0.028
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.10
No. of reflections3915
No. of parameters285
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.39

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Zn1—O11.9922 (19)Zn1—N12.141 (2)
Zn1—O1W2.063 (2)Zn1—N22.091 (2)
Zn1—O4i1.976 (2)
O1—Zn1—O1W95.05 (8)O4i—Zn1—O1149.63 (10)
O1—Zn1—N190.59 (8)O4i—Zn1—O1W89.11 (9)
O1—Zn1—N298.69 (9)O4i—Zn1—N189.79 (9)
O1W—Zn1—N1170.66 (9)O4i—Zn1—N2110.97 (10)
O1W—Zn1—N294.61 (9)N1—Zn1—N277.14 (9)
Symmetry code: (i) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2ii0.85 (3)1.83 (3)2.670 (3)174 (4)
O1W—H1B···O3iii0.84 (3)2.02 (2)2.779 (3)150 (3)
O1W—H1B···O50.84 (3)2.58 (3)3.031 (3)115 (3)
O2W—H2A···O20.85 (3)2.03 (3)2.865 (4)171 (5)
O2W—H2B···O1iv0.85 (3)2.57 (4)3.213 (4)134 (4)
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

We are grateful for financial support by the National Natural Science Foundation of China (grant No. 20471049) and Xiamen University.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, R.-Y., Kong, X.-J. & Liu, G.-X. (2008). J. Inorg. Organomet. Polym. 18, 304–308.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMa, A.-Q., Zhu, L.-G. & Ng, S. W. (2005). Acta Cryst. E61, m483–m484.  CrossRef IUCr Journals Google Scholar
First citationPrajapati, R., Mishra, L., Kimura, K. & Raghavaiah, P. (2009). Polyhedron, 28, 600–608.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y.-S., Yan, B. & Chen, Z.-X. (2006). Appl. Organomet. Chem. 20, 44–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X.-L., Liu, F.-C., Li, J.-R. & Ng, S. W. (2005). Acta Cryst. E61, m123–m125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, S.-Y., Hu, J.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003a). Appl. Organomet. Chem. 17, 815–816.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003b). Acta Cryst. E59, m731–m733.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003c). Appl. Organomet. Chem. 17, 877–878.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, S.-Y., Long, L.-S., Tao, J., Huang, R.-B. & Zheng, L.-S. (2002). Main Group. Met. Chem. 25, 699–700.  CAS Google Scholar
First citationZhang, K.-L., Gao, H.-Y., Pan, Z.-C., Liang, W. & Diao, G.-W. (2007). Polyhedron, 26, 5177–5184.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X.-M., Tong, M.-L., Gong, M.-L. & Chen, X.-M. (2003). Eur. J. Inorg. Chem. pp. 138–142.  CSD CrossRef Google Scholar
First citationZhou, D.-S., Sun, D., Yang, S.-Y. & Huang, R.-B. (2009a). Acta Cryst. E65, m1078–m1079.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, D.-S., Wang, F.-K., Yang, S.-Y., Xie, Z.-X. & Huang, R.-B. (2009b). CrystEngComm, 11, 2548–2554.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds