metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-acetyl-3-methyl-1-phenyl-1H-pyrazol-5-olato-κ2O,O′)bis­­(N,N-di­methyl­formamide-κO)nickel(II)

aDepartment of Basic Science, Tianjin Agriculturial College, Tianjin Jinjing Road No 22, Tianjin 300384, People's Republic of China
*Correspondence e-mail: zhuhualing2004@126.com

(Received 29 June 2010; accepted 3 July 2010; online 10 July 2010)

The title complex, [Ni(C12H11N2O2)2(C3H7NO)2], lies on on an inversion center. The NiII ion is coordinated in a slightly distorted octa­hedral coordination enviroment by four O atoms from two bis-chelating 4-acety-3-methyl-1-phenyl-1H-pyrazol-5-olate ligands in the equatorial plane and two O atoms from two N,N-dimethyl­formamide ligands in the axial sites. In the crystal structure, weak inter­molecular ππ stacking inter­actions with centroid–centroid distances of 3.7467 (13) Å link mol­ecules into chains extending alongthe b axis.

Related literature

For related structures: Shi et al. (2005[Shi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005). Acta Cryst. E61, m2320-m2321.]); Zhu et al. (2010a[Zhu, H., Shi, J., Wei, Z., Dai, R. & Zhang, X. (2010a). Acta Cryst. E66, o1352.],b[Zhu, H., Shi, J., Wei, Z., Bai, Y. & Bu, L. (2010b). Acta Cryst. E66, o1583.], 2005[Zhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387-o2388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H11N2O2)2(C3H7NO)2]

  • Mr = 635.36

  • Monoclinic, P 21 /n

  • a = 8.7201 (17) Å

  • b = 17.119 (3) Å

  • c = 9.852 (2) Å

  • β = 101.56 (3)°

  • V = 1440.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.868, Tmax = 0.931

  • 10320 measured reflections

  • 2529 independent reflections

  • 2279 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.078

  • S = 1.09

  • 2529 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our onging studies of pyrazolone derivatives as potential ligands (Zhu et al., 2005; 2010a,b) we report the structure of the title complex, (I).

The molecular structure of the title complex is shown in Fig. 1. The NiII ion lies on a crystallographic inversion centre and adopts a slightly distorted octahedral coordination environment provided by four O atoms from two 4-acety-3-methyl-1-phenyl-1H-pyrazol-5(4H)- onato ligands in the equatorial plane two O atoms from two N,N-bimethylformamide ligands in the axial sites. A related complex has previously been published (Shi et al., 2005). In the crystal structure, weak intermolecular ππ stacking interactions involving the pyrazole rings, with centroid to centroid distances of 3.7467 (13)Å link molecules into one-dimensional chains (Fig 2).

Related literature top

For related structures: Shi et al. (2005); Zhu et al. (2010a,b, 2005).

Experimental top

The title compound was synthesized by dropping a nickel acetate (5m mol) ethanolic solution into an ethanolic solution of 4-acetyl-3-methyl-1-phenyl-1H-pyrazolone-5 (10m mol) and stirring for about 2 h under room temperature. The green blocks which were obtained were dried in air. The product was recrystallized from N,N-dimethylformamide which afforded crystals suitable for X–ray analysis.

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å or 0.98 Å for the methyl H atoms and Uiso(H)= 1.2 Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Structure description top

As part of our onging studies of pyrazolone derivatives as potential ligands (Zhu et al., 2005; 2010a,b) we report the structure of the title complex, (I).

The molecular structure of the title complex is shown in Fig. 1. The NiII ion lies on a crystallographic inversion centre and adopts a slightly distorted octahedral coordination environment provided by four O atoms from two 4-acety-3-methyl-1-phenyl-1H-pyrazol-5(4H)- onato ligands in the equatorial plane two O atoms from two N,N-bimethylformamide ligands in the axial sites. A related complex has previously been published (Shi et al., 2005). In the crystal structure, weak intermolecular ππ stacking interactions involving the pyrazole rings, with centroid to centroid distances of 3.7467 (13)Å link molecules into one-dimensional chains (Fig 2).

For related structures: Shi et al. (2005); Zhu et al. (2010a,b, 2005).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius (symmetry code: (i) -x+1, -y+2, -z+1).
[Figure 2] Fig. 2. Part of the crystal structure showing intermolecular ππ interactions as dashed lines.
Bis(4-acetyl-3-methyl-1-phenyl-1H-pyrazol-5-olato- κ2O,O')bis(N,N-dimethylformamide- κO)nickel(II) top
Crystal data top
[Ni(C12H11N2O2)2(C3H7NO)2]F(000) = 668
Mr = 635.36Dx = 1.464 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4482 reflections
a = 8.7201 (17) Åθ = 2.4–27.9°
b = 17.119 (3) ŵ = 0.73 mm1
c = 9.852 (2) ÅT = 113 K
β = 101.56 (3)°Block, green
V = 1440.9 (5) Å30.20 × 0.18 × 0.10 mm
Z = 2
Data collection top
Rigaku Saturn CCD
diffractometer
2529 independent reflections
Radiation source: rotating anode2279 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.031
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω and φ scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1920
Tmin = 0.868, Tmax = 0.931l = 1111
10320 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.048P)2 + 0.3836P]
where P = (Fo2 + 2Fc2)/3
2529 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Ni(C12H11N2O2)2(C3H7NO)2]V = 1440.9 (5) Å3
Mr = 635.36Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.7201 (17) ŵ = 0.73 mm1
b = 17.119 (3) ÅT = 113 K
c = 9.852 (2) Å0.20 × 0.18 × 0.10 mm
β = 101.56 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
2529 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2279 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.931Rint = 0.031
10320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.09Δρmax = 0.32 e Å3
2529 reflectionsΔρmin = 0.58 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00000.50000.01056 (12)
O10.58951 (13)1.05337 (7)0.68398 (11)0.0138 (3)
O20.41750 (13)0.91066 (7)0.60044 (12)0.0145 (3)
O30.71254 (13)0.94193 (7)0.51507 (12)0.0147 (3)
N10.71370 (16)1.03649 (8)0.91454 (14)0.0136 (3)
N20.73040 (17)0.97910 (9)1.01841 (15)0.0167 (3)
N30.92677 (16)0.91367 (8)0.42588 (15)0.0141 (3)
C10.62073 (19)1.01164 (9)0.79249 (18)0.0121 (4)
C20.57338 (19)0.93439 (10)0.82039 (18)0.0134 (4)
C30.64609 (19)0.91963 (10)0.96176 (18)0.0153 (4)
C40.6431 (2)0.84786 (11)1.04694 (19)0.0208 (4)
H4A0.70470.85671.14040.031*
H4B0.68800.80411.00400.031*
H4C0.53480.83561.05250.031*
C50.46612 (18)0.88950 (10)0.72430 (17)0.0124 (4)
C60.4005 (2)0.81431 (10)0.76739 (18)0.0185 (4)
H6A0.33720.78880.68600.028*
H6B0.33480.82540.83500.028*
H6C0.48650.77970.80920.028*
C70.79488 (19)1.10812 (10)0.94735 (17)0.0134 (4)
C80.74278 (19)1.17723 (10)0.87719 (17)0.0145 (4)
H80.65501.17660.80250.017*
C90.8205 (2)1.24649 (10)0.91776 (18)0.0177 (4)
H90.78461.29360.87090.021*
C100.9504 (2)1.24833 (11)1.02602 (19)0.0206 (4)
H101.00171.29631.05440.025*
C111.0036 (2)1.17911 (11)1.09167 (18)0.0212 (4)
H111.09381.17951.16400.025*
C120.9269 (2)1.10923 (10)1.05317 (18)0.0174 (4)
H120.96461.06211.09900.021*
C130.78377 (19)0.94216 (10)0.41739 (18)0.0138 (4)
H130.73260.96410.33160.017*
C141.0109 (2)0.87896 (11)0.5542 (2)0.0208 (4)
H14A0.96970.89980.63230.031*
H14B1.12250.89160.56650.031*
H14C0.99730.82210.55000.031*
C151.0048 (2)0.91441 (11)0.30838 (19)0.0210 (4)
H15A0.93790.94060.22980.031*
H15B1.02470.86060.28260.031*
H15C1.10440.94250.33370.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01054 (17)0.01073 (18)0.00993 (18)0.00035 (11)0.00088 (12)0.00072 (11)
O10.0168 (6)0.0137 (6)0.0102 (6)0.0004 (5)0.0011 (5)0.0003 (5)
O20.0146 (6)0.0137 (6)0.0149 (7)0.0005 (4)0.0023 (5)0.0013 (5)
O30.0136 (6)0.0163 (6)0.0145 (6)0.0012 (5)0.0035 (5)0.0007 (5)
N10.0177 (7)0.0117 (8)0.0104 (7)0.0010 (6)0.0008 (6)0.0010 (6)
N20.0196 (8)0.0168 (8)0.0123 (8)0.0003 (6)0.0004 (6)0.0034 (6)
N30.0129 (7)0.0145 (8)0.0150 (7)0.0012 (5)0.0031 (6)0.0008 (6)
C10.0097 (8)0.0145 (9)0.0122 (9)0.0020 (6)0.0022 (6)0.0020 (7)
C20.0131 (8)0.0122 (9)0.0149 (9)0.0014 (6)0.0028 (7)0.0009 (7)
C30.0145 (8)0.0154 (9)0.0158 (9)0.0002 (7)0.0028 (7)0.0003 (7)
C40.0226 (9)0.0202 (10)0.0177 (9)0.0033 (7)0.0006 (7)0.0049 (8)
C50.0113 (8)0.0128 (8)0.0134 (9)0.0039 (6)0.0032 (7)0.0016 (7)
C60.0221 (9)0.0156 (9)0.0173 (9)0.0041 (7)0.0030 (7)0.0005 (7)
C70.0147 (8)0.0157 (9)0.0106 (8)0.0015 (7)0.0048 (7)0.0027 (7)
C80.0133 (8)0.0163 (9)0.0137 (9)0.0001 (6)0.0019 (7)0.0011 (7)
C90.0207 (9)0.0152 (9)0.0180 (9)0.0005 (7)0.0060 (7)0.0020 (7)
C100.0246 (9)0.0190 (10)0.0182 (10)0.0090 (8)0.0039 (8)0.0015 (8)
C110.0196 (9)0.0264 (11)0.0151 (9)0.0068 (7)0.0024 (7)0.0000 (8)
C120.0190 (9)0.0170 (9)0.0155 (9)0.0010 (7)0.0018 (7)0.0022 (7)
C130.0141 (8)0.0104 (8)0.0153 (9)0.0000 (6)0.0010 (7)0.0010 (7)
C140.0160 (9)0.0217 (10)0.0234 (10)0.0037 (7)0.0007 (7)0.0068 (8)
C150.0191 (9)0.0236 (10)0.0219 (10)0.0001 (7)0.0083 (8)0.0008 (8)
Geometric parameters (Å, º) top
Ni1—O2i2.0301 (12)C5—C61.504 (2)
Ni1—O22.0301 (12)C6—H6A0.9800
Ni1—O1i2.0402 (12)C6—H6B0.9800
Ni1—O12.0402 (12)C6—H6C0.9800
Ni1—O3i2.0820 (12)C7—C121.390 (3)
Ni1—O32.0820 (12)C7—C81.399 (2)
O1—C11.269 (2)C8—C91.384 (2)
O2—C51.262 (2)C8—H80.9500
O3—C131.246 (2)C9—C101.392 (3)
N1—C11.376 (2)C9—H90.9500
N1—N21.405 (2)C10—C111.385 (3)
N1—C71.420 (2)C10—H100.9500
N2—C31.313 (2)C11—C121.386 (3)
N3—C131.326 (2)C11—H110.9500
N3—C141.455 (2)C12—H120.9500
N3—C151.456 (2)C13—H130.9500
C1—C21.428 (2)C14—H14A0.9800
C2—C51.417 (2)C14—H14B0.9800
C2—C31.432 (2)C14—H14C0.9800
C3—C41.491 (2)C15—H15A0.9800
C4—H4A0.9800C15—H15B0.9800
C4—H4B0.9800C15—H15C0.9800
C4—H4C0.9800
O2i—Ni1—O2180.0O2—C5—C6116.45 (15)
O2i—Ni1—O1i90.81 (5)C2—C5—C6120.89 (15)
O2—Ni1—O1i89.19 (5)C5—C6—H6A109.5
O2i—Ni1—O189.19 (5)C5—C6—H6B109.5
O2—Ni1—O190.81 (5)H6A—C6—H6B109.5
O1i—Ni1—O1180.0C5—C6—H6C109.5
O2i—Ni1—O3i90.17 (5)H6A—C6—H6C109.5
O2—Ni1—O3i89.84 (5)H6B—C6—H6C109.5
O1i—Ni1—O3i88.50 (5)C12—C7—C8119.80 (16)
O1—Ni1—O3i91.50 (5)C12—C7—N1118.86 (15)
O2i—Ni1—O389.83 (5)C8—C7—N1121.32 (15)
O2—Ni1—O390.16 (5)C9—C8—C7119.33 (16)
O1i—Ni1—O391.50 (5)C9—C8—H8120.3
O1—Ni1—O388.50 (5)C7—C8—H8120.3
O3i—Ni1—O3179.999 (1)C8—C9—C10121.12 (17)
C1—O1—Ni1118.40 (11)C8—C9—H9119.4
C5—O2—Ni1127.18 (11)C10—C9—H9119.4
C13—O3—Ni1121.20 (11)C11—C10—C9118.91 (17)
C1—N1—N2112.16 (14)C11—C10—H10120.5
C1—N1—C7130.19 (14)C9—C10—H10120.5
N2—N1—C7117.63 (14)C10—C11—C12120.87 (17)
C3—N2—N1105.38 (14)C10—C11—H11119.6
C13—N3—C14120.62 (15)C12—C11—H11119.6
C13—N3—C15122.03 (15)C11—C12—C7119.92 (17)
C14—N3—C15117.34 (14)C11—C12—H12120.0
O1—C1—N1123.46 (15)C7—C12—H12120.0
O1—C1—C2131.43 (16)O3—C13—N3123.95 (16)
N1—C1—C2105.10 (14)O3—C13—H13118.0
C5—C2—C1123.45 (16)N3—C13—H13118.0
C5—C2—C3131.18 (16)N3—C14—H14A109.5
C1—C2—C3105.17 (14)N3—C14—H14B109.5
N2—C3—C2112.18 (15)H14A—C14—H14B109.5
N2—C3—C4118.10 (16)N3—C14—H14C109.5
C2—C3—C4129.68 (16)H14A—C14—H14C109.5
C3—C4—H4A109.5H14B—C14—H14C109.5
C3—C4—H4B109.5N3—C15—H15A109.5
H4A—C4—H4B109.5N3—C15—H15B109.5
C3—C4—H4C109.5H15A—C15—H15B109.5
H4A—C4—H4C109.5N3—C15—H15C109.5
H4B—C4—H4C109.5H15A—C15—H15C109.5
O2—C5—C2122.64 (15)H15B—C15—H15C109.5
O2i—Ni1—O1—C1156.12 (12)N1—N2—C3—C20.82 (19)
O2—Ni1—O1—C123.88 (12)N1—N2—C3—C4178.73 (15)
O1i—Ni1—O1—C120 (22)C5—C2—C3—N2175.27 (17)
O3i—Ni1—O1—C1113.74 (12)C1—C2—C3—N20.32 (19)
O3—Ni1—O1—C166.26 (12)C5—C2—C3—C47.1 (3)
O2i—Ni1—O2—C597 (5)C1—C2—C3—C4177.93 (17)
O1i—Ni1—O2—C5157.07 (13)Ni1—O2—C5—C210.4 (2)
O1—Ni1—O2—C522.93 (13)Ni1—O2—C5—C6171.37 (10)
O3i—Ni1—O2—C5114.44 (13)C1—C2—C5—O28.4 (3)
O3—Ni1—O2—C565.57 (13)C3—C2—C5—O2177.46 (16)
O2i—Ni1—O3—C1339.74 (12)C1—C2—C5—C6169.79 (15)
O2—Ni1—O3—C13140.26 (12)C3—C2—C5—C64.4 (3)
O1i—Ni1—O3—C1351.07 (13)C1—N1—C7—C12154.26 (17)
O1—Ni1—O3—C13128.93 (13)N2—N1—C7—C1223.8 (2)
O3i—Ni1—O3—C1382 (18)C1—N1—C7—C826.9 (3)
C1—N1—N2—C31.06 (18)N2—N1—C7—C8155.00 (15)
C7—N1—N2—C3179.46 (14)C12—C7—C8—C92.4 (2)
Ni1—O1—C1—N1164.19 (12)N1—C7—C8—C9176.44 (15)
Ni1—O1—C1—C216.5 (2)C7—C8—C9—C100.7 (2)
N2—N1—C1—O1179.70 (14)C8—C9—C10—C111.3 (3)
C7—N1—C1—O11.6 (3)C9—C10—C11—C121.6 (3)
N2—N1—C1—C20.86 (18)C10—C11—C12—C70.0 (3)
C7—N1—C1—C2179.00 (16)C8—C7—C12—C112.0 (2)
O1—C1—C2—C54.3 (3)N1—C7—C12—C11176.81 (15)
N1—C1—C2—C5175.11 (15)Ni1—O3—C13—N3172.39 (12)
O1—C1—C2—C3179.71 (17)C14—N3—C13—O30.4 (3)
N1—C1—C2—C30.33 (17)C15—N3—C13—O3179.29 (16)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C12H11N2O2)2(C3H7NO)2]
Mr635.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)8.7201 (17), 17.119 (3), 9.852 (2)
β (°) 101.56 (3)
V3)1440.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.868, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
10320, 2529, 2279
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.09
No. of reflections2529
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.58

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Science Development Committee of Tianjin Agricultural College (research grant No. 2007029) and the Doctor Degree Fund Commission of Tianjin Agricultural College (No. 2007027) for partial funding.

References

First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005). Acta Cryst. E61, m2320–m2321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Shi, J., Wei, Z., Bai, Y. & Bu, L. (2010b). Acta Cryst. E66, o1583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Shi, J., Wei, Z., Dai, R. & Zhang, X. (2010a). Acta Cryst. E66, o1352.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387–o2388.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds