organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­chloro-4,8-di­nitro­anthra­quinone

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 July 2010; accepted 22 July 2010; online 31 July 2010)

The ring skeleton of the title compound, C14H4Cl2N2O6, is close to planar (r.m.s. deviation of the carbon atoms 0.091 Å); the nitro goups are twisted with respect to the mean plane of the ring system by 70.8 (1) and 86.7 (2)°. The crystal studied was found to be a merohedral twin, with a domain ratio of 0.61 (8):0.39 (8).

Related literature

For dehydro­sulfurization by using anthraquinone-based catalysts, see: Nagai et al. (1993[Nagai, M., Miyao, T. & Tuboi, T. (1993). Catal. Lett. 18, 9-14.]). For a related structure, see: Armaghan et al. (2010[Armaghan, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, o1164.]).

[Scheme 1]

Experimental

Crystal data
  • C14H4Cl2N2O6

  • Mr = 367.09

  • Monoclinic, P 21

  • a = 5.9596 (6) Å

  • b = 11.3897 (11) Å

  • c = 9.8667 (9) Å

  • β = 93.519 (1)°

  • V = 668.47 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 100 K

  • 0.12 × 0.12 × 0.12 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS, Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.940

  • 6510 measured reflections

  • 3028 independent reflections

  • 2779 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.095

  • S = 1.04

  • 3028 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1402 Friedel pairs

  • Flack parameter: 0.39 (8)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (Scheme I, Fig. 1) belongs to a class of catalysts used for dehydrosulfurisation (Nagai et al., 1993). We have embarked on a study of dehydrosulfurisation, and have recently reported the crysal structure of 1,8-dihydroxy-2,4,5,7-tetranitro-9,10-anthraquinone (Armaghan et al., 2010). These compounds are synthesised by the reaction of fuming nitric acid on the substituted anthraquinone.

Related literature top

For dehydrosulfurization by using similar catalysts, see: Nagai et al. (1993). For a related structure, see: Armaghan et al. (2010).

Experimental top

Fuming nitric acid (10 ml) was added dropwise to a solution of 1,5-dichloroanthraquinone (277 mg, 1 mmol) in concentrated sulfuric acid (5 ml). The mixture was kept at 333 K. After two hours, the mixture was poured into ice (100 g). The organic compound was collected and dried. Crystals suitable for X-ray analysis were obtained by recrystallisation from toluene; m.p. > 540 K.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.95 Å) and included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Structure description top

The title compound (Scheme I, Fig. 1) belongs to a class of catalysts used for dehydrosulfurisation (Nagai et al., 1993). We have embarked on a study of dehydrosulfurisation, and have recently reported the crysal structure of 1,8-dihydroxy-2,4,5,7-tetranitro-9,10-anthraquinone (Armaghan et al., 2010). These compounds are synthesised by the reaction of fuming nitric acid on the substituted anthraquinone.

For dehydrosulfurization by using similar catalysts, see: Nagai et al. (1993). For a related structure, see: Armaghan et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of I at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
1,5-Dichloro-4,8-dinitroanthraquinone top
Crystal data top
C14H4Cl2N2O6F(000) = 368
Mr = 367.09Dx = 1.824 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2429 reflections
a = 5.9596 (6) Åθ = 2.7–28.3°
b = 11.3897 (11) ŵ = 0.53 mm1
c = 9.8667 (9) ÅT = 100 K
β = 93.519 (1)°Cube, yellow
V = 668.47 (11) Å30.12 × 0.12 × 0.12 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
3028 independent reflections
Radiation source: fine-focus sealed tube2779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS, Sheldrick, 1996)
h = 77
Tmin = 0.940, Tmax = 0.940k = 1414
6510 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.339P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3028 reflectionsΔρmax = 0.54 e Å3
218 parametersΔρmin = 0.34 e Å3
1 restraintAbsolute structure: Flack (Flack, 1983) parameter from 1402 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.39 (8)
Crystal data top
C14H4Cl2N2O6V = 668.47 (11) Å3
Mr = 367.09Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.9596 (6) ŵ = 0.53 mm1
b = 11.3897 (11) ÅT = 100 K
c = 9.8667 (9) Å0.12 × 0.12 × 0.12 mm
β = 93.519 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3028 independent reflections
Absorption correction: multi-scan
(SADABS, Sheldrick, 1996)
2779 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.940Rint = 0.026
6510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.54 e Å3
S = 1.04Δρmin = 0.34 e Å3
3028 reflectionsAbsolute structure: Flack (Flack, 1983) parameter from 1402 Friedel pairs
218 parametersAbsolute structure parameter: 0.39 (8)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62144 (12)0.00005 (6)0.17540 (8)0.02356 (19)
Cl20.36066 (13)0.69418 (6)0.31405 (8)0.0250 (2)
O10.0933 (4)0.3072 (2)0.6211 (2)0.0271 (5)
O20.1258 (4)0.3417 (2)0.4440 (2)0.0277 (5)
O30.2920 (4)0.4726 (2)0.4346 (2)0.0339 (6)
O41.1628 (4)0.3759 (2)0.0667 (2)0.0280 (5)
O50.9158 (4)0.3677 (3)0.1002 (2)0.0404 (7)
O60.8065 (5)0.2199 (2)0.1277 (3)0.0548 (9)
N10.0447 (4)0.3022 (2)0.4997 (3)0.0147 (5)
N20.9756 (4)0.3942 (2)0.0136 (3)0.0163 (5)
C10.4613 (5)0.0953 (3)0.2635 (3)0.0142 (6)
C20.2957 (5)0.0447 (3)0.3375 (3)0.0198 (6)
H20.27420.03790.33500.024*
C30.1616 (5)0.1141 (3)0.4149 (3)0.0162 (7)
H30.04940.07990.46680.019*
C40.1953 (5)0.2341 (3)0.4148 (3)0.0136 (6)
C50.3553 (5)0.2890 (3)0.3409 (3)0.0126 (6)
C60.3801 (5)0.4179 (3)0.3468 (3)0.0181 (6)
C70.5285 (4)0.4765 (3)0.2507 (3)0.0150 (6)
C80.5362 (5)0.5992 (3)0.2339 (3)0.0153 (6)
C90.6860 (5)0.6510 (3)0.1494 (3)0.0170 (6)
H90.68900.73400.13990.020*
C100.8297 (5)0.5827 (3)0.0795 (3)0.0183 (7)
H100.93420.61780.02290.022*
C110.8195 (5)0.4621 (3)0.0930 (3)0.0132 (6)
C120.6693 (5)0.4075 (3)0.1766 (3)0.0132 (6)
C130.6668 (5)0.2752 (3)0.1839 (3)0.0224 (7)
C140.4913 (4)0.2177 (3)0.2625 (3)0.0121 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0243 (3)0.0116 (4)0.0366 (4)0.0019 (3)0.0164 (3)0.0016 (3)
Cl20.0267 (4)0.0132 (4)0.0370 (4)0.0049 (3)0.0168 (3)0.0022 (3)
O10.0307 (11)0.0364 (13)0.0147 (9)0.0029 (10)0.0041 (8)0.0053 (9)
O20.0209 (10)0.0342 (13)0.0276 (11)0.0143 (10)0.0015 (9)0.0066 (10)
O30.0459 (13)0.0198 (12)0.0393 (13)0.0033 (10)0.0285 (11)0.0054 (10)
O40.0191 (11)0.0362 (14)0.0284 (11)0.0091 (9)0.0015 (9)0.0033 (10)
O50.0300 (12)0.070 (2)0.0210 (11)0.0167 (12)0.0000 (9)0.0185 (12)
O60.0656 (17)0.0125 (12)0.094 (2)0.0058 (12)0.0693 (17)0.0087 (12)
N10.0140 (11)0.0161 (13)0.0147 (11)0.0012 (9)0.0070 (9)0.0004 (10)
N20.0167 (12)0.0142 (13)0.0188 (12)0.0046 (10)0.0064 (10)0.0013 (10)
C10.0172 (13)0.0089 (14)0.0168 (14)0.0012 (11)0.0039 (11)0.0026 (11)
C20.0225 (15)0.0122 (15)0.0252 (15)0.0012 (12)0.0051 (12)0.0029 (12)
C30.0133 (14)0.0175 (18)0.0183 (14)0.0027 (12)0.0048 (11)0.0054 (12)
C40.0109 (12)0.0172 (16)0.0133 (13)0.0020 (11)0.0036 (10)0.0002 (11)
C50.0140 (13)0.0131 (15)0.0106 (12)0.0012 (10)0.0009 (10)0.0013 (10)
C60.0212 (14)0.0118 (14)0.0226 (14)0.0022 (11)0.0104 (12)0.0021 (11)
C70.0144 (12)0.0151 (17)0.0154 (13)0.0035 (11)0.0018 (10)0.0006 (10)
C80.0108 (13)0.0167 (16)0.0186 (14)0.0029 (11)0.0025 (11)0.0036 (12)
C90.0208 (13)0.0108 (14)0.0198 (13)0.0027 (11)0.0046 (11)0.0010 (11)
C100.0232 (16)0.0157 (17)0.0166 (14)0.0026 (13)0.0053 (12)0.0008 (12)
C110.0136 (12)0.0127 (15)0.0137 (12)0.0025 (11)0.0045 (10)0.0013 (10)
C120.0131 (12)0.0129 (16)0.0138 (13)0.0017 (12)0.0013 (10)0.0002 (10)
C130.0279 (15)0.0142 (15)0.0271 (16)0.0009 (12)0.0170 (13)0.0024 (12)
C140.0109 (12)0.0115 (16)0.0142 (12)0.0004 (10)0.0039 (10)0.0002 (10)
Geometric parameters (Å, º) top
Cl1—C11.716 (3)C3—H30.9500
Cl2—C81.730 (3)C4—C51.385 (4)
O1—N11.216 (3)C5—C141.411 (4)
O2—N11.211 (3)C5—C61.476 (5)
O3—C61.213 (4)C6—C71.493 (4)
O4—N21.221 (3)C7—C121.390 (4)
O5—N21.197 (3)C7—C81.408 (5)
O6—C131.205 (4)C8—C91.390 (4)
N1—C41.483 (4)C9—C101.373 (5)
N2—C111.472 (4)C9—H90.9500
C1—C21.388 (4)C10—C111.382 (5)
C1—C141.405 (5)C10—H100.9500
C2—C31.386 (5)C11—C121.399 (4)
C2—H20.9500C12—C131.509 (5)
C3—C41.382 (4)C13—C141.492 (4)
O2—N1—O1124.9 (3)C12—C7—C8118.3 (3)
O2—N1—C4117.3 (2)C12—C7—C6118.8 (3)
O1—N1—C4117.7 (2)C8—C7—C6122.9 (3)
O5—N2—O4124.8 (3)C9—C8—C7121.2 (3)
O5—N2—C11118.1 (3)C9—C8—Cl2115.9 (3)
O4—N2—C11116.9 (2)C7—C8—Cl2122.8 (3)
C2—C1—C14120.7 (3)C10—C9—C8120.3 (3)
C2—C1—Cl1116.0 (3)C10—C9—H9119.9
C14—C1—Cl1123.3 (2)C8—C9—H9119.9
C3—C2—C1120.4 (3)C9—C10—C11118.8 (3)
C3—C2—H2119.8C9—C10—H10120.6
C1—C2—H2119.8C11—C10—H10120.6
C4—C3—C2118.3 (3)C10—C11—C12122.1 (3)
C4—C3—H3120.8C10—C11—N2116.0 (3)
C2—C3—H3120.8C12—C11—N2121.9 (3)
C3—C4—C5123.4 (3)C7—C12—C11119.2 (3)
C3—C4—N1115.1 (3)C7—C12—C13122.1 (3)
C5—C4—N1121.5 (3)C11—C12—C13118.7 (3)
C4—C5—C14117.8 (3)O6—C13—C14122.4 (3)
C4—C5—C6119.8 (3)O6—C13—C12119.4 (3)
C14—C5—C6122.3 (3)C14—C13—C12118.2 (3)
O3—C6—C5119.6 (3)C1—C14—C5119.3 (3)
O3—C6—C7121.5 (3)C1—C14—C13122.2 (3)
C5—C6—C7118.7 (3)C5—C14—C13118.5 (3)
C14—C1—C2—C32.0 (4)C9—C10—C11—N2179.0 (2)
Cl1—C1—C2—C3178.3 (2)O5—N2—C11—C1087.6 (4)
C1—C2—C3—C40.9 (4)O4—N2—C11—C1087.7 (4)
C2—C3—C4—C50.3 (5)O5—N2—C11—C1292.1 (4)
C2—C3—C4—N1179.8 (2)O4—N2—C11—C1292.5 (3)
O2—N1—C4—C394.0 (3)C8—C7—C12—C112.7 (4)
O1—N1—C4—C381.0 (3)C6—C7—C12—C11175.8 (3)
O2—N1—C4—C585.4 (3)C8—C7—C12—C13177.7 (3)
O1—N1—C4—C599.5 (3)C6—C7—C12—C133.8 (4)
C3—C4—C5—C140.4 (4)C10—C11—C12—C71.3 (4)
N1—C4—C5—C14179.8 (2)N2—C11—C12—C7179.0 (2)
C3—C4—C5—C6179.9 (3)C10—C11—C12—C13179.1 (3)
N1—C4—C5—C60.7 (4)N2—C11—C12—C130.6 (4)
C4—C5—C6—O313.8 (5)C7—C12—C13—O6173.0 (3)
C14—C5—C6—O3165.6 (3)C11—C12—C13—O66.6 (5)
C4—C5—C6—C7170.8 (2)C7—C12—C13—C146.2 (5)
C14—C5—C6—C79.7 (4)C11—C12—C13—C14174.2 (2)
O3—C6—C7—C12163.6 (3)C2—C1—C14—C51.9 (4)
C5—C6—C7—C1211.6 (4)Cl1—C1—C14—C5178.4 (2)
O3—C6—C7—C814.9 (5)C2—C1—C14—C13179.7 (3)
C5—C6—C7—C8169.9 (3)Cl1—C1—C14—C130.0 (4)
C12—C7—C8—C92.3 (4)C4—C5—C14—C10.7 (4)
C6—C7—C8—C9176.2 (3)C6—C5—C14—C1178.8 (3)
C12—C7—C8—Cl2176.9 (2)C4—C5—C14—C13179.1 (3)
C6—C7—C8—Cl24.6 (4)C6—C5—C14—C130.4 (4)
C7—C8—C9—C100.3 (4)O6—C13—C14—C17.4 (5)
Cl2—C8—C9—C10178.9 (2)C12—C13—C14—C1173.4 (3)
C8—C9—C10—C111.2 (4)O6—C13—C14—C5171.0 (3)
C9—C10—C11—C120.7 (5)C12—C13—C14—C58.2 (4)

Experimental details

Crystal data
Chemical formulaC14H4Cl2N2O6
Mr367.09
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)5.9596 (6), 11.3897 (11), 9.8667 (9)
β (°) 93.519 (1)
V3)668.47 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.12 × 0.12 × 0.12
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS, Sheldrick, 1996)
Tmin, Tmax0.940, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
6510, 3028, 2779
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.04
No. of reflections3028
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.34
Absolute structureFlack (Flack, 1983) parameter from 1402 Friedel pairs
Absolute structure parameter0.39 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationArmaghan, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, o1164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNagai, M., Miyao, T. & Tuboi, T. (1993). Catal. Lett. 18, 9–14.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds