organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2,6-diiso­propyl­phen­yl)imidazolidinium tetra­phenyl­borate di­chloro­methane disolvate

aDepartment of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, NS, Canada B3H 3C3
*Correspondence e-mail: jason.masuda@smu.ca

(Received 30 June 2010; accepted 15 July 2010; online 24 July 2010)

The title compound, C27H39N2+·C24H20B·2CH2Cl2, is the first reported imidazolidinium cation with the sterically demanding 2,6-diisopropyl­phenyl groups in the 1,3-positions. The crystal structure is stabilized by weak inter­molecular C—H⋯π(arene) inter­actions. Due to the bulky nature of both the flanking 2,6-diisopropyl­phenyl substituents and the tetra­phenyl­borate counter-ion, anion inter­actions with the imidazolidinium H atom in the 2-position are not observed, also a first for this class of ortho-alkyl-substituted Arduengo-type carbene precursors.

Related literature

There are few examples in the literature of crystallographically characterized imidazolium or imidazolidinium complexes with ortho-alkyl substituted phenyl groups in the 1,3-positions, see: Arduengo et al. (1995[Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027-11028.], 1999[Arduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523-14534.]); Fliedel et al. (2007[Fliedel, C., Maisse-Francois, A. & Bellemin-Laponnaz, S. (2007). Inorg. Chim. Acta, 360, 143-148.]); Hagos et al. (2008[Hagos, T. K., Nogai, S. D., Dobrzańska, L. & Cronje, S. (2008). Acta Cryst. E64, m1357.]).

[Scheme 1]

Experimental

Crystal data
  • C27H39N2+·C24H20B·2CH2Cl2

  • Mr = 880.66

  • Monoclinic, C c

  • a = 21.4648 (14) Å

  • b = 10.3964 (7) Å

  • c = 22.7524 (15) Å

  • β = 93.760 (1)°

  • V = 5066.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.49 × 0.34 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.675, Tmax = 0.746

  • 17851 measured reflections

  • 8396 independent reflections

  • 7118 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.186

  • S = 1.35

  • 8396 reflections

  • 549 parameters

  • 892 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3456 Friedels

  • Flack parameter: −0.11 (10)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids defined by the ring atoms C28–C33, C34–C39, C40–C45 and C46–C51, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg2 0.97 2.87 3.677 (4) 141
C3—H3BCg3 0.97 2.75 3.562 (4) 141
C52—H52ACg1i 0.97 2.44 3.406 (7) 171
C52—H52BCg4i 0.97 2.62 3.434 (7) 141
C53—H53ACg4ii 0.97 2.88 3.818 (8) 162
C53—H53BCg1 0.97 2.63 3.585 (8) 169
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Imidazolium and imidazolidinium cations are the essential precursors to neutral free carbene compounds in which a divalent carbon with a six-electron valence shell is electronically stabilized by donating amino-substituents and sterically protected by substituted phenyl groups. The title compound is related to the previously prepared 1,3-bis(2,6-diisopropylphenyl)imidazolidinium chloride. As a result of the increased steric bulk associated with the tetraphenylborate anion the title compound is the first reported structure in which the imidazolidinium C-2 hydrogen atom is not within the sum of the Van der Waals radii of any atom in the anion or co-crystalized solvent. The title compound can be compared to previously published structures (Arduengo et al., 1995, 1999; Fliedel et al., 2007; Hagos et al., 2008).

The asymmetric unit of the title compound is shown in Fig. 1. The crystal structure is stabilized by weak intermolecular C-H···π(arene) interactions.

Related literature top

There are few examples in the literature of crystallographically characterized imidazolium or imidazolidinium complexes with ortho-alkyl substituted phenyl groups in the 1,3-positions, see: Arduengo et al. (1995, 1999); Fliedel et al. (2007); Hagos et al. (2008).

Experimental top

1,3-bis(2,6-diisopropylphenyl)imidazolidinium tetraphenylborate dichloromethane disolvate was prepared by reacting 1.00 g (2.34 mol) of the corresponding imidazolidinum chloride (Arduengo et al., 1999) with one equivalent of sodium tetraphenylborate (0.80 g, 2.34 mmol) in dichloromethane. After stirring overnight, the solution was filtered through diatomaceous earth and allowed to slowly evaporate yielding colorless block-like crystals of the title compound. The proton NMR matched that in the literature of the imidazolidinum chloride and is typical of a tetraphenylborate anion.

Refinement top

The H atoms were placed in geometrically idealized positions with C—H distances of 0.93Å (aromatic), 0.98Å (idealized tertiary), 0.97Å (idealized secondary) and 0.96Å (idealized methyl). H atoms were constrained to ride on the parent C atom with Uiso(H) = 1.2Ueq(C) for aromatic and secondary protons and Uiso(H) = 1.5Ueq(C) for the idealized methyl and tertiary protons.

In order to obtain satisfactory thermal parameters for the model, SIMU and DELU restraints were applied to carbon atoms C4>C51.

Structure description top

Imidazolium and imidazolidinium cations are the essential precursors to neutral free carbene compounds in which a divalent carbon with a six-electron valence shell is electronically stabilized by donating amino-substituents and sterically protected by substituted phenyl groups. The title compound is related to the previously prepared 1,3-bis(2,6-diisopropylphenyl)imidazolidinium chloride. As a result of the increased steric bulk associated with the tetraphenylborate anion the title compound is the first reported structure in which the imidazolidinium C-2 hydrogen atom is not within the sum of the Van der Waals radii of any atom in the anion or co-crystalized solvent. The title compound can be compared to previously published structures (Arduengo et al., 1995, 1999; Fliedel et al., 2007; Hagos et al., 2008).

The asymmetric unit of the title compound is shown in Fig. 1. The crystal structure is stabilized by weak intermolecular C-H···π(arene) interactions.

There are few examples in the literature of crystallographically characterized imidazolium or imidazolidinium complexes with ortho-alkyl substituted phenyl groups in the 1,3-positions, see: Arduengo et al. (1995, 1999); Fliedel et al. (2007); Hagos et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
1,3-Bis(2,6-diisopropylphenyl)imidazolidinium tetraphenylborate dichloromethane disolvate top
Crystal data top
C27H39N2+·C24H20B·2CH2Cl2F(000) = 1872
Mr = 880.66Dx = 1.155 Mg m3
Monoclinic, CcMelting point = 472–475 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 21.4648 (14) ÅCell parameters from 7600 reflections
b = 10.3964 (7) Åθ = 2.2–25.8°
c = 22.7524 (15) ŵ = 0.27 mm1
β = 93.760 (1)°T = 296 K
V = 5066.4 (6) Å3Block, yellow
Z = 40.49 × 0.34 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
8396 independent reflections
Radiation source: fine-focus sealed tube7118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 2626
Tmin = 0.675, Tmax = 0.746k = 1212
17851 measured reflectionsl = 2228
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0829P)2 + 1.5238P]
where P = (Fo2 + 2Fc2)/3
S = 1.35(Δ/σ)max = 0.001
8396 reflectionsΔρmax = 0.41 e Å3
549 parametersΔρmin = 0.44 e Å3
892 restraintsAbsolute structure: Flack (1983), 3456 Friedels
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (10)
Crystal data top
C27H39N2+·C24H20B·2CH2Cl2V = 5066.4 (6) Å3
Mr = 880.66Z = 4
Monoclinic, CcMo Kα radiation
a = 21.4648 (14) ŵ = 0.27 mm1
b = 10.3964 (7) ÅT = 296 K
c = 22.7524 (15) Å0.49 × 0.34 × 0.29 mm
β = 93.760 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8396 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
7118 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.746Rint = 0.013
17851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.186Δρmax = 0.41 e Å3
S = 1.35Δρmin = 0.44 e Å3
8396 reflectionsAbsolute structure: Flack (1983), 3456 Friedels
549 parametersAbsolute structure parameter: 0.11 (10)
892 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32237 (14)0.8042 (3)0.34114 (15)0.0434 (7)
H10.29420.83530.31180.052*
C20.39497 (16)0.8011 (3)0.41785 (18)0.0519 (9)
H2A0.38140.82150.45660.062*
H2B0.43960.81510.41770.062*
C30.37791 (15)0.6632 (3)0.40044 (16)0.0461 (8)
H3A0.41290.61880.38460.055*
H3B0.36400.61490.43360.055*
C40.36517 (16)1.0162 (3)0.3702 (2)0.0583 (6)
C50.4123 (2)1.0698 (4)0.3383 (2)0.0696 (7)
C60.4195 (2)1.2020 (4)0.3413 (3)0.0763 (7)
H60.45031.24170.32070.092*
C70.3818 (2)1.2746 (5)0.3742 (3)0.0799 (8)
H70.38761.36320.37570.096*
C80.3361 (2)1.2214 (4)0.4047 (3)0.0740 (7)
H80.31091.27390.42620.089*
C90.32666 (18)1.0890 (4)0.4041 (2)0.0657 (7)
C100.4535 (2)0.9890 (5)0.3013 (3)0.0765 (7)
H100.44930.89890.31300.092*
C110.4323 (3)1.0003 (8)0.2363 (3)0.1121 (14)
H11A0.43471.08850.22420.168*
H11B0.38990.97080.23030.168*
H11C0.45880.94860.21340.168*
C120.5217 (2)1.0247 (6)0.3085 (3)0.0886 (12)
H12A0.52791.10690.29060.133*
H12B0.54600.96090.28990.133*
H12C0.53451.02910.34970.133*
C130.27496 (19)1.0312 (4)0.4373 (2)0.0700 (7)
H130.27710.93760.43250.084*
C140.2814 (3)1.0592 (6)0.5022 (3)0.0930 (11)
H14A0.31871.01930.51920.139*
H14B0.24591.02570.52060.139*
H14C0.28391.15050.50830.139*
C150.2115 (2)1.0757 (5)0.4093 (3)0.0831 (11)
H15A0.20561.16510.41780.125*
H15B0.17881.02620.42510.125*
H15C0.21061.06350.36740.125*
C160.29202 (19)0.5791 (4)0.3253 (2)0.0599 (6)
C170.3132 (2)0.5293 (4)0.2739 (2)0.0692 (7)
C180.2803 (2)0.4256 (4)0.2483 (2)0.0752 (8)
H180.29310.38960.21360.090*
C190.2297 (2)0.3767 (4)0.2736 (2)0.0766 (8)
H190.20860.30740.25580.092*
C200.2087 (2)0.4267 (4)0.3249 (2)0.0715 (7)
H200.17400.39120.34110.086*
C210.23988 (19)0.5310 (4)0.3526 (2)0.0623 (6)
C220.2165 (2)0.5901 (4)0.4072 (2)0.0673 (7)
H220.25240.63030.42870.081*
C230.1891 (2)0.4947 (5)0.4486 (3)0.0830 (10)
H23A0.15420.45170.42860.125*
H23B0.17530.53930.48230.125*
H23C0.22030.43250.46100.125*
C240.1694 (2)0.6984 (5)0.3905 (3)0.0860 (11)
H24A0.18980.76500.36980.129*
H24B0.15360.73340.42560.129*
H24C0.13540.66420.36570.129*
C250.3687 (3)0.5847 (5)0.2449 (2)0.0779 (8)
H250.39180.63920.27400.094*
C260.4138 (3)0.4820 (6)0.2250 (3)0.0993 (13)
H26A0.43490.44270.25880.149*
H26B0.44380.52110.20110.149*
H26C0.39080.41760.20240.149*
C270.3473 (4)0.6694 (6)0.1931 (3)0.1047 (13)
H27A0.32930.61680.16180.157*
H27B0.38250.71540.17970.157*
H27C0.31670.72950.20520.157*
C280.56734 (17)0.4344 (3)0.57017 (18)0.0519 (7)
C290.5472 (3)0.3788 (4)0.6212 (2)0.0755 (10)
H290.51090.40980.63640.091*
C300.5791 (3)0.2785 (5)0.6505 (3)0.0988 (14)
H300.56490.24560.68520.119*
C310.6317 (3)0.2287 (5)0.6279 (3)0.1040 (15)
H310.65260.16050.64670.125*
C320.6528 (3)0.2785 (5)0.5786 (3)0.0925 (13)
H320.68860.24490.56340.111*
C330.62107 (19)0.3813 (4)0.5497 (2)0.0685 (9)
H330.63670.41490.51580.082*
C340.54183 (14)0.5733 (3)0.46984 (17)0.0475 (6)
C350.53663 (18)0.4641 (4)0.4336 (2)0.0611 (8)
H350.53080.38450.45110.073*
C360.5398 (2)0.4689 (5)0.3730 (2)0.0739 (9)
H360.53630.39360.35100.089*
C370.5479 (2)0.5841 (6)0.3457 (2)0.0784 (10)
H370.55050.58790.30510.094*
C380.55225 (18)0.6931 (5)0.3788 (2)0.0702 (9)
H380.55750.77200.36050.084*
C390.54900 (15)0.6885 (4)0.43912 (19)0.0570 (7)
H390.55170.76500.46030.068*
C400.45929 (16)0.5707 (3)0.54864 (17)0.0503 (7)
C410.42234 (18)0.4617 (4)0.5400 (2)0.0597 (8)
H410.44110.38390.53130.072*
C420.35757 (19)0.4663 (5)0.5439 (2)0.0717 (10)
H420.33450.39090.53880.086*
C430.3276 (2)0.5772 (5)0.5550 (2)0.0760 (10)
H430.28440.57940.55660.091*
C440.3623 (2)0.6847 (5)0.5637 (2)0.0743 (10)
H440.34280.76150.57250.089*
C450.42724 (18)0.6826 (4)0.5598 (2)0.0631 (9)
H450.44950.75900.56480.076*
C460.57412 (16)0.6805 (3)0.57753 (18)0.0528 (7)
C470.5579 (2)0.7240 (5)0.6326 (2)0.0745 (10)
H470.52180.69290.64810.089*
C480.5949 (3)0.8135 (6)0.6650 (3)0.0917 (13)
H480.58230.84180.70110.110*
C490.6482 (3)0.8594 (5)0.6452 (3)0.0913 (13)
H490.67220.91830.66740.110*
C500.6665 (2)0.8187 (4)0.5921 (3)0.0786 (11)
H500.70340.84930.57800.094*
C510.62988 (18)0.7313 (4)0.5591 (2)0.0615 (8)
H510.64310.70520.52290.074*
C520.1967 (3)0.9707 (6)0.1819 (3)0.109 (2)
H52B0.19400.88770.16240.130*
H52A0.16641.02790.16220.130*
C530.5164 (3)0.0513 (8)0.5452 (3)0.115 (2)
H53B0.54420.11850.56070.138*
H53A0.53630.03090.55410.138*
B10.53552 (17)0.5659 (4)0.54107 (19)0.0459 (8)
Cl10.18097 (19)0.9538 (4)0.25374 (12)0.2196 (19)
Cl20.26822 (14)1.0308 (4)0.1782 (2)0.230 (2)
Cl30.44650 (12)0.0595 (2)0.57959 (13)0.1433 (8)
Cl40.50522 (12)0.0685 (2)0.47076 (10)0.1297 (7)
N10.32668 (13)0.6829 (2)0.35495 (13)0.0462 (6)
N20.36081 (11)0.8780 (2)0.37186 (13)0.0442 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0402 (14)0.0456 (16)0.0443 (19)0.0018 (12)0.0016 (13)0.0055 (14)
C20.0501 (17)0.0423 (16)0.061 (2)0.0011 (13)0.0120 (16)0.0010 (15)
C30.0454 (16)0.0414 (16)0.051 (2)0.0015 (12)0.0001 (14)0.0040 (14)
C40.0478 (12)0.0457 (11)0.0807 (18)0.0015 (10)0.0008 (10)0.0059 (12)
C50.0597 (13)0.0571 (11)0.0923 (18)0.0076 (11)0.0079 (12)0.0098 (13)
C60.0705 (15)0.0577 (11)0.101 (2)0.0091 (12)0.0120 (13)0.0141 (14)
C70.0773 (16)0.0564 (13)0.106 (2)0.0047 (11)0.0063 (14)0.0069 (13)
C80.0679 (15)0.0517 (11)0.103 (2)0.0055 (11)0.0079 (13)0.0004 (14)
C90.0553 (12)0.0508 (11)0.0909 (18)0.0048 (10)0.0028 (11)0.0037 (13)
C100.0697 (14)0.0664 (15)0.0950 (18)0.0061 (13)0.0179 (12)0.0091 (15)
C110.107 (3)0.132 (3)0.0970 (18)0.001 (3)0.004 (2)0.012 (3)
C120.0680 (14)0.095 (3)0.105 (3)0.0053 (18)0.0219 (16)0.015 (2)
C130.0604 (13)0.0580 (15)0.0924 (17)0.0066 (12)0.0116 (11)0.0007 (15)
C140.077 (2)0.112 (3)0.0894 (16)0.001 (2)0.0054 (15)0.004 (2)
C150.0565 (13)0.096 (3)0.097 (3)0.0003 (18)0.0058 (17)0.001 (2)
C160.0669 (14)0.0528 (14)0.0585 (14)0.0079 (11)0.0077 (10)0.0048 (11)
C170.0814 (15)0.0645 (15)0.0605 (15)0.0071 (11)0.0034 (11)0.0080 (11)
C180.0887 (17)0.0692 (16)0.0664 (17)0.0067 (12)0.0041 (13)0.0160 (13)
C190.0867 (16)0.0668 (16)0.0742 (16)0.0129 (13)0.0099 (13)0.0131 (12)
C200.0742 (16)0.0645 (15)0.0743 (17)0.0164 (12)0.0060 (13)0.0075 (12)
C210.0648 (14)0.0550 (14)0.0656 (14)0.0070 (10)0.0069 (10)0.0036 (11)
C220.0648 (15)0.0627 (15)0.0740 (16)0.0080 (11)0.0003 (12)0.0079 (11)
C230.083 (2)0.081 (2)0.086 (2)0.0095 (19)0.0163 (19)0.0005 (18)
C240.081 (2)0.076 (2)0.101 (3)0.0090 (16)0.007 (2)0.0066 (18)
C250.0927 (17)0.0788 (17)0.0623 (16)0.0117 (12)0.0057 (12)0.0089 (14)
C260.107 (3)0.103 (3)0.091 (3)0.005 (2)0.026 (2)0.001 (2)
C270.138 (3)0.094 (3)0.083 (3)0.001 (2)0.019 (2)0.015 (2)
C280.0546 (15)0.0444 (16)0.0549 (19)0.0039 (12)0.0088 (14)0.0031 (12)
C290.097 (3)0.067 (2)0.061 (2)0.0109 (18)0.0046 (17)0.0102 (18)
C300.139 (4)0.073 (3)0.080 (3)0.017 (2)0.029 (2)0.024 (2)
C310.133 (4)0.059 (2)0.111 (3)0.007 (2)0.059 (3)0.005 (2)
C320.092 (3)0.070 (2)0.110 (3)0.026 (2)0.037 (2)0.016 (2)
C330.0610 (19)0.060 (2)0.082 (3)0.0117 (15)0.0103 (15)0.0099 (17)
C340.0359 (14)0.0574 (14)0.0495 (17)0.0049 (13)0.0041 (13)0.0002 (10)
C350.061 (2)0.0652 (16)0.0569 (16)0.0043 (17)0.0035 (18)0.0077 (14)
C360.066 (2)0.100 (2)0.0559 (16)0.005 (2)0.0018 (19)0.0176 (17)
C370.060 (2)0.125 (2)0.050 (2)0.002 (2)0.0022 (19)0.0067 (14)
C380.0514 (18)0.093 (2)0.0668 (17)0.0095 (19)0.0094 (18)0.0248 (16)
C390.0444 (16)0.0613 (14)0.0660 (17)0.0105 (14)0.0084 (16)0.0087 (14)
C400.0483 (14)0.0616 (15)0.0416 (19)0.0010 (10)0.0076 (14)0.0062 (15)
C410.0538 (14)0.0676 (16)0.058 (2)0.0038 (13)0.0069 (16)0.0028 (18)
C420.0538 (14)0.095 (2)0.066 (3)0.0157 (15)0.0072 (18)0.005 (2)
C430.0481 (17)0.119 (2)0.063 (3)0.0053 (13)0.0142 (18)0.013 (2)
C440.0615 (15)0.093 (2)0.070 (3)0.0218 (15)0.015 (2)0.010 (2)
C450.0595 (14)0.0641 (16)0.067 (3)0.0081 (13)0.0115 (18)0.0081 (18)
C460.0545 (15)0.0440 (16)0.0599 (19)0.0040 (12)0.0037 (14)0.0047 (14)
C470.072 (2)0.083 (3)0.070 (2)0.0053 (18)0.0111 (17)0.020 (2)
C480.098 (3)0.096 (3)0.080 (3)0.012 (2)0.005 (2)0.038 (2)
C490.102 (3)0.064 (2)0.104 (3)0.005 (2)0.022 (2)0.023 (2)
C500.072 (2)0.066 (2)0.096 (3)0.0150 (17)0.0113 (19)0.002 (2)
C510.0600 (17)0.0571 (19)0.067 (2)0.0048 (14)0.0018 (15)0.0026 (16)
C520.124 (5)0.100 (4)0.094 (5)0.022 (3)0.042 (4)0.013 (3)
C530.087 (4)0.142 (6)0.111 (6)0.021 (3)0.031 (4)0.005 (4)
B10.0414 (17)0.0488 (19)0.048 (2)0.0026 (14)0.0048 (15)0.0023 (16)
Cl10.261 (4)0.315 (5)0.0782 (15)0.095 (3)0.0274 (19)0.015 (2)
Cl20.1225 (17)0.213 (3)0.342 (6)0.0025 (19)0.077 (3)0.004 (3)
Cl30.1502 (17)0.1418 (17)0.143 (2)0.0151 (12)0.0490 (14)0.0088 (13)
Cl40.1669 (18)0.1260 (14)0.0946 (13)0.0198 (12)0.0045 (12)0.0084 (10)
N10.0494 (14)0.0403 (13)0.0480 (17)0.0017 (11)0.0037 (12)0.0004 (12)
N20.0376 (12)0.0412 (13)0.0534 (18)0.0028 (10)0.0004 (11)0.0046 (12)
Geometric parameters (Å, º) top
C1—N21.297 (4)C25—H250.9800
C1—N11.301 (4)C26—H26A0.9600
C1—H10.9300C26—H26B0.9600
C2—N21.474 (4)C26—H26C0.9600
C2—C31.526 (5)C27—H27A0.9600
C2—H2A0.9700C27—H27B0.9600
C2—H2B0.9700C27—H27C0.9600
C3—N11.474 (4)C28—C291.390 (6)
C3—H3A0.9700C28—C331.386 (6)
C3—H3B0.9700C28—B11.648 (5)
C4—C91.391 (6)C29—C301.393 (7)
C4—C51.398 (6)C29—H290.9300
C4—N21.441 (5)C30—C311.372 (10)
C5—C61.385 (6)C30—H300.9300
C5—C101.514 (7)C31—C321.340 (10)
C6—C71.366 (7)C31—H310.9300
C6—H60.9300C32—C331.407 (7)
C7—C81.357 (7)C32—H320.9300
C7—H70.9300C33—H330.9300
C8—C91.392 (6)C34—C391.400 (5)
C8—H80.9300C34—C351.403 (5)
C9—C131.507 (7)C34—B11.637 (6)
C10—C121.509 (6)C35—C361.384 (7)
C10—C111.523 (9)C35—H350.9300
C10—H100.9800C36—C371.367 (7)
C11—H11A0.9600C36—H360.9300
C11—H11B0.9600C37—C381.362 (7)
C11—H11C0.9600C37—H370.9300
C12—H12A0.9600C38—C391.378 (6)
C12—H12B0.9600C38—H380.9300
C12—H12C0.9600C39—H390.9300
C13—C141.503 (8)C40—C451.383 (5)
C13—C151.536 (6)C40—C411.390 (5)
C13—H130.9800C40—B11.657 (5)
C14—H14A0.9600C41—C421.400 (6)
C14—H14B0.9600C41—H410.9300
C14—H14C0.9600C42—C431.352 (7)
C15—H15A0.9600C42—H420.9300
C15—H15B0.9600C43—C441.350 (7)
C15—H15C0.9600C43—H430.9300
C16—C171.381 (7)C44—C451.403 (6)
C16—C211.407 (7)C44—H440.9300
C16—N11.452 (4)C45—H450.9300
C17—C181.396 (6)C46—C471.397 (6)
C17—C251.514 (7)C46—C511.397 (6)
C18—C191.361 (8)C46—B11.645 (5)
C18—H180.9300C47—C481.401 (7)
C19—C201.381 (7)C47—H470.9300
C19—H190.9300C48—C491.344 (9)
C20—C211.401 (6)C48—H480.9300
C20—H200.9300C49—C501.362 (8)
C21—C221.502 (7)C49—H490.9300
C22—C231.513 (7)C50—C511.389 (6)
C22—C241.544 (6)C50—H500.9300
C22—H220.9800C51—H510.9300
C23—H23A0.9600C52—Cl21.665 (8)
C23—H23B0.9600C52—Cl11.699 (9)
C23—H23C0.9600C52—H52B0.9700
C24—H24A0.9600C52—H52A0.9700
C24—H24B0.9600C53—Cl41.705 (8)
C24—H24C0.9600C53—Cl31.739 (8)
C25—C271.518 (8)C53—H53B0.9700
C25—C261.530 (8)C53—H53A0.9700
N2—C1—N1114.2 (3)C26—C25—H25107.6
N2—C1—H1122.9C25—C26—H26A109.5
N1—C1—H1122.9C25—C26—H26B109.5
N2—C2—C3103.1 (3)H26A—C26—H26B109.5
N2—C2—H2A111.2C25—C26—H26C109.5
C3—C2—H2A111.2H26A—C26—H26C109.5
N2—C2—H2B111.2H26B—C26—H26C109.5
C3—C2—H2B111.2C25—C27—H27A109.5
H2A—C2—H2B109.1C25—C27—H27B109.5
N1—C3—C2101.9 (2)H27A—C27—H27B109.5
N1—C3—H3A111.4C25—C27—H27C109.5
C2—C3—H3A111.4H27A—C27—H27C109.5
N1—C3—H3B111.4H27B—C27—H27C109.5
C2—C3—H3B111.4C29—C28—C33115.2 (4)
H3A—C3—H3B109.2C29—C28—B1122.5 (4)
C9—C4—C5123.2 (4)C33—C28—B1121.8 (4)
C9—C4—N2119.0 (3)C28—C29—C30122.7 (5)
C5—C4—N2117.5 (4)C28—C29—H29118.7
C6—C5—C4116.9 (4)C30—C29—H29118.7
C6—C5—C10120.6 (4)C31—C30—C29119.6 (6)
C4—C5—C10122.4 (4)C31—C30—H30120.2
C7—C6—C5120.4 (4)C29—C30—H30120.2
C7—C6—H6119.8C32—C31—C30120.0 (5)
C5—C6—H6119.8C32—C31—H31120.0
C8—C7—C6122.0 (4)C30—C31—H31120.0
C8—C7—H7119.0C31—C32—C33120.3 (6)
C6—C7—H7119.0C31—C32—H32119.9
C7—C8—C9120.5 (4)C33—C32—H32119.9
C7—C8—H8119.7C28—C33—C32122.3 (5)
C9—C8—H8119.7C28—C33—H33118.9
C8—C9—C4116.8 (4)C32—C33—H33118.9
C8—C9—C13120.1 (4)C39—C34—C35113.9 (4)
C4—C9—C13123.0 (3)C39—C34—B1123.6 (3)
C12—C10—C5113.6 (4)C35—C34—B1122.4 (3)
C12—C10—C11108.3 (5)C36—C35—C34123.3 (4)
C5—C10—C11110.5 (5)C36—C35—H35118.4
C12—C10—H10108.1C34—C35—H35118.4
C5—C10—H10108.1C37—C36—C35120.1 (5)
C11—C10—H10108.1C37—C36—H36120.0
C10—C11—H11A109.5C35—C36—H36120.0
C10—C11—H11B109.5C36—C37—C38118.9 (5)
H11A—C11—H11B109.5C36—C37—H37120.6
C10—C11—H11C109.5C38—C37—H37120.6
H11A—C11—H11C109.5C37—C38—C39121.1 (4)
H11B—C11—H11C109.5C37—C38—H38119.5
C10—C12—H12A109.5C39—C38—H38119.5
C10—C12—H12B109.5C38—C39—C34122.8 (4)
H12A—C12—H12B109.5C38—C39—H39118.6
C10—C12—H12C109.5C34—C39—H39118.6
H12A—C12—H12C109.5C45—C40—C41115.2 (3)
H12B—C12—H12C109.5C45—C40—B1123.4 (3)
C14—C13—C9113.0 (4)C41—C40—B1121.2 (3)
C14—C13—C15111.9 (4)C42—C41—C40121.5 (4)
C9—C13—C15109.5 (4)C42—C41—H41119.2
C14—C13—H13107.4C40—C41—H41119.2
C9—C13—H13107.4C43—C42—C41121.8 (4)
C15—C13—H13107.4C43—C42—H42119.1
C13—C14—H14A109.5C41—C42—H42119.1
C13—C14—H14B109.5C44—C43—C42117.9 (4)
H14A—C14—H14B109.5C44—C43—H43121.0
C13—C14—H14C109.5C42—C43—H43121.0
H14A—C14—H14C109.5C43—C44—C45121.3 (4)
H14B—C14—H14C109.5C43—C44—H44119.4
C13—C15—H15A109.5C45—C44—H44119.4
C13—C15—H15B109.5C40—C45—C44122.2 (4)
H15A—C15—H15B109.5C40—C45—H45118.9
C13—C15—H15C109.5C44—C45—H45118.9
H15A—C15—H15C109.5C47—C46—C51114.5 (4)
H15B—C15—H15C109.5C47—C46—B1122.7 (4)
C17—C16—C21123.7 (4)C51—C46—B1122.4 (4)
C17—C16—N1119.0 (4)C48—C47—C46121.3 (5)
C21—C16—N1117.2 (4)C48—C47—H47119.3
C16—C17—C18117.3 (5)C46—C47—H47119.3
C16—C17—C25122.6 (4)C49—C48—C47121.6 (5)
C18—C17—C25120.1 (5)C49—C48—H48119.2
C19—C18—C17120.4 (5)C47—C48—H48119.2
C19—C18—H18119.8C50—C49—C48119.3 (5)
C17—C18—H18119.8C50—C49—H49120.3
C18—C19—C20122.2 (4)C48—C49—H49120.3
C18—C19—H19118.9C49—C50—C51119.6 (5)
C20—C19—H19118.9C49—C50—H50120.2
C19—C20—C21119.9 (5)C51—C50—H50120.2
C19—C20—H20120.1C50—C51—C46123.5 (5)
C21—C20—H20120.1C50—C51—H51118.3
C20—C21—C16116.5 (4)C46—C51—H51118.3
C20—C21—C22120.8 (4)Cl2—C52—Cl1109.2 (4)
C16—C21—C22122.6 (3)Cl2—C52—H52B109.8
C21—C22—C23114.3 (4)Cl1—C52—H52B109.8
C21—C22—C24110.2 (4)Cl2—C52—H52A109.8
C23—C22—C24110.9 (4)Cl1—C52—H52A109.8
C21—C22—H22107.1H52B—C52—H52A108.3
C23—C22—H22107.1Cl4—C53—Cl3111.8 (3)
C24—C22—H22107.1Cl4—C53—H53B109.3
C22—C23—H23A109.5Cl3—C53—H53B109.3
C22—C23—H23B109.5Cl4—C53—H53A109.3
H23A—C23—H23B109.5Cl3—C53—H53A109.3
C22—C23—H23C109.5H53B—C53—H53A107.9
H23A—C23—H23C109.5C46—B1—C34113.2 (3)
H23B—C23—H23C109.5C46—B1—C28102.5 (3)
C22—C24—H24A109.5C34—B1—C28112.2 (3)
C22—C24—H24B109.5C46—B1—C40113.2 (3)
H24A—C24—H24B109.5C34—B1—C40104.4 (3)
C22—C24—H24C109.5C28—B1—C40111.7 (3)
H24A—C24—H24C109.5C1—N1—C16125.6 (3)
H24B—C24—H24C109.5C1—N1—C3110.0 (3)
C17—C25—C27110.6 (5)C16—N1—C3123.9 (3)
C17—C25—C26113.3 (4)C1—N2—C4128.0 (3)
C27—C25—C26109.8 (5)C1—N2—C2109.3 (2)
C17—C25—H25107.6C4—N2—C2122.0 (3)
C27—C25—H25107.6
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids defined by the ring atoms C28–C33, C34–C39, C40–C45 and C46–C51, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg20.972.873.677 (4)141
C3—H3B···Cg30.972.753.562 (4)141
C52—H52A···Cg1i0.972.443.406 (7)171
C52—H52B···Cg4i0.972.623.434 (7)141
C53—H53A···Cg4ii0.972.883.818 (8)162
C53—H53B···Cg10.972.633.585 (8)169
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC27H39N2+·C24H20B·2CH2Cl2
Mr880.66
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)21.4648 (14), 10.3964 (7), 22.7524 (15)
β (°) 93.760 (1)
V3)5066.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.49 × 0.34 × 0.29
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.675, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
17851, 8396, 7118
Rint0.013
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.186, 1.35
No. of reflections8396
No. of parameters549
No. of restraints892
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.44
Absolute structureFlack (1983), 3456 Friedels
Absolute structure parameter0.11 (10)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids defined by the ring atoms C28–C33, C34–C39, C40–C45 and C46–C51, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg20.972.873.677 (4)141
C3—H3B···Cg30.972.753.562 (4)141
C52—H52A···Cg1i0.972.443.406 (7)171
C52—H52B···Cg4i0.972.623.434 (7)141
C53—H53A···Cg4ii0.972.883.818 (8)162
C53—H53B···Cg10.972.633.585 (8)169
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y1, z.
 

Acknowledgements

The authors would like to thank Saint Mary's University for providing funding in the form of initial operating funds, the Natural Sciences and Engineering Research Council for a Discovery Grant and a Research Tools and Instruments Grant (JDM), the Canadian Foundation for Innovation for a Leaders Opportunity Fund Grant, the Nova Scotia Research and Innovation Trust (JDM). Student funding was provided through the Saint Mary's University Summer Employment Experience Program (ADH) and the office of the Dean of Science Summer Research Award (NAG).

References

First citationArduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.  CrossRef CAS Web of Science Google Scholar
First citationArduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523–14534.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2010). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFliedel, C., Maisse-Francois, A. & Bellemin-Laponnaz, S. (2007). Inorg. Chim. Acta, 360, 143-148.  Web of Science CSD CrossRef CAS Google Scholar
First citationHagos, T. K., Nogai, S. D., Dobrzańska, L. & Cronje, S. (2008). Acta Cryst. E64, m1357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds