organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(4-Meth­­oxy­phen­yl)-1-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 10 June 2010; accepted 3 July 2010; online 14 July 2010)

The piperidine ring in the title compound, C21H23NO2, is in a slightly distorted chair conformation. The dihedral angle between the two benzene rings is 5.6 (4)°. The dihedral angles between the propenone unit and the benzene and meth­oxy-substituted benzene rings are 5.6 (7) and 10.7 (8)°, respectively. Weak inter­molecular C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions contribute to the stability of the crystal structure.

Related literature

For the synthesis and biological evaluation of simple meth­oxy­lated chalcones as anti­cancer, anti-inflammatory and anti­oxidant agents, see: Bandgar et al. (2010[Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364-1370.]). For anti-inflammatory chalcones, see: Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]). For related structures, see: Ahmad et al.(2010[Ahmad, N., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Acta Cryst. E66, o1346-o1347.]); Arai et al.(1994[Arai, H., Higashigaki, Y., Goto, M. & Yano, S. (1994). Jpn J. Appl. Phys. 33, 5755-5758.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Narayana, B., Samshuddin, S. & Yathirajan, H. S. (2010). Acta Cryst. E66, o269-o270.]); Li et al. (1992[Li, Z.-D., Huang, L.-R., Su, G.-B. & Wang, H.-J. (1992). Jiegou Huaxue, 11, 1-4.]); Patil et al. (2007[Patil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.]); Shettigar et al. (2006[Shettigar, V., Rosli, M. M., Fun, H.-K., Razak, I. A., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4128-o4129.]). For standard bond lengths, see; Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NO2

  • Mr = 321.40

  • Triclinic, [P \overline 1]

  • a = 6.0963 (11) Å

  • b = 10.985 (2) Å

  • c = 13.133 (3) Å

  • α = 74.188 (3)°

  • β = 88.674 (3)°

  • γ = 77.393 (3)°

  • V = 825.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.47 × 0.36 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.983

  • 10674 measured reflections

  • 4861 independent reflections

  • 3562 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.151

  • S = 1.05

  • 4861 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O2i 0.93 2.47 3.2105 (16) 137
C8—H8ACg3ii 0.97 2.66 3.623 (2) 171
C21—H21ACg2iii 0.96 2.90 3.823 (2) 162
Symmetry codes: (i) -x+2, -y+2, -z; (ii) x, y, z+1; (iii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chalcone skeleton (1,3-diphenyl-2-propen-1-one) is a unique template that is associated with various biological activities. A review of anti- infective and anti-inflammatory chalcones is published (Nowakowska, 2007). The synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents is recently reported (Bandgar et al., 2010). The crystal structures of some related chalcones containing methoxy substituents, viz., 4-bromo-4'-methoxy-chalcone (Li et al., 1992), 4-bromo-4'-methoxychalcone (Arai et al., 1994), 1-(4-bromophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Shettigar et al., 2006) and 1-(4-bromophenyl)-3-(3-methoxyphenyl) prop-2-en-1-one (Patil et al., 2007), a monoclinic polymorph of 1-(4-chlorophenyl)-3- (4-methoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010) and (E)-3-(3-chlorophenyl)-1-(4-methoxyphenyl) prop-2-en-1-one (Ahmad et al., 2010) have been reported. Hence in continuation with the synthesis and crystal structure of chalcones and their derivatives, this new chalcone containing the piperidine moiety was synthesized and its crystal structure is reported herein.

The title compound contains phenyl-4-methoxy and phenyl-4-piperidine groups on opposite sides of a 2-propen-1-one moiety (Fig. 1). Bond distances (Allen et al., 1987) and angles are in normal ranges. The piperidine ring is in a slightly distorted chair conformation. The dihedral angles between the two benzene rings is 5.6 (4)°. The dihedral angles between the propenone moiety and the benzene and methoxy-benzene rings are 5.6 (7)° and 10.7 (8)°. A weak intermolecular hydrogen bond and weak intermolecular C—H···π-ring interactions contribute to the stability of crystal packing (Fig. 2).

Related literature top

For the synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents, see: Bandgar et al. (2010). For anti-inflammatory chalcones, see: Nowakowska (2007). For related structures, see: Ahmad et al.(2010); Arai et al.(1994); Jasinski et al. (2010); Li et al. (1992); Patil et al. (2007); Shettigar et al. (2006). For standard bond lengths, see; Allen et al. (1987).

Experimental top

A 30% KOH solution was added to a mixture of 1-[4-(piperidin-1-yl)phenyl] ethanone (0.01 mol, 2.03 g) and 4-methoxy benzaldehyde (0.01 mol, 1.36 g) in 50 ml of ethanol (Fig. 3). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from 1:1 mixture of acetone and toluene by slow evaporation method and yield of the compound was 68% (m.p.391–394 K). Analytical data: Found (Calculated): C %: 78.41 (78.47); H%: 7.18 (7.21); N%: 4.33 (4.36).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.17–1.51Ueq(C).

Structure description top

The chalcone skeleton (1,3-diphenyl-2-propen-1-one) is a unique template that is associated with various biological activities. A review of anti- infective and anti-inflammatory chalcones is published (Nowakowska, 2007). The synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents is recently reported (Bandgar et al., 2010). The crystal structures of some related chalcones containing methoxy substituents, viz., 4-bromo-4'-methoxy-chalcone (Li et al., 1992), 4-bromo-4'-methoxychalcone (Arai et al., 1994), 1-(4-bromophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Shettigar et al., 2006) and 1-(4-bromophenyl)-3-(3-methoxyphenyl) prop-2-en-1-one (Patil et al., 2007), a monoclinic polymorph of 1-(4-chlorophenyl)-3- (4-methoxyphenyl)prop-2-en-1-one (Jasinski et al., 2010) and (E)-3-(3-chlorophenyl)-1-(4-methoxyphenyl) prop-2-en-1-one (Ahmad et al., 2010) have been reported. Hence in continuation with the synthesis and crystal structure of chalcones and their derivatives, this new chalcone containing the piperidine moiety was synthesized and its crystal structure is reported herein.

The title compound contains phenyl-4-methoxy and phenyl-4-piperidine groups on opposite sides of a 2-propen-1-one moiety (Fig. 1). Bond distances (Allen et al., 1987) and angles are in normal ranges. The piperidine ring is in a slightly distorted chair conformation. The dihedral angles between the two benzene rings is 5.6 (4)°. The dihedral angles between the propenone moiety and the benzene and methoxy-benzene rings are 5.6 (7)° and 10.7 (8)°. A weak intermolecular hydrogen bond and weak intermolecular C—H···π-ring interactions contribute to the stability of crystal packing (Fig. 2).

For the synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents, see: Bandgar et al. (2010). For anti-inflammatory chalcones, see: Nowakowska (2007). For related structures, see: Ahmad et al.(2010); Arai et al.(1994); Jasinski et al. (2010); Li et al. (1992); Patil et al. (2007); Shettigar et al. (2006). For standard bond lengths, see; Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing of the title compound viewed along the a axis.
[Figure 3] Fig. 3. Reaction Scheme of C21H23N1O2,.
(E)-3-(4-Methoxyphenyl)-1-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one top
Crystal data top
C21H23NO2Z = 2
Mr = 321.40F(000) = 344
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0963 (11) ÅCell parameters from 1958 reflections
b = 10.985 (2) Åθ = 2.2–30.9°
c = 13.133 (3) ŵ = 0.08 mm1
α = 74.188 (3)°T = 100 K
β = 88.674 (3)°Block, red
γ = 77.393 (3)°0.47 × 0.36 × 0.21 mm
V = 825.2 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4861 independent reflections
Radiation source: fine-focus sealed tube3562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 31.3°, θmin = 1.6°
Absorption correction: multi-scan
(APEX2; Bruker, 2008)
h = 88
Tmin = 0.962, Tmax = 0.983k = 1515
10674 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0703P)2 + 0.1716P]
where P = (Fo2 + 2Fc2)/3
4861 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C21H23NO2γ = 77.393 (3)°
Mr = 321.40V = 825.2 (3) Å3
Triclinic, P1Z = 2
a = 6.0963 (11) ÅMo Kα radiation
b = 10.985 (2) ŵ = 0.08 mm1
c = 13.133 (3) ÅT = 100 K
α = 74.188 (3)°0.47 × 0.36 × 0.21 mm
β = 88.674 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4861 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2008)
3562 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.983Rint = 0.027
10674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
4861 reflectionsΔρmin = 0.25 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23178 (16)0.88147 (10)0.30730 (7)0.0256 (2)
O21.10171 (16)0.82032 (10)0.20063 (7)0.0233 (2)
N10.76112 (17)0.61303 (11)0.66686 (8)0.0172 (2)
C10.8660 (2)0.75063 (12)0.33849 (9)0.0166 (2)
C21.0241 (2)0.74601 (13)0.41547 (10)0.0197 (3)
H21.15480.77480.39400.024*
C30.9928 (2)0.70016 (13)0.52239 (10)0.0201 (3)
H31.10210.69940.57100.024*
C40.7989 (2)0.65444 (12)0.55956 (9)0.0168 (2)
C50.6400 (2)0.65849 (13)0.48138 (10)0.0208 (3)
H50.51030.62820.50220.025*
C60.6729 (2)0.70647 (13)0.37468 (10)0.0199 (3)
H60.56300.70940.32560.024*
C70.9508 (2)0.59163 (14)0.74157 (10)0.0202 (3)
H7A1.02430.66410.72010.024*
H7B1.05940.51390.73850.024*
C80.8785 (2)0.57739 (14)0.85498 (10)0.0210 (3)
H8A0.78960.65990.86060.025*
H8B1.01110.55480.90150.025*
C90.7413 (2)0.47408 (13)0.89082 (10)0.0204 (3)
H9A0.83320.38960.89210.025*
H9B0.68950.47140.96160.025*
C100.5413 (2)0.50756 (13)0.81348 (9)0.0194 (3)
H10A0.45550.44050.83360.023*
H10B0.44400.58880.81710.023*
C110.6156 (2)0.51976 (13)0.70057 (10)0.0187 (3)
H11B0.69610.43540.69510.022*
H11A0.48360.54710.65320.022*
C120.9153 (2)0.79733 (12)0.22544 (9)0.0174 (2)
C130.7416 (2)0.81181 (12)0.14373 (10)0.0182 (3)
H130.60610.78850.16410.022*
C140.7769 (2)0.85811 (12)0.04061 (10)0.0179 (3)
H140.91080.88530.02430.021*
C150.6283 (2)0.87041 (12)0.04869 (9)0.0174 (2)
C160.4309 (2)0.82206 (13)0.03711 (10)0.0195 (3)
H160.38560.78570.03040.023*
C170.3037 (2)0.82786 (13)0.12444 (10)0.0202 (3)
H170.17440.79480.11540.024*
C180.3679 (2)0.88308 (13)0.22624 (10)0.0198 (3)
C190.5590 (2)0.93488 (13)0.23992 (10)0.0210 (3)
H190.60080.97390.30740.025*
C200.6865 (2)0.92747 (12)0.15117 (10)0.0190 (3)
H200.81460.96160.16040.023*
C210.3004 (3)0.93119 (15)0.41233 (10)0.0265 (3)
H21A0.30541.02070.42380.040*
H21B0.19490.92400.46240.040*
H21C0.44700.88230.42140.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0261 (5)0.0332 (6)0.0188 (5)0.0104 (4)0.0024 (4)0.0061 (4)
O20.0210 (5)0.0296 (5)0.0216 (5)0.0118 (4)0.0029 (4)0.0060 (4)
N10.0154 (5)0.0228 (6)0.0143 (5)0.0079 (4)0.0008 (4)0.0038 (4)
C10.0178 (6)0.0159 (6)0.0169 (6)0.0039 (4)0.0006 (4)0.0054 (4)
C20.0153 (6)0.0257 (7)0.0190 (6)0.0080 (5)0.0009 (4)0.0047 (5)
C30.0164 (6)0.0268 (7)0.0173 (6)0.0080 (5)0.0019 (5)0.0036 (5)
C40.0157 (6)0.0182 (6)0.0166 (6)0.0035 (4)0.0005 (4)0.0050 (5)
C50.0161 (6)0.0295 (7)0.0192 (6)0.0103 (5)0.0014 (5)0.0065 (5)
C60.0186 (6)0.0262 (7)0.0168 (6)0.0085 (5)0.0009 (5)0.0064 (5)
C70.0172 (6)0.0281 (7)0.0171 (6)0.0097 (5)0.0012 (4)0.0054 (5)
C80.0211 (6)0.0274 (7)0.0167 (6)0.0094 (5)0.0003 (5)0.0066 (5)
C90.0206 (6)0.0244 (7)0.0154 (6)0.0059 (5)0.0011 (5)0.0032 (5)
C100.0167 (6)0.0240 (6)0.0174 (6)0.0068 (5)0.0010 (4)0.0034 (5)
C110.0166 (6)0.0222 (6)0.0183 (6)0.0072 (5)0.0004 (5)0.0048 (5)
C120.0201 (6)0.0161 (6)0.0163 (6)0.0044 (5)0.0000 (5)0.0047 (5)
C130.0180 (6)0.0190 (6)0.0183 (6)0.0054 (5)0.0003 (5)0.0052 (5)
C140.0177 (6)0.0179 (6)0.0185 (6)0.0039 (5)0.0002 (5)0.0057 (5)
C150.0187 (6)0.0154 (6)0.0182 (6)0.0036 (4)0.0007 (4)0.0048 (5)
C160.0201 (6)0.0204 (6)0.0177 (6)0.0057 (5)0.0031 (5)0.0039 (5)
C170.0175 (6)0.0213 (6)0.0224 (6)0.0058 (5)0.0015 (5)0.0057 (5)
C180.0201 (6)0.0210 (6)0.0182 (6)0.0031 (5)0.0016 (5)0.0062 (5)
C190.0226 (6)0.0219 (6)0.0177 (6)0.0064 (5)0.0012 (5)0.0029 (5)
C200.0188 (6)0.0181 (6)0.0197 (6)0.0052 (5)0.0020 (5)0.0038 (5)
C210.0305 (8)0.0312 (8)0.0177 (6)0.0068 (6)0.0013 (5)0.0063 (5)
Geometric parameters (Å, º) top
O1—C181.3711 (15)C9—H9B0.9700
O1—C211.4277 (16)C10—C111.5194 (17)
O2—C121.2346 (15)C10—H10A0.9700
N1—C41.3882 (16)C10—H10B0.9700
N1—C71.4706 (15)C11—H11B0.9700
N1—C111.4713 (16)C11—H11A0.9700
C1—C61.3942 (17)C12—C131.4779 (17)
C1—C21.3963 (16)C13—C141.3408 (17)
C1—C121.4797 (17)C13—H130.9300
C2—C31.3806 (17)C14—C151.4575 (17)
C2—H20.9300C14—H140.9300
C3—C41.4097 (17)C15—C201.3948 (17)
C3—H30.9300C15—C161.4071 (17)
C4—C51.4130 (16)C16—C171.3785 (17)
C5—C61.3830 (17)C16—H160.9300
C5—H50.9300C17—C181.3949 (18)
C6—H60.9300C17—H170.9300
C7—C81.5197 (17)C18—C191.3920 (18)
C7—H7A0.9700C19—C201.3897 (17)
C7—H7B0.9700C19—H190.9300
C8—C91.5212 (18)C20—H200.9300
C8—H8A0.9700C21—H21A0.9600
C8—H8B0.9700C21—H21B0.9600
C9—C101.5207 (17)C21—H21C0.9600
C9—H9A0.9700
C18—O1—C21116.56 (10)C11—C10—H10B109.3
C4—N1—C7117.45 (10)C9—C10—H10B109.3
C4—N1—C11117.85 (10)H10A—C10—H10B108.0
C7—N1—C11113.84 (10)N1—C11—C10112.56 (10)
C6—C1—C2116.73 (11)N1—C11—H11B109.1
C6—C1—C12124.41 (11)C10—C11—H11B109.1
C2—C1—C12118.84 (11)N1—C11—H11A109.1
C3—C2—C1122.16 (11)C10—C11—H11A109.1
C3—C2—H2118.9H11B—C11—H11A107.8
C1—C2—H2118.9O2—C12—C13121.02 (11)
C2—C3—C4121.43 (11)O2—C12—C1119.88 (11)
C2—C3—H3119.3C13—C12—C1119.07 (11)
C4—C3—H3119.3C14—C13—C12120.87 (12)
N1—C4—C3121.98 (11)C14—C13—H13119.6
N1—C4—C5121.74 (11)C12—C13—H13119.6
C3—C4—C5116.22 (11)C13—C14—C15127.06 (12)
C6—C5—C4121.47 (12)C13—C14—H14116.5
C6—C5—H5119.3C15—C14—H14116.5
C4—C5—H5119.3C20—C15—C16117.66 (11)
C5—C6—C1121.97 (11)C20—C15—C14119.35 (11)
C5—C6—H6119.0C16—C15—C14122.93 (11)
C1—C6—H6119.0C17—C16—C15120.88 (12)
N1—C7—C8112.76 (10)C17—C16—H16119.6
N1—C7—H7A109.0C15—C16—H16119.6
C8—C7—H7A109.0C16—C17—C18120.37 (12)
N1—C7—H7B109.0C16—C17—H17119.8
C8—C7—H7B109.0C18—C17—H17119.8
H7A—C7—H7B107.8O1—C18—C19124.56 (12)
C7—C8—C9112.12 (10)O1—C18—C17115.48 (11)
C7—C8—H8A109.2C19—C18—C17119.96 (11)
C9—C8—H8A109.2C20—C19—C18119.01 (12)
C7—C8—H8B109.2C20—C19—H19120.5
C9—C8—H8B109.2C18—C19—H19120.5
H8A—C8—H8B107.9C19—C20—C15122.08 (12)
C10—C9—C8108.32 (10)C19—C20—H20119.0
C10—C9—H9A110.0C15—C20—H20119.0
C8—C9—H9A110.0O1—C21—H21A109.5
C10—C9—H9B110.0O1—C21—H21B109.5
C8—C9—H9B110.0H21A—C21—H21B109.5
H9A—C9—H9B108.4O1—C21—H21C109.5
C11—C10—C9111.56 (10)H21A—C21—H21C109.5
C11—C10—H10A109.3H21B—C21—H21C109.5
C9—C10—H10A109.3
C6—C1—C2—C30.01 (19)C6—C1—C12—O2171.55 (13)
C12—C1—C2—C3178.13 (12)C2—C1—C12—O26.44 (18)
C1—C2—C3—C40.5 (2)C6—C1—C12—C136.57 (19)
C7—N1—C4—C312.83 (18)C2—C1—C12—C13175.44 (11)
C11—N1—C4—C3154.97 (12)O2—C12—C13—C144.24 (19)
C7—N1—C4—C5170.04 (11)C1—C12—C13—C14177.66 (11)
C11—N1—C4—C527.90 (18)C12—C13—C14—C15176.00 (11)
C2—C3—C4—N1177.33 (12)C13—C14—C15—C20176.56 (12)
C2—C3—C4—C50.05 (19)C13—C14—C15—C166.3 (2)
N1—C4—C5—C6176.42 (12)C20—C15—C16—C171.80 (19)
C3—C4—C5—C60.9 (2)C14—C15—C16—C17175.43 (12)
C4—C5—C6—C11.4 (2)C15—C16—C17—C180.6 (2)
C2—C1—C6—C50.95 (19)C21—O1—C18—C193.18 (19)
C12—C1—C6—C5177.09 (12)C21—O1—C18—C17176.80 (11)
C4—N1—C7—C8166.66 (11)C16—C17—C18—O1178.77 (11)
C11—N1—C7—C849.73 (15)C16—C17—C18—C191.2 (2)
N1—C7—C8—C953.10 (15)O1—C18—C19—C20178.31 (12)
C7—C8—C9—C1055.90 (15)C17—C18—C19—C201.7 (2)
C8—C9—C10—C1156.61 (14)C18—C19—C20—C150.4 (2)
C4—N1—C11—C10165.90 (11)C16—C15—C20—C191.33 (19)
C7—N1—C11—C1050.64 (15)C14—C15—C20—C19176.00 (12)
C9—C10—C11—N154.75 (15)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···O2i0.932.473.2105 (16)137
C8—H8A···Cg3ii0.972.663.623 (2)171
C21—H21A···Cg2iii0.962.903.823 (2)162
Symmetry codes: (i) x+2, y+2, z; (ii) x, y, z+1; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC21H23NO2
Mr321.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.0963 (11), 10.985 (2), 13.133 (3)
α, β, γ (°)74.188 (3), 88.674 (3), 77.393 (3)
V3)825.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.36 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(APEX2; Bruker, 2008)
Tmin, Tmax0.962, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10674, 4861, 3562
Rint0.027
(sin θ/λ)max1)0.730
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.151, 1.05
No. of reflections4861
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20···O2i0.932.473.2105 (16)136.5
C8—H8A···Cg3ii0.972.663.623 (2)171
C21—H21A···Cg2iii0.962.903.823 (2)162
Symmetry codes: (i) x+2, y+2, z; (ii) x, y, z+1; (iii) x+1, y+2, z.
 

Acknowledgements

BN thanks the UGC (New Delhi) for the SAP chemical grant. HSY thanks UOM for sabbatical leave. JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by the Ohio Board of Regents grant CAP-491, and by YSU.

References

First citationAhmad, N., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Acta Cryst. E66, o1346–o1347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArai, H., Higashigaki, Y., Goto, M. & Yano, S. (1994). Jpn J. Appl. Phys. 33, 5755–5758.  CSD CrossRef CAS Web of Science Google Scholar
First citationBandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364–1370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Samshuddin, S. & Yathirajan, H. S. (2010). Acta Cryst. E66, o269–o270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-D., Huang, L.-R., Su, G.-B. & Wang, H.-J. (1992). Jiegou Huaxue, 11, 1–4.  Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShettigar, V., Rosli, M. M., Fun, H.-K., Razak, I. A., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o4128–o4129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds