organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{(E)-N′-[2,4-bis­(tri­fluoro­meth­yl)benzyl­­idene]isonicotinohydrazide} monohydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 15 June 2010; accepted 29 June 2010; online 3 July 2010)

The asymmetric unit of the title compound, 2C15H9F6N3O·H2O, contains two independent Schiff base mol­ecules and one water mol­ecule. Both Schiff base mol­ecules exist in an E configuration with respect to the C=N double bonds and the dihedral angles between the benzene and the pyridine rings in the two mol­ecules are 17.53 (12) and 20.62 (12)°. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds into infinite one-dimensional chains along the a axis. In addition, inter­molecular O—H⋯N, O—H⋯F, C—H⋯F and C—H⋯O hydrogen bonds further link these chains into a three-dimensional network. Weak ππ inter­actions with centroid–centroid distances in the range 3.6495 (17)–3.7092 (16) Å are also observed.

Related literature

For applications of isoniazid derivatives, see: Janin (2007[Janin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479-2513.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Slayden & Barry (2000[Slayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659-669.]); Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]). For the preparation of the title compound, see: Lourenco et al. (2008[Lourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344-1347.]). For related structures, see: Naveenkumar et al. (2009[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540-o2541.], 2010a[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, o579.],b[Naveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o1235-o1236.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 2C15H9F6N3O·H2O

  • Mr = 740.52

  • Monoclinic, P 21 /c

  • a = 8.2487 (18) Å

  • b = 26.649 (6) Å

  • c = 14.779 (3) Å

  • β = 109.076 (10)°

  • V = 3070.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.59 × 0.17 × 0.13 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.980

  • 29846 measured reflections

  • 7030 independent reflections

  • 5239 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.162

  • S = 1.02

  • 7030 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯O1B 0.86 2.05 2.856 (3) 156
N2B—H2NB⋯O1Ai 0.86 2.10 2.908 (3) 155
C7A—H7A⋯O1B 0.93 2.23 3.055 (3) 147
C7B—H7B⋯O1Ai 0.93 2.36 3.158 (3) 144
C2B—H2B⋯F1Aii 0.93 2.52 3.294 (3) 141
C9A—H9A⋯F2Biii 0.93 2.41 3.162 (4) 138
C12B—H12B⋯O1Wiv 0.93 2.58 3.408 (5) 149
O1W—H1WA⋯F2Biv 0.84 2.01 2.845 (5) 180
O1W—H1WB⋯N1Bv 0.84 2.09 2.932 (5) 180
Symmetry codes: (i) x-1, y, z; (ii) [x-2, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+2, -z+1; (v) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). As a part of a current work of synthesis of such derivatives, in this paper we present the crystal structure of the title compound.

The asymmetric unit consists of two Schiff base molecules [A and B] and one water molecule (Fig. 1). The geometric parameters are comparable to those related structures (Naveenkumar et al., 2009, 2010a, b). The molecules exist in E configurations with respect to the C7AN3A and C7BN3B double bonds. The dihedral angles between the benzene ring and the pyridine ring in molecules A and B are 17.53 (12) and 20.62 (12)°, respectively.

In the crystal structure, the molecules are linked by intermolecular N2A—H2NA···O1B, C7A—H7A···O1B, N2B—H2NB···O1A and C7B—H7B···O1A hydrogen bonds (Table 1) into infinite one-dimensional chains along the a axis. Intermolecular O1W—H1WB···N1B, O1W—H1WA···F2B, C9A—H9A···F2B, C2B—H2B···F1A and C12B—H12B···O1W hydrogen bonds further link these chains into a three-dimensional network (Fig. 2, Table 1). Weak ππ interactions are also observed with Cg1···Cg1vi = 3.6529 (17) Å, Cg2···Cg3v = 3.7092 (16) Å and Cg4···Cg4iv = 3.6495 (17) Å [Cg1, Cg2, Cg3 and Cg4 are centroids of C1A/C2A/N1A/C3A/C4A/C5A, C8A–C13A, C1B/C2B/N1B/C3B/C4B/C5B and C8B–C13B rings, respectively; symmetry code: (iv) 1 - x,2 - y,1 - z; (v) 1 + x,3/2 - y,1/2 + z; (vi) 1 - x,2 - y,-z].

Related literature top

For applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Kahwa et al. (1986). For the preparation of the title compound, see: Lourenco et al. (2008). For related structures, see: Naveenkumar et al. (2009, 2010a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The isoniazid derivative was prepared following the procedure by Lourenco et al., 2008. The title compound was prepared by reaction between the 2,4-bis(trifluoro-methyl)benzaldehyde (1.0 eq) with isoniazid (1.0 eq) in ethanol/water. After stirring for 1–3 h at room temperature, the resulting mixture was concentrated under reduced pressure. The residue, purified by washing with cold ethanol and diethyl ether, afforded the pure derivative. The colourless single-crystals suitable for X-ray analysis was obtained by recrystalization from ethanol.

Refinement top

Hydrogen atoms were positioned geometrically [N-H = 0.86Å, O-H = 0.84Å and C–H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O). The H atoms of the water molecule were included in positions which give ideal geometry for hydrogen bonds.

Structure description top

In the search of new compounds, isoniazid derivatives have been found to possess potential tuberculostatic activity (Janin, 2007; Maccari et al., 2005; Slayden & Barry, 2000). As a part of a current work of synthesis of such derivatives, in this paper we present the crystal structure of the title compound.

The asymmetric unit consists of two Schiff base molecules [A and B] and one water molecule (Fig. 1). The geometric parameters are comparable to those related structures (Naveenkumar et al., 2009, 2010a, b). The molecules exist in E configurations with respect to the C7AN3A and C7BN3B double bonds. The dihedral angles between the benzene ring and the pyridine ring in molecules A and B are 17.53 (12) and 20.62 (12)°, respectively.

In the crystal structure, the molecules are linked by intermolecular N2A—H2NA···O1B, C7A—H7A···O1B, N2B—H2NB···O1A and C7B—H7B···O1A hydrogen bonds (Table 1) into infinite one-dimensional chains along the a axis. Intermolecular O1W—H1WB···N1B, O1W—H1WA···F2B, C9A—H9A···F2B, C2B—H2B···F1A and C12B—H12B···O1W hydrogen bonds further link these chains into a three-dimensional network (Fig. 2, Table 1). Weak ππ interactions are also observed with Cg1···Cg1vi = 3.6529 (17) Å, Cg2···Cg3v = 3.7092 (16) Å and Cg4···Cg4iv = 3.6495 (17) Å [Cg1, Cg2, Cg3 and Cg4 are centroids of C1A/C2A/N1A/C3A/C4A/C5A, C8A–C13A, C1B/C2B/N1B/C3B/C4B/C5B and C8B–C13B rings, respectively; symmetry code: (iv) 1 - x,2 - y,1 - z; (v) 1 + x,3/2 - y,1/2 + z; (vi) 1 - x,2 - y,-z].

For applications of isoniazid derivatives, see: Janin (2007); Maccari et al. (2005); Slayden & Barry (2000); Kahwa et al. (1986). For the preparation of the title compound, see: Lourenco et al. (2008). For related structures, see: Naveenkumar et al. (2009, 2010a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels and 30% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed along the a axis, showing the molecules are linked into a 3-D network. Intermolecular hydrogen bonds are shown as dashed lines.
bis{(E)-N'-[2,4- Bis(trifluoromethyl)benzylidene]isonicotinohydrazide} monohydrate top
Crystal data top
2C15H9F6N3O·H2OF(000) = 1496
Mr = 740.52Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8714 reflections
a = 8.2487 (18) Åθ = 2.7–30.0°
b = 26.649 (6) ŵ = 0.16 mm1
c = 14.779 (3) ÅT = 100 K
β = 109.076 (10)°Needle, colourless
V = 3070.3 (11) Å30.59 × 0.17 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7030 independent reflections
Radiation source: fine-focus sealed tube5239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.914, Tmax = 0.980k = 3434
29846 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0688P)2 + 3.4968P]
where P = (Fo2 + 2Fc2)/3
7030 reflections(Δ/σ)max = 0.001
460 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
2C15H9F6N3O·H2OV = 3070.3 (11) Å3
Mr = 740.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2487 (18) ŵ = 0.16 mm1
b = 26.649 (6) ÅT = 100 K
c = 14.779 (3) Å0.59 × 0.17 × 0.13 mm
β = 109.076 (10)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
7030 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5239 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.980Rint = 0.030
29846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.02Δρmax = 0.67 e Å3
7030 reflectionsΔρmin = 0.68 e Å3
460 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A1.3386 (2)0.67680 (7)0.46754 (17)0.0730 (6)
F2A1.2638 (3)0.64562 (7)0.32715 (17)0.0769 (7)
F3A1.1394 (2)0.62210 (6)0.42543 (13)0.0516 (4)
F4A0.53442 (19)0.72504 (6)0.14372 (11)0.0436 (4)
F5A0.57719 (19)0.66261 (5)0.24013 (13)0.0453 (4)
F6A0.49749 (17)0.73324 (5)0.27950 (11)0.0372 (3)
O1A0.83293 (19)0.95521 (6)0.18897 (12)0.0307 (4)
N1A0.2710 (3)1.04566 (8)0.05493 (16)0.0387 (5)
N2A0.6377 (2)0.89622 (6)0.19410 (14)0.0276 (4)
H2NA0.53150.88880.18280.033*
N3A0.7647 (2)0.86131 (6)0.23267 (14)0.0266 (4)
C1A0.3807 (3)0.96185 (8)0.07092 (17)0.0285 (5)
H1A0.36140.92810.05520.034*
C2A0.2523 (3)0.99707 (9)0.03320 (18)0.0346 (5)
H2A0.14810.98620.00930.041*
C3A0.4233 (3)1.06017 (8)0.11472 (19)0.0366 (5)
H3A0.43791.09390.13120.044*
C4A0.5604 (3)1.02840 (8)0.15360 (17)0.0298 (5)
H4A0.66521.04070.19300.036*
C5A0.5379 (3)0.97783 (7)0.13241 (15)0.0237 (4)
C6A0.6844 (3)0.94253 (7)0.17445 (16)0.0246 (4)
C7A0.7099 (3)0.81749 (8)0.24256 (17)0.0286 (5)
H7A0.59280.81110.22410.034*
C8A0.8339 (3)0.77756 (8)0.28328 (16)0.0265 (4)
C9A1.0062 (3)0.78936 (8)0.32681 (17)0.0292 (5)
H9A1.04080.82270.33050.035*
C10A1.1269 (3)0.75252 (9)0.36459 (17)0.0330 (5)
H10A1.24180.76090.39340.040*
C11A1.0749 (3)0.70289 (9)0.35908 (18)0.0339 (5)
C12A0.9041 (3)0.69018 (8)0.31789 (18)0.0328 (5)
H12A0.87020.65680.31580.039*
C13A0.7835 (3)0.72720 (8)0.27974 (17)0.0279 (5)
C14A1.2037 (3)0.66203 (10)0.3951 (2)0.0460 (7)
C15A0.5987 (3)0.71217 (8)0.23552 (18)0.0324 (5)
F1B0.9350 (3)1.07132 (10)0.53923 (16)0.0896 (8)
F2B0.7582 (4)1.12296 (12)0.5572 (2)0.1222 (12)
F3B0.8325 (3)1.12608 (8)0.43264 (16)0.0815 (7)
F4B0.0666 (2)1.04165 (6)0.38057 (14)0.0563 (5)
F5B0.1590 (3)1.11618 (6)0.37229 (16)0.0672 (6)
F6B0.0833 (2)1.06925 (6)0.24796 (14)0.0566 (5)
O1B0.3278 (2)0.84289 (7)0.17464 (18)0.0525 (6)
N1B0.2255 (3)0.75716 (8)0.00655 (16)0.0357 (5)
N2B0.1387 (2)0.89800 (7)0.19927 (14)0.0291 (4)
H2NB0.03380.90610.19090.035*
N3B0.2726 (2)0.92809 (7)0.25030 (14)0.0309 (4)
C1B0.1252 (3)0.84074 (8)0.05378 (17)0.0298 (5)
H1B0.14840.87500.05050.036*
C2B0.2489 (3)0.80662 (9)0.00503 (18)0.0337 (5)
H2B0.35580.81900.03130.040*
C3B0.0697 (3)0.74026 (9)0.05774 (19)0.0360 (5)
H3B0.04980.70590.05940.043*
C4B0.0630 (3)0.77130 (8)0.10816 (19)0.0335 (5)
H4B0.16990.75800.14200.040*
C5B0.0346 (3)0.82255 (8)0.10771 (17)0.0280 (5)
C6B0.1793 (3)0.85540 (8)0.16307 (19)0.0326 (5)
C7B0.2332 (3)0.96770 (9)0.28583 (17)0.0311 (5)
H7B0.11930.97570.27690.037*
C8B0.3734 (3)1.00068 (9)0.34169 (17)0.0322 (5)
C9B0.5420 (3)0.98353 (10)0.36821 (17)0.0359 (5)
H9B0.56340.95090.35300.043*
C10B0.6783 (3)1.01409 (11)0.41673 (18)0.0418 (6)
H10B0.79041.00240.43250.050*
C11B0.6459 (4)1.06192 (11)0.44127 (18)0.0448 (7)
C12B0.4801 (4)1.07976 (10)0.41867 (19)0.0434 (6)
H12B0.46001.11190.43700.052*
C13B0.3433 (3)1.04929 (9)0.36825 (18)0.0372 (6)
C14B0.7939 (5)1.09561 (14)0.4928 (2)0.0605 (9)
C15B0.1644 (4)1.06914 (10)0.3428 (2)0.0480 (7)
O1W0.5352 (5)0.82564 (14)0.4292 (3)0.1324 (16)
H1WA0.44870.84090.43310.199*
H1WB0.60410.80200.45120.199*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0290 (9)0.0562 (11)0.1136 (17)0.0121 (8)0.0043 (9)0.0302 (11)
F2A0.0817 (15)0.0613 (12)0.1128 (17)0.0463 (11)0.0660 (14)0.0371 (11)
F3A0.0366 (9)0.0357 (8)0.0809 (12)0.0138 (7)0.0172 (8)0.0275 (8)
F4A0.0327 (8)0.0454 (8)0.0458 (8)0.0101 (6)0.0034 (6)0.0051 (7)
F5A0.0328 (8)0.0190 (6)0.0825 (11)0.0040 (6)0.0165 (8)0.0044 (7)
F6A0.0224 (7)0.0308 (7)0.0593 (9)0.0017 (5)0.0146 (6)0.0057 (6)
O1A0.0182 (8)0.0218 (7)0.0493 (10)0.0021 (6)0.0074 (7)0.0024 (7)
N1A0.0335 (11)0.0314 (10)0.0519 (13)0.0132 (9)0.0148 (10)0.0085 (9)
N2A0.0159 (8)0.0177 (8)0.0468 (11)0.0019 (6)0.0071 (8)0.0052 (7)
N3A0.0191 (9)0.0193 (8)0.0388 (10)0.0037 (7)0.0061 (7)0.0040 (7)
C1A0.0211 (10)0.0203 (10)0.0425 (12)0.0008 (8)0.0083 (9)0.0023 (9)
C2A0.0223 (11)0.0314 (12)0.0477 (14)0.0049 (9)0.0083 (10)0.0068 (10)
C3A0.0455 (15)0.0180 (10)0.0490 (14)0.0064 (10)0.0191 (12)0.0015 (9)
C4A0.0308 (12)0.0186 (10)0.0400 (12)0.0023 (8)0.0115 (10)0.0004 (9)
C5A0.0182 (10)0.0167 (9)0.0370 (11)0.0001 (7)0.0099 (8)0.0028 (8)
C6A0.0189 (10)0.0170 (9)0.0362 (11)0.0005 (7)0.0069 (8)0.0004 (8)
C7A0.0179 (10)0.0207 (10)0.0447 (12)0.0010 (8)0.0068 (9)0.0049 (9)
C8A0.0216 (10)0.0208 (10)0.0358 (11)0.0020 (8)0.0077 (9)0.0046 (8)
C9A0.0231 (11)0.0235 (10)0.0389 (12)0.0009 (8)0.0072 (9)0.0040 (9)
C10A0.0212 (11)0.0335 (12)0.0415 (13)0.0030 (9)0.0065 (9)0.0081 (10)
C11A0.0275 (12)0.0298 (11)0.0458 (13)0.0087 (9)0.0137 (10)0.0113 (10)
C12A0.0277 (12)0.0217 (10)0.0502 (14)0.0053 (9)0.0147 (10)0.0079 (9)
C13A0.0217 (11)0.0219 (10)0.0400 (12)0.0022 (8)0.0101 (9)0.0049 (9)
C14A0.0290 (13)0.0408 (14)0.0705 (19)0.0131 (11)0.0193 (13)0.0205 (13)
C15A0.0267 (11)0.0197 (10)0.0501 (14)0.0001 (8)0.0116 (10)0.0053 (9)
F1B0.0616 (14)0.1076 (18)0.0721 (14)0.0456 (13)0.0158 (11)0.0014 (12)
F2B0.109 (2)0.157 (3)0.117 (2)0.089 (2)0.0587 (17)0.099 (2)
F3B0.0739 (14)0.0757 (14)0.0837 (14)0.0487 (12)0.0104 (11)0.0088 (11)
F4B0.0472 (10)0.0400 (9)0.0904 (13)0.0042 (7)0.0346 (9)0.0085 (8)
F5B0.0679 (13)0.0311 (8)0.1054 (16)0.0032 (8)0.0319 (11)0.0196 (9)
F6B0.0495 (10)0.0355 (8)0.0743 (12)0.0027 (7)0.0057 (9)0.0018 (8)
O1B0.0177 (9)0.0292 (9)0.1087 (17)0.0001 (7)0.0179 (9)0.0146 (10)
N1B0.0288 (10)0.0309 (10)0.0492 (12)0.0074 (8)0.0151 (9)0.0048 (9)
N2B0.0140 (8)0.0239 (9)0.0475 (11)0.0008 (7)0.0072 (8)0.0026 (8)
N3B0.0197 (9)0.0273 (9)0.0421 (11)0.0050 (7)0.0054 (8)0.0004 (8)
C1B0.0224 (11)0.0239 (10)0.0436 (13)0.0035 (8)0.0113 (9)0.0010 (9)
C2B0.0213 (11)0.0340 (12)0.0441 (13)0.0002 (9)0.0083 (9)0.0028 (10)
C3B0.0341 (13)0.0216 (11)0.0552 (15)0.0009 (9)0.0185 (11)0.0001 (10)
C4B0.0250 (11)0.0232 (11)0.0517 (14)0.0024 (9)0.0116 (10)0.0016 (10)
C5B0.0199 (10)0.0219 (10)0.0446 (13)0.0003 (8)0.0135 (9)0.0011 (9)
C6B0.0188 (11)0.0226 (10)0.0548 (14)0.0003 (8)0.0098 (10)0.0011 (10)
C7B0.0221 (11)0.0294 (11)0.0411 (12)0.0028 (9)0.0094 (9)0.0010 (9)
C8B0.0294 (12)0.0321 (12)0.0349 (12)0.0089 (9)0.0100 (9)0.0013 (9)
C9B0.0284 (12)0.0429 (13)0.0355 (12)0.0084 (10)0.0091 (10)0.0034 (10)
C10B0.0317 (13)0.0570 (17)0.0349 (13)0.0158 (12)0.0085 (10)0.0050 (11)
C11B0.0447 (16)0.0560 (17)0.0330 (12)0.0245 (13)0.0118 (11)0.0063 (11)
C12B0.0554 (17)0.0361 (13)0.0421 (14)0.0186 (12)0.0206 (12)0.0072 (11)
C13B0.0402 (14)0.0325 (12)0.0407 (13)0.0098 (10)0.0157 (11)0.0028 (10)
C14B0.062 (2)0.066 (2)0.0557 (18)0.0345 (17)0.0222 (17)0.0206 (16)
C15B0.0508 (17)0.0283 (12)0.0659 (19)0.0044 (11)0.0207 (14)0.0073 (12)
O1W0.119 (3)0.109 (3)0.134 (3)0.069 (2)0.006 (2)0.044 (2)
Geometric parameters (Å, º) top
F1A—C14A1.326 (4)F2B—C14B1.306 (4)
F2A—C14A1.331 (4)F3B—C14B1.317 (4)
F3A—C14A1.331 (3)F4B—C15B1.339 (3)
F4A—C15A1.330 (3)F5B—C15B1.333 (3)
F5A—C15A1.337 (3)F6B—C15B1.341 (4)
F6A—C15A1.338 (3)O1B—C6B1.226 (3)
O1A—C6A1.221 (3)N1B—C2B1.331 (3)
N1A—C2A1.331 (3)N1B—C3B1.339 (3)
N1A—C3A1.336 (3)N2B—C6B1.343 (3)
N2A—C6A1.352 (3)N2B—N3B1.374 (3)
N2A—N3A1.377 (2)N2B—H2NB0.8600
N2A—H2NA0.8600N3B—C7B1.268 (3)
N3A—C7A1.277 (3)C1B—C2B1.381 (3)
C1A—C5A1.385 (3)C1B—C5B1.386 (3)
C1A—C2A1.388 (3)C1B—H1B0.9300
C1A—H1A0.9300C2B—H2B0.9300
C2A—H2A0.9300C3B—C4B1.380 (3)
C3A—C4A1.379 (3)C3B—H3B0.9300
C3A—H3A0.9300C4B—C5B1.385 (3)
C4A—C5A1.382 (3)C4B—H4B0.9300
C4A—H4A0.9300C5B—C6B1.490 (3)
C5A—C6A1.496 (3)C7B—C8B1.472 (3)
C7A—C8A1.462 (3)C7B—H7B0.9300
C7A—H7A0.9300C8B—C9B1.393 (4)
C8A—C9A1.392 (3)C8B—C13B1.399 (3)
C8A—C13A1.401 (3)C9B—C10B1.383 (3)
C9A—C10A1.380 (3)C9B—H9B0.9300
C9A—H9A0.9300C10B—C11B1.375 (4)
C10A—C11A1.385 (3)C10B—H10B0.9300
C10A—H10A0.9300C11B—C12B1.382 (4)
C11A—C12A1.382 (3)C11B—C14B1.506 (4)
C11A—C14A1.493 (3)C12B—C13B1.392 (4)
C12A—C13A1.384 (3)C12B—H12B0.9300
C12A—H12A0.9300C13B—C15B1.496 (4)
C13A—C15A1.503 (3)O1W—H1WA0.8400
F1B—C14B1.313 (5)O1W—H1WB0.8400
C2A—N1A—C3A116.8 (2)C6B—N2B—N3B116.85 (18)
C6A—N2A—N3A118.29 (17)C6B—N2B—H2NB121.6
C6A—N2A—H2NA120.9N3B—N2B—H2NB121.6
N3A—N2A—H2NA120.9C7B—N3B—N2B116.41 (19)
C7A—N3A—N2A114.54 (18)C2B—C1B—C5B118.1 (2)
C5A—C1A—C2A118.9 (2)C2B—C1B—H1B120.9
C5A—C1A—H1A120.5C5B—C1B—H1B120.9
C2A—C1A—H1A120.5N1B—C2B—C1B124.4 (2)
N1A—C2A—C1A123.2 (2)N1B—C2B—H2B117.8
N1A—C2A—H2A118.4C1B—C2B—H2B117.8
C1A—C2A—H2A118.4N1B—C3B—C4B123.3 (2)
N1A—C3A—C4A124.3 (2)N1B—C3B—H3B118.3
N1A—C3A—H3A117.8C4B—C3B—H3B118.3
C4A—C3A—H3A117.8C3B—C4B—C5B119.0 (2)
C3A—C4A—C5A118.3 (2)C3B—C4B—H4B120.5
C3A—C4A—H4A120.9C5B—C4B—H4B120.5
C5A—C4A—H4A120.9C4B—C5B—C1B118.4 (2)
C4A—C5A—C1A118.4 (2)C4B—C5B—C6B118.2 (2)
C4A—C5A—C6A119.25 (19)C1B—C5B—C6B123.4 (2)
C1A—C5A—C6A122.32 (18)O1B—C6B—N2B122.8 (2)
O1A—C6A—N2A123.70 (19)O1B—C6B—C5B120.0 (2)
O1A—C6A—C5A121.77 (18)N2B—C6B—C5B117.14 (19)
N2A—C6A—C5A114.53 (18)N3B—C7B—C8B118.0 (2)
N3A—C7A—C8A119.11 (19)N3B—C7B—H7B121.0
N3A—C7A—H7A120.4C8B—C7B—H7B121.0
C8A—C7A—H7A120.4C9B—C8B—C13B118.5 (2)
C9A—C8A—C13A118.67 (19)C9B—C8B—C7B119.4 (2)
C9A—C8A—C7A119.81 (19)C13B—C8B—C7B122.1 (2)
C13A—C8A—C7A121.51 (19)C10B—C9B—C8B121.3 (3)
C10A—C9A—C8A121.3 (2)C10B—C9B—H9B119.3
C10A—C9A—H9A119.4C8B—C9B—H9B119.3
C8A—C9A—H9A119.4C11B—C10B—C9B119.2 (3)
C9A—C10A—C11A119.2 (2)C11B—C10B—H10B120.4
C9A—C10A—H10A120.4C9B—C10B—H10B120.4
C11A—C10A—H10A120.4C10B—C11B—C12B121.1 (2)
C12A—C11A—C10A120.8 (2)C10B—C11B—C14B119.4 (3)
C12A—C11A—C14A118.9 (2)C12B—C11B—C14B119.4 (3)
C10A—C11A—C14A120.3 (2)C11B—C12B—C13B119.6 (3)
C11A—C12A—C13A119.9 (2)C11B—C12B—H12B120.2
C11A—C12A—H12A120.1C13B—C12B—H12B120.2
C13A—C12A—H12A120.1C12B—C13B—C8B120.2 (3)
C12A—C13A—C8A120.2 (2)C12B—C13B—C15B119.3 (2)
C12A—C13A—C15A118.6 (2)C8B—C13B—C15B120.5 (2)
C8A—C13A—C15A121.20 (19)F2B—C14B—F1B105.4 (3)
F1A—C14A—F3A106.7 (2)F2B—C14B—F3B108.0 (3)
F1A—C14A—F2A106.6 (2)F1B—C14B—F3B106.8 (3)
F3A—C14A—F2A106.2 (2)F2B—C14B—C11B111.3 (3)
F1A—C14A—C11A112.5 (2)F1B—C14B—C11B113.8 (3)
F3A—C14A—C11A112.8 (2)F3B—C14B—C11B111.2 (3)
F2A—C14A—C11A111.6 (2)F5B—C15B—F4B106.8 (2)
F4A—C15A—F5A106.9 (2)F5B—C15B—F6B106.3 (2)
F4A—C15A—F6A106.45 (19)F4B—C15B—F6B105.9 (2)
F5A—C15A—F6A105.99 (19)F5B—C15B—C13B112.7 (2)
F4A—C15A—C13A112.60 (19)F4B—C15B—C13B112.4 (2)
F5A—C15A—C13A111.95 (19)F6B—C15B—C13B112.2 (2)
F6A—C15A—C13A112.5 (2)H1WA—O1W—H1WB145.0
C2B—N1B—C3B116.7 (2)
C6A—N2A—N3A—C7A175.0 (2)C6B—N2B—N3B—C7B178.6 (2)
C3A—N1A—C2A—C1A1.3 (4)C3B—N1B—C2B—C1B1.3 (4)
C5A—C1A—C2A—N1A1.7 (4)C5B—C1B—C2B—N1B0.3 (4)
C2A—N1A—C3A—C4A0.8 (4)C2B—N1B—C3B—C4B0.6 (4)
N1A—C3A—C4A—C5A2.4 (4)N1B—C3B—C4B—C5B1.1 (4)
C3A—C4A—C5A—C1A2.0 (3)C3B—C4B—C5B—C1B2.1 (4)
C3A—C4A—C5A—C6A179.5 (2)C3B—C4B—C5B—C6B179.6 (2)
C2A—C1A—C5A—C4A0.1 (3)C2B—C1B—C5B—C4B1.4 (4)
C2A—C1A—C5A—C6A178.6 (2)C2B—C1B—C5B—C6B179.6 (2)
N3A—N2A—C6A—O1A0.0 (3)N3B—N2B—C6B—O1B0.6 (4)
N3A—N2A—C6A—C5A179.77 (18)N3B—N2B—C6B—C5B179.9 (2)
C4A—C5A—C6A—O1A33.3 (3)C4B—C5B—C6B—O1B29.3 (4)
C1A—C5A—C6A—O1A145.2 (2)C1B—C5B—C6B—O1B148.9 (3)
C4A—C5A—C6A—N2A146.9 (2)C4B—C5B—C6B—N2B150.0 (2)
C1A—C5A—C6A—N2A34.6 (3)C1B—C5B—C6B—N2B31.8 (4)
N2A—N3A—C7A—C8A179.7 (2)N2B—N3B—C7B—C8B179.5 (2)
N3A—C7A—C8A—C9A12.0 (3)N3B—C7B—C8B—C9B11.4 (3)
N3A—C7A—C8A—C13A168.1 (2)N3B—C7B—C8B—C13B167.7 (2)
C13A—C8A—C9A—C10A1.1 (4)C13B—C8B—C9B—C10B2.3 (4)
C7A—C8A—C9A—C10A179.0 (2)C7B—C8B—C9B—C10B176.9 (2)
C8A—C9A—C10A—C11A0.1 (4)C8B—C9B—C10B—C11B1.7 (4)
C9A—C10A—C11A—C12A1.1 (4)C9B—C10B—C11B—C12B0.3 (4)
C9A—C10A—C11A—C14A177.1 (2)C9B—C10B—C11B—C14B179.1 (3)
C10A—C11A—C12A—C13A1.4 (4)C10B—C11B—C12B—C13B1.5 (4)
C14A—C11A—C12A—C13A176.8 (2)C14B—C11B—C12B—C13B177.9 (3)
C11A—C12A—C13A—C8A0.4 (4)C11B—C12B—C13B—C8B0.8 (4)
C11A—C12A—C13A—C15A180.0 (2)C11B—C12B—C13B—C15B179.1 (3)
C9A—C8A—C13A—C12A0.8 (3)C9B—C8B—C13B—C12B1.0 (4)
C7A—C8A—C13A—C12A179.2 (2)C7B—C8B—C13B—C12B178.1 (2)
C9A—C8A—C13A—C15A178.7 (2)C9B—C8B—C13B—C15B179.0 (2)
C7A—C8A—C13A—C15A1.2 (4)C7B—C8B—C13B—C15B1.8 (4)
C12A—C11A—C14A—F1A151.1 (2)C10B—C11B—C14B—F2B142.1 (3)
C10A—C11A—C14A—F1A30.6 (4)C12B—C11B—C14B—F2B38.5 (4)
C12A—C11A—C14A—F3A30.4 (4)C10B—C11B—C14B—F1B23.1 (4)
C10A—C11A—C14A—F3A151.4 (3)C12B—C11B—C14B—F1B157.5 (3)
C12A—C11A—C14A—F2A89.1 (3)C10B—C11B—C14B—F3B97.5 (4)
C10A—C11A—C14A—F2A89.1 (3)C12B—C11B—C14B—F3B81.9 (4)
C12A—C13A—C15A—F4A120.3 (2)C12B—C13B—C15B—F5B0.8 (4)
C8A—C13A—C15A—F4A60.1 (3)C8B—C13B—C15B—F5B179.1 (2)
C12A—C13A—C15A—F5A0.2 (3)C12B—C13B—C15B—F4B120.0 (3)
C8A—C13A—C15A—F5A179.4 (2)C8B—C13B—C15B—F4B60.1 (3)
C12A—C13A—C15A—F6A119.4 (2)C12B—C13B—C15B—F6B120.8 (3)
C8A—C13A—C15A—F6A60.2 (3)C8B—C13B—C15B—F6B59.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O1B0.862.052.856 (3)156
N2B—H2NB···O1Ai0.862.102.908 (3)155
C7A—H7A···O1B0.932.233.055 (3)147
C7B—H7B···O1Ai0.932.363.158 (3)144
C2B—H2B···F1Aii0.932.523.294 (3)141
C9A—H9A···F2Biii0.932.413.162 (4)138
C12B—H12B···O1Wiv0.932.583.408 (5)149
O1W—H1WA···F2Biv0.842.012.845 (5)180
O1W—H1WB···N1Bv0.842.092.932 (5)180
Symmetry codes: (i) x1, y, z; (ii) x2, y+3/2, z1/2; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C15H9F6N3O·H2O
Mr740.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.2487 (18), 26.649 (6), 14.779 (3)
β (°) 109.076 (10)
V3)3070.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.59 × 0.17 × 0.13
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.914, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
29846, 7030, 5239
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.162, 1.02
No. of reflections7030
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.68

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O1B0.862.052.856 (3)156
N2B—H2NB···O1Ai0.862.102.908 (3)155
C7A—H7A···O1B0.932.233.055 (3)147
C7B—H7B···O1Ai0.932.363.158 (3)144
C2B—H2B···F1Aii0.932.523.294 (3)141
C9A—H9A···F2Biii0.932.413.162 (4)138
C12B—H12B···O1Wiv0.932.583.408 (5)149
O1W—H1WA···F2Biv0.842.012.845 (5)180
O1W—H1WB···N1Bv0.842.092.932 (5)180
Symmetry codes: (i) x1, y, z; (ii) x2, y+3/2, z1/2; (iii) x+2, y+2, z+1; (iv) x+1, y+2, z+1; (v) x+1, y+3/2, z+1/2.
 

Footnotes

Additional Correspondence author, e-mail: amirin@usm.my.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research was supported by Universiti Sains Malaysia (USM) under the Fundamental Research Grant Scheme (203/PFARMASI/671157). HSNK and CSY are grateful to USM for USM Fellowships. HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJanin, Y. L. (2007). Bioorg. Med. Chem. 15, 2479–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationLourenco, M. C. S., Ferreira, M. L., de Souza, M. V. N., Peralta, M. A., Vasconcelos, T. R. A. & Henriques, M. G. M. O. (2008). Eur. J. Med. Chem. 43, 1344–1347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2540–o2541.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010a). Acta Cryst. E66, o579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaveenkumar, H. S., Sadikun, A., Ibrahim, P., Yeap, C. S. & Fun, H.-K. (2010b). Acta Cryst. E66, o1235–o1236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlayden, R. A. & Barry, C. E. (2000). Microbes Infect. 2, 659–669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds