metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­bromidozinc(II)]-μ-4-(3-pyrid­yl)-4H-1,2,4-triazole]

aTianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: qsdingbin@yahoo.com.cn

(Received 8 June 2010; accepted 2 July 2010; online 14 July 2010)

The title complex, [ZnBr2(C7H6N4)]n, was formed under hydro­thermal conditions using the ligand 4-(3-pyrid­yl)-4H-1,2,4-triazole (L). The unique ZnII ion is coordinated by one triazole N atom, one pyridine N atom and two Br atoms in a slightly distorted tetra­hedral coordination environment. Symmetry-related ZnII ions are connected by bridging L ligands into chains parallel to [001] in which the Zn⋯Zn separation is 8.643 (7) Å. In the crystal structure, weak inter­molecular C—H⋯Br hydrogen bonds link the chains into a three-dimensional network.

Related literature

For the preparation of the ligand used to synthesize the title compound, see: Gioia et al. (1988[Gioia, G. L., Bonati, F., Cingolania, A., Leonesia, D. & Lorenzottia, A. (1988). Synth. React. Inorg. Met. Org. Chem. 18, 535-550.]). For background literature on supra­molecular polymer chemistry, see: Lehn (1995[Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspective. Weinheim: VCH.]); Ouahab (1997[Ouahab, L. (1997). Chem. Mater. 9, 1909-1926.]). For complexes incorporating 4-3-pyridyl-1,2,4-triazole ligands, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Pan et al. (2001[Pan, L., Ching, N., Huang, X. Y. & Li, J. (2001). Chem. Eur. J. 7, 4431-4437.]); Prior & Rosseinsky (2001[Prior, T. J. & Rosseinsky, M. J. (2001). Chem. Commun. pp. 1222-1223.]); Ma et al. (2001[Ma, B. Q., Gao, S., Sun, H. L. & Xu, G. X. (2001). J. Chem. Soc. Dalton Trans. pp. 130-133.]); Ding et al. (2006[Ding, B., Yi, L., Wang, Y., Cheng, P., Liao, D. Z., Yan, S. P., Jiang, Z. H., Song, H. B. & Wang, H. G. (2006). Dalton Trans. pp. 665-675.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C7H6N4)]

  • Mr = 371.35

  • Monoclinic, P 21 /c

  • a = 6.787 (6) Å

  • b = 18.769 (15) Å

  • c = 8.643 (7) Å

  • β = 101.316 (11)°

  • V = 1079.6 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.64 mm−1

  • T = 293 K

  • 0.18 × 0.12 × 0.06 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.522, Tmax = 1.000

  • 5681 measured reflections

  • 1903 independent reflections

  • 1510 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.090

  • S = 1.10

  • 1903 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Br1i 0.93 2.92 3.711 (7) 145
C6—H6⋯Br2ii 0.93 2.93 3.779 (8) 153
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Supramolecular polymer chemistry is a branch of modern science which is developing rapidly through the combination of polymer chemistry with supramolecular chemistry (Lehn, 1995; Ouahab, 1997). Recently, considerable efforts have been devoted to crystal engineering of supramolecular architecture sustained by coordination covalent bonding, hydrogen bonding or some molecular interaction and their combination. The compounds formed are of interest owing to their fascinating structural diversity and potential application in design of porous materials with novel inclusion or reactivity properties and in supramolecular devices such as sensors and indicators (Moulton & Zaworotko, 2001; Pan et al., 2001; Prior & Rosseinsky, 2001; Ma et al., 2001; Ding et al., 2006). We report herein the crystal structure of the title complex.

A view of the coordination around the ZnII ion of the title compound is shown in Fig. 1. The unique ZnII ion is coordinated by one triazole nitrogen atom, one pyridine nitrogen atom and two bromine ligands in a slightly distorted tetrahedral coordination environment. Symmetry related ZnII ions are connected by bridging L ligands to form one-dimensional chains (Fig. 2) in which the Zn···Zn separation is 8.643 (7) Å. In the crystal structure, weak intermolecular C—H···Br hydrogen bonds (Table 1) exist between L triazole rings and bromine atoms pairs of inversion related 1-D chains, which are further assembled through C—H···Br interactions to form a 3-D network (see Fig. 3).

Related literature top

For the preparation of the ligand used to synthesize the title compound, see: Gioia et al. (1988). For background literature on supramolecular polymer chemistry, see: Lehn (1995); Ouahab (1997). For complexes incorporating 4–3-pyridyl-1,2,4-triazole ligands, see: Moulton & Zaworotko (2001); Pan et al. (2001); Prior & Rosseinsky (2001); Ma et al. (2001); Ding et al. (2006).

Experimental top

The ligand L was prepared according to the previously reported literature methods (Gioia, et al., 1988). A mixture of ZnBr2 (22.5 mg, 0.1 mmol), L (14.6 mg, 0.1 mmol) and water (10 ml) was stirred for 5 h and filtered. The filtrate was kept in a CaCl2 desiccator. Suitable single crystals for X-ray diffraction study were obtained after a few days, yield 23% (based on Zn(II) salts). Anal. Calc. for C7H6Br2N4Zn: C, 22.64%; H, 1.63%; N, 15.09%. Found: C, 22.75%; H, 1.87%; N, 15.14%. FT—IR (KBr): 3115 (w), 3050 (w), 2940(w), 1540(s), 1473(m), 1395(m), 1368(w), 1244(w), 1199(s), 1075(s), 1030(s), 978(w), 945(w), 869(s), 684(w), 640 (s), 489(m), 425 (w) cm-1.

Refinement top

H atoms were positioned geometrically and were allowed to ride on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Supramolecular polymer chemistry is a branch of modern science which is developing rapidly through the combination of polymer chemistry with supramolecular chemistry (Lehn, 1995; Ouahab, 1997). Recently, considerable efforts have been devoted to crystal engineering of supramolecular architecture sustained by coordination covalent bonding, hydrogen bonding or some molecular interaction and their combination. The compounds formed are of interest owing to their fascinating structural diversity and potential application in design of porous materials with novel inclusion or reactivity properties and in supramolecular devices such as sensors and indicators (Moulton & Zaworotko, 2001; Pan et al., 2001; Prior & Rosseinsky, 2001; Ma et al., 2001; Ding et al., 2006). We report herein the crystal structure of the title complex.

A view of the coordination around the ZnII ion of the title compound is shown in Fig. 1. The unique ZnII ion is coordinated by one triazole nitrogen atom, one pyridine nitrogen atom and two bromine ligands in a slightly distorted tetrahedral coordination environment. Symmetry related ZnII ions are connected by bridging L ligands to form one-dimensional chains (Fig. 2) in which the Zn···Zn separation is 8.643 (7) Å. In the crystal structure, weak intermolecular C—H···Br hydrogen bonds (Table 1) exist between L triazole rings and bromine atoms pairs of inversion related 1-D chains, which are further assembled through C—H···Br interactions to form a 3-D network (see Fig. 3).

For the preparation of the ligand used to synthesize the title compound, see: Gioia et al. (1988). For background literature on supramolecular polymer chemistry, see: Lehn (1995); Ouahab (1997). For complexes incorporating 4–3-pyridyl-1,2,4-triazole ligands, see: Moulton & Zaworotko (2001); Pan et al. (2001); Prior & Rosseinsky (2001); Ma et al. (2001); Ding et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the coordination around the ZnII ion of the title 1-D compound [symmetry code: (A) x, y, z - 1].
[Figure 2] Fig. 2. One-dimensional structure of the title compound
[Figure 3] Fig. 3. Part of the crystal structure of the title compound showing hydrogen bonds as dashed lines.
catena-Poly[[dibromidozinc(II)]-µ-4-(3-pyridyl)- 4H-1,2,4-triazole] top
Crystal data top
[ZnBr2(C7H6N4)]F(000) = 704
Mr = 371.35Dx = 2.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1387 reflections
a = 6.787 (6) Åθ = 2.6–24.1°
b = 18.769 (15) ŵ = 9.64 mm1
c = 8.643 (7) ÅT = 293 K
β = 101.316 (11)°Block, colorless
V = 1079.6 (15) Å30.18 × 0.12 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1903 independent reflections
Radiation source: fine-focus sealed tube1510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.522, Tmax = 1.000k = 2222
5681 measured reflectionsl = 107
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0105P)2 + 4.1488P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1903 reflectionsΔρmax = 0.65 e Å3
128 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00010 (0)
Crystal data top
[ZnBr2(C7H6N4)]V = 1079.6 (15) Å3
Mr = 371.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.787 (6) ŵ = 9.64 mm1
b = 18.769 (15) ÅT = 293 K
c = 8.643 (7) Å0.18 × 0.12 × 0.06 mm
β = 101.316 (11)°
Data collection top
Bruker APEXII
diffractometer
1903 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1510 reflections with I > 2σ(I)
Tmin = 0.522, Tmax = 1.000Rint = 0.041
5681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.10Δρmax = 0.65 e Å3
1903 reflectionsΔρmin = 0.60 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.39470 (11)0.63872 (4)0.68138 (8)0.0337 (2)
Br10.61578 (12)0.54147 (4)0.76801 (9)0.0506 (3)
Br20.54852 (11)0.74575 (4)0.62834 (9)0.0469 (2)
N10.2184 (8)0.6476 (3)0.8432 (5)0.0334 (12)
N20.0687 (8)0.6990 (3)0.8251 (6)0.0435 (14)
N30.0872 (8)0.6435 (3)1.0539 (5)0.0324 (12)
N40.1730 (8)0.6178 (3)1.4833 (5)0.0339 (12)
C10.1373 (10)0.5977 (4)1.2212 (8)0.0419 (17)
H10.23880.59071.13320.050*
C20.1642 (11)0.5823 (4)1.3737 (8)0.0513 (19)
H20.28680.56531.39070.062*
C30.0079 (10)0.5926 (4)1.4974 (8)0.0415 (17)
H30.02790.58151.59800.050*
C40.2014 (10)0.6340 (3)1.3381 (7)0.0373 (15)
H40.32480.65201.32510.045*
C50.0513 (10)0.6243 (3)1.2085 (7)0.0333 (15)
C60.0101 (11)0.6954 (4)0.9528 (8)0.0451 (17)
H60.11550.72350.97220.054*
C70.2253 (9)0.6162 (3)0.9792 (7)0.0322 (14)
H70.31420.57991.01880.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0344 (4)0.0455 (5)0.0238 (4)0.0007 (3)0.0122 (3)0.0026 (3)
Br10.0527 (5)0.0476 (4)0.0534 (5)0.0094 (4)0.0153 (4)0.0096 (3)
Br20.0419 (4)0.0489 (4)0.0529 (5)0.0042 (3)0.0168 (3)0.0093 (3)
N10.033 (3)0.047 (3)0.021 (2)0.002 (3)0.007 (2)0.003 (2)
N20.042 (4)0.055 (4)0.036 (3)0.011 (3)0.015 (3)0.012 (3)
N30.033 (3)0.045 (3)0.022 (2)0.000 (2)0.010 (2)0.002 (2)
N40.041 (3)0.042 (3)0.023 (3)0.001 (3)0.015 (2)0.002 (2)
C10.038 (4)0.057 (4)0.031 (3)0.006 (3)0.009 (3)0.002 (3)
C20.044 (5)0.067 (5)0.045 (4)0.014 (4)0.014 (4)0.002 (4)
C30.044 (4)0.054 (4)0.029 (3)0.010 (3)0.013 (3)0.006 (3)
C40.041 (4)0.047 (4)0.029 (3)0.002 (3)0.019 (3)0.002 (3)
C50.042 (4)0.039 (3)0.021 (3)0.002 (3)0.013 (3)0.003 (3)
C60.041 (4)0.052 (4)0.046 (4)0.011 (3)0.019 (3)0.006 (3)
C70.036 (4)0.038 (3)0.023 (3)0.003 (3)0.008 (3)0.000 (3)
Geometric parameters (Å, º) top
Zn1—N12.018 (5)N4—Zn1ii2.083 (5)
Zn1—N4i2.083 (5)C1—C21.396 (9)
Zn1—Br22.3502 (18)C1—C51.397 (9)
Zn1—Br12.3880 (17)C1—H10.9300
N1—C71.308 (7)C2—C31.364 (9)
N1—N21.388 (7)C2—H20.9300
N2—C61.319 (8)C3—H30.9300
N3—C71.339 (8)C4—C51.370 (9)
N3—C61.386 (8)C4—H40.9300
N3—C51.450 (7)C6—H60.9300
N4—C41.341 (7)C7—H70.9300
N4—C31.343 (8)
N1—Zn1—N4i98.9 (2)C3—C2—C1119.0 (6)
N1—Zn1—Br2114.26 (15)C3—C2—H2120.5
N4i—Zn1—Br2106.11 (14)C1—C2—H2120.5
N1—Zn1—Br1105.51 (15)N4—C3—C2124.2 (6)
N4i—Zn1—Br1114.96 (15)N4—C3—H3117.9
Br2—Zn1—Br1116.02 (7)C2—C3—H3117.9
C7—N1—N2108.1 (5)N4—C4—C5120.9 (6)
C7—N1—Zn1131.6 (4)N4—C4—H4119.5
N2—N1—Zn1120.0 (4)C5—C4—H4119.5
C6—N2—N1106.1 (5)C4—C5—C1121.9 (6)
C7—N3—C6104.9 (5)C4—C5—N3119.2 (6)
C7—N3—C5127.6 (5)C1—C5—N3118.9 (5)
C6—N3—C5127.6 (5)N2—C6—N3110.0 (6)
C4—N4—C3117.8 (6)N2—C6—H6125.0
C4—N4—Zn1ii120.9 (4)N3—C6—H6125.0
C3—N4—Zn1ii121.1 (4)N1—C7—N3110.9 (6)
C2—C1—C5116.1 (6)N1—C7—H7124.6
C2—C1—H1122.0N3—C7—H7124.6
C5—C1—H1122.0
N4i—Zn1—N1—C7127.0 (6)N4—C4—C5—N3179.0 (5)
Br2—Zn1—N1—C7120.8 (5)C2—C1—C5—C40.6 (10)
Br1—Zn1—N1—C77.9 (6)C2—C1—C5—N3178.1 (6)
N4i—Zn1—N1—N259.6 (5)C7—N3—C5—C461.5 (9)
Br2—Zn1—N1—N252.7 (5)C6—N3—C5—C4116.6 (7)
Br1—Zn1—N1—N2178.7 (4)C7—N3—C5—C1119.8 (7)
C7—N1—N2—C60.7 (7)C6—N3—C5—C162.1 (9)
Zn1—N1—N2—C6175.6 (4)N1—N2—C6—N30.8 (8)
C5—C1—C2—C31.1 (10)C7—N3—C6—N20.6 (7)
C4—N4—C3—C20.1 (10)C5—N3—C6—N2177.8 (6)
Zn1ii—N4—C3—C2175.4 (6)N2—N1—C7—N30.3 (7)
C1—C2—C3—N40.8 (11)Zn1—N1—C7—N3174.4 (4)
C3—N4—C4—C50.7 (9)C6—N3—C7—N10.2 (7)
Zn1ii—N4—C4—C5176.0 (5)C5—N3—C7—N1178.3 (6)
N4—C4—C5—C10.4 (10)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Br1iii0.932.923.711 (7)145
C6—H6···Br2iv0.932.933.779 (8)153
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnBr2(C7H6N4)]
Mr371.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.787 (6), 18.769 (15), 8.643 (7)
β (°) 101.316 (11)
V3)1079.6 (15)
Z4
Radiation typeMo Kα
µ (mm1)9.64
Crystal size (mm)0.18 × 0.12 × 0.06
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.522, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5681, 1903, 1510
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.10
No. of reflections1903
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.60

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Br1i0.932.923.711 (7)145
C6—H6···Br2ii0.932.933.779 (8)153
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y+3/2, z+1/2.
 

Acknowledgements

This present work was supported financially by Tianjin Educational Committee (20090504).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, B., Yi, L., Wang, Y., Cheng, P., Liao, D. Z., Yan, S. P., Jiang, Z. H., Song, H. B. & Wang, H. G. (2006). Dalton Trans. pp. 665–675.  Web of Science CSD CrossRef Google Scholar
First citationGioia, G. L., Bonati, F., Cingolania, A., Leonesia, D. & Lorenzottia, A. (1988). Synth. React. Inorg. Met. Org. Chem. 18, 535–550.  Google Scholar
First citationLehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspective. Weinheim: VCH.  Google Scholar
First citationMa, B. Q., Gao, S., Sun, H. L. & Xu, G. X. (2001). J. Chem. Soc. Dalton Trans. pp. 130–133.  Web of Science CSD CrossRef Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOuahab, L. (1997). Chem. Mater. 9, 1909–1926.  CrossRef CAS Web of Science Google Scholar
First citationPan, L., Ching, N., Huang, X. Y. & Li, J. (2001). Chem. Eur. J. 7, 4431–4437.  CrossRef PubMed CAS Google Scholar
First citationPrior, T. J. & Rosseinsky, M. J. (2001). Chem. Commun. pp. 1222–1223.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds